JPH01122923A - Superconductor - Google Patents

Superconductor

Info

Publication number
JPH01122923A
JPH01122923A JP62281004A JP28100487A JPH01122923A JP H01122923 A JPH01122923 A JP H01122923A JP 62281004 A JP62281004 A JP 62281004A JP 28100487 A JP28100487 A JP 28100487A JP H01122923 A JPH01122923 A JP H01122923A
Authority
JP
Japan
Prior art keywords
superconductor
current density
oxide
bismuth
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62281004A
Other languages
Japanese (ja)
Inventor
Koji Tohata
東畑 孝二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62281004A priority Critical patent/JPH01122923A/en
Priority to KR1019880014598A priority patent/KR910008717B1/en
Priority to US07/269,065 priority patent/US4959348A/en
Priority to EP88118668A priority patent/EP0315977A3/en
Publication of JPH01122923A publication Critical patent/JPH01122923A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To enlarge critical current density in an oxide superconductor consisting essentially of Y, Ba and Cu, by adding at least one of Bi, Sb, B and Pb to the oxide superconductor. CONSTITUTION:An oxide superconductor consisting essentially of yttrium (Y), barium (Ba) and copper (Cu), having superconducting characteristics, is incorporated with 0.1-5wt.% calculated as Bi2O3, Sb2O3, B2O3 or Pb2O3 of at least one of bismuth, antimony, boron and lead. Addition of at least one of Bi, Sb, B and Pb increases sintering density of the superconductor, makes the superconductor dense and current density can be enlarged.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、超電導体に係わり、特に高磁場マグネット、
限流器、磁気推進装置等のエネルギー機器に使用するの
に好適な超電導体に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to superconductors, particularly high-field magnets,
The present invention relates to superconductors suitable for use in energy devices such as current limiters and magnetic propulsion devices.

(従来の技術) 最近、イツトリウム(Y)、バリウム(Ba)、銅(C
u)からなる三成分金属酸化物(Y −Ba−Cu三成
分金h1酸化物)からなる超電導材料が開発さ九た。
(Prior art) Recently, yttrium (Y), barium (Ba), copper (C
A superconducting material consisting of a ternary metal oxide (Y-Ba-Cu ternary gold h1 oxide) was developed.

(例えば、 Jpn、 J、 Appl、 Phys、
 26(1987)L320その他)これは液体窒素温
度(77K )以上の高温で超電導に転移するものであ
り、したがって、高温超電導体とも呼ばれる。冷媒とし
て使われる液体窒素は、従来用いられてきた液体ヘリウ
ムに比べ安価であるため、この臨界温度Tcが液体窒素
温度(77K )以上ということは、実用上大変有利で
ある。例えば、高温超電導体を利用したものに、超電導
材がある。これは、イツトリウム、バリウム。
(For example, Jpn, J, Appl, Phys,
26 (1987) L320 et al.) It transforms into superconductivity at high temperatures above the liquid nitrogen temperature (77 K), and is therefore also called a high-temperature superconductor. Since liquid nitrogen used as a refrigerant is cheaper than conventionally used liquid helium, it is practically advantageous that the critical temperature Tc is higher than the liquid nitrogen temperature (77K). For example, there are superconducting materials that utilize high-temperature superconductors. These are yztrium and barium.

銅の酸化物を混合・造粒、仮焼した後、粉砕し。Copper oxide is mixed, granulated, calcined, and then crushed.

銀等のシース材に充填し、圧延し、再熱処理して、超電
導線材化したものである。この高温超電導材を用いた超
電線材は加工性にも優れ、超電導特性も良好であり、大
型・高磁場マグネットなどの超電導体として大変優れて
いる。
It is made into a superconducting wire by filling a sheath material such as silver, rolling it, and reheating it. Superconducting wires made from this high-temperature superconducting material have excellent workability and good superconducting properties, making them excellent as superconductors for large, high-field magnets, etc.

(発明が解決しようとする問題点) ところで、YBa−Cu三成分金属酸化物超電導体には
、次の様な問題があった。即ち、超電導体に流せる電流
密度が小さいという欠点があった。
(Problems to be Solved by the Invention) By the way, the YBa-Cu ternary metal oxide superconductor has the following problems. That is, there is a drawback that the current density that can be passed through the superconductor is low.

超電導体をエネルギー機器に使用する場合、この電流密
度が小さいというのは実用化の妨げとなり、電流密度が
大きい超電導体が望まれていた。
When superconductors are used in energy devices, the low current density hinders their practical application, and a superconductor with a high current density has been desired.

本発明は上記要望に鑑みなされたもので、電流密度が大
きい超電導体を提供するものである。
The present invention was made in view of the above-mentioned needs, and provides a superconductor with a high current density.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) かかる目的を達成するために、本発明は、イツトリウム
、バリウム、銅からなる三成分金属酸化物超電導体にビ
スマス、アンチモン、ホウ素、鉛のうち少なくとも1つ
をBx、O,t sb、o、 l s、o31pb2o
、に換算して0.1〜5wt%含有させたことを特徴と
する6 (作 用) ビスマス、アンチモン、ホウ素、鉛のうち少なくとも1
つを含むことにより、素体の焼結密度が上がり、素体が
緻密になることにより、電流密度をあげることができる
(Means for Solving the Problems) In order to achieve the above object, the present invention includes adding at least one of bismuth, antimony, boron, and lead to a ternary metal oxide superconductor consisting of yttrium, barium, and copper. Bx, O, t sb, o, l s, o31pb2o
6 (Function) At least one of bismuth, antimony, boron, and lead.
By including these elements, the sintered density of the element body increases, and the element body becomes denser, thereby increasing the current density.

(実施例) 以下に発明の一実施例を詳細に説明する。(Example) An embodiment of the invention will be described in detail below.

まず、酸化イツトリウム(Y2O,)、酸化バリウム(
Bad)、酸化銅(Cub)の粉末をそれぞれ0.5モ
ル、1.0モル、3.0モルの割合で秤量し、さらに酸
化ビスマス(BxtO3)を0.1〜10vt%加えた
。これらの原料粉末を十分に混合した後、この粉末を空
気中で850℃で焼成した。この工程によりY −Ba
 −Cu三成分金属酸化物が形成される。さらに、この
仮焼粉をアセトンとともに混合・粉砕した後、超電導特
性をもたせるために、酸素雰囲中で850℃で熱処理し
た。この粉末をアセトンと共に粉砕し、微細粉を得た。
First, yttrium oxide (Y2O,), barium oxide (
Powders of copper oxide (Bad) and copper oxide (Cub) were weighed in proportions of 0.5 mol, 1.0 mol, and 3.0 mol, respectively, and bismuth oxide (BxtO3) was added in an amount of 0.1 to 10 vt%. After thoroughly mixing these raw material powders, this powder was fired at 850° C. in air. Through this process, Y-Ba
-Cu ternary metal oxide is formed. Further, this calcined powder was mixed with acetone and pulverized, and then heat-treated at 850° C. in an oxygen atmosphere in order to impart superconducting properties. This powder was ground with acetone to obtain a fine powder.

この粉末を銀製のシーンに充填し、冷間圧延法により引
伸し、再熱処理して超電導線材を得た。
This powder was filled into a silver sheen, stretched by cold rolling, and reheated to obtain a superconducting wire.

次に、この超電導線材の超電導特性について説明する0
図は、77Kにおける電流密度の酸化ビスマス(B12
03)含有量依存性を示す実験の結果得られた特性図で
ある。この結果かられかるように、酸化ビスマス(Bl
mos)を含有しない時と酸化ビスマス(Bi20i)
含有量が0.05〜10%11%の場合、電流密度は1
0”A/cntの桁であるのに比べて酸化ビスマス(B
it o3 )含有量が0.1〜5wt%の場合、電流
密度は103A/a#の桁に電流密度が1桁上がってい
る。
Next, we will explain the superconducting properties of this superconducting wire.
The figure shows the current density of bismuth oxide (B12) at 77K.
03) It is a characteristic diagram obtained as a result of an experiment showing content dependence. As can be seen from this result, bismuth oxide (Bl
Bismuth oxide (Bi20i) and bismuth oxide (Bi20i)
When the content is 0.05-10%11%, the current density is 1
Bismuth oxide (B
When the it o3 ) content is 0.1 to 5 wt%, the current density increases by one order of magnitude to 103 A/a#.

このように電流密度が大きい超電導体が得られることは
超電導マグネット、超電導限流器等の超電導エネルギー
機器を作る上で重要である。
Obtaining a superconductor with such a high current density is important for producing superconducting energy devices such as superconducting magnets and superconducting fault current limiters.

本発明の実施例で、電流密度が上がった直接の原因は明
らかではないが、概略以下のように考えられる。酸化ビ
スマス(Bi20. )のような低融点物質を微量添加
することにより、焼結過程での液相焼結、即ち反応性液
体を含む焼結が促進され、緻密で焼結密度の高い素体が
得られることになり、その結果、電流密度が上昇すると
考えられる。酸化ビスマス(B1203)の添加量につ
いては、0.1wt%未満では液相焼結を促進する効果
がないため、また5wt%を超えるとビスマスは不純物
としての効果が大きくなり超電導状態そのものが不安定
になるためと考えられる。
Although the direct cause of the increase in current density in the examples of the present invention is not clear, it is thought to be roughly as follows. By adding a small amount of a low-melting point substance such as bismuth oxide (Bi20. is obtained, and as a result, it is thought that the current density increases. Regarding the amount of bismuth oxide (B1203) added, if it is less than 0.1 wt%, it will not have the effect of promoting liquid phase sintering, and if it exceeds 5 wt%, the effect of bismuth as an impurity will increase and the superconducting state itself will become unstable. This is thought to be due to the purpose of

上記実施例では酸化ビスマスについて述べたが、 4同
様にアンチモン、ホウ素、鉛においてもsb、o、。
In the above example, bismuth oxide was described, but similarly, antimony, boron, and lead also have sb, o, and the like.

B20.、 Pb、O,に換算して0.1〜5vt%の
範囲で含有させることにより同様の結果が得られること
を確認している。
B20. It has been confirmed that similar results can be obtained by containing Pb and O in a range of 0.1 to 5 vt%.

さらに、実施例では、酸化物原料を用いたが、焼結して
酸化物になるものであれば何でもよく。
Further, in the examples, an oxide raw material was used, but any material may be used as long as it becomes an oxide when sintered.

例えば水酸化物・炭酸化物等であっても同じ効果が得ら
れることはいうまでもない。また。イツトリウム、バリ
ウム、銅の組成も上記実施例に限定されるものではない
It goes without saying that the same effect can be obtained with hydroxides, carbonates, etc., for example. Also. The compositions of yttrium, barium, and copper are also not limited to the above examples.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように、本発明によれば、イツトリウム
、バリウム、銅からなる三成分金属酸化物を主成分とし
、超電導特性を有する素体において、少なくともビスマ
ス、アンチモン、ホウ素。
As described above, according to the present invention, in an element body having superconducting properties and containing a ternary metal oxide mainly composed of yttrium, barium, and copper, at least bismuth, antimony, and boron are present.

鉛のうち少なくとも1つをB12O3r 5bz03t
 B2O3+Pb2O3に換算して0.1〜5wt%含
有させることにより大きな電流密度を有する超電導体を
得ることができる。
At least one of lead is B12O3r 5bz03t
By containing 0.1 to 5 wt% in terms of B2O3+Pb2O3, a superconductor having a large current density can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

図は1本発明の実施例に係わる、77Kにおける電流密
度のBi2O3含有量依存性を示した特性図である。
The figure is a characteristic diagram showing the dependence of current density on Bi2O3 content at 77K according to an example of the present invention.

Claims (1)

【特許請求の範囲】[Claims]  イットリウム(Y)、バリウム(Ba)、銅(Cu)
からなる三成分金属酸化物を主成分とし、超電導特性を
有する素体において、ビスマス、アンチモン、ホウ素、
鉛のうち少なくとも1つをBi_2O_3Sb_2O_
3B_2O_3、Pb_2O_3に換算して0.1〜5
wt%含有することを特徴とする超電導体。
Yttrium (Y), barium (Ba), copper (Cu)
The main component is a ternary metal oxide consisting of bismuth, antimony, boron,
At least one of lead is Bi_2O_3Sb_2O_
3B_2O_3, 0.1 to 5 in terms of Pb_2O_3
A superconductor characterized by containing wt%.
JP62281004A 1987-11-09 1987-11-09 Superconductor Pending JPH01122923A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62281004A JPH01122923A (en) 1987-11-09 1987-11-09 Superconductor
KR1019880014598A KR910008717B1 (en) 1987-11-09 1988-11-07 Super conductor
US07/269,065 US4959348A (en) 1987-11-09 1988-11-09 Y-Ba-Cu-O superconductor for containing antimony or boron to increase current density
EP88118668A EP0315977A3 (en) 1987-11-09 1988-11-09 Superconductor material comprising a three-component metallic oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62281004A JPH01122923A (en) 1987-11-09 1987-11-09 Superconductor

Publications (1)

Publication Number Publication Date
JPH01122923A true JPH01122923A (en) 1989-05-16

Family

ID=17632932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62281004A Pending JPH01122923A (en) 1987-11-09 1987-11-09 Superconductor

Country Status (1)

Country Link
JP (1) JPH01122923A (en)

Similar Documents

Publication Publication Date Title
US5317007A (en) High-Tc oxide superconductor and method for producing the same
US5075282A (en) Printing method of forming oxide superconducting films on La2 Cu O.sub.
KR910008717B1 (en) Super conductor
US5126316A (en) Bi2 Sr3-x Yx Cu2 O8+y superconducting metal oxide compositions
US5389603A (en) Oxide superconductors, and devices and systems comprising such a superconductor
JPH01122923A (en) Superconductor
JPH0536317A (en) Manufacture of bismuth-based oxide superconductive wire material
US5073536A (en) High temperature superconductors comprising Tl--Ca--Ba--O, Tl--Sr--Ba--Cu--O--Sr--Cu--O
US5399312A (en) Method for fabricating high-jc thallium-based superconducting tape
JPH06176637A (en) Manufacture of bi oxide superconductive wire
Kawano et al. Superconductivity in the Bi-Ln-Ca-Cu-O systems (Ln= Pr and Nd)
KR940005010B1 (en) Forming method for wire
JP3287028B2 (en) Tl, Pb-based oxide superconducting material and method for producing the same
JPH01160822A (en) Superconductor
Itoh et al. Superconductivity in the Tl-Nd-Sr-Cu-O and the Tl-Pb-Nd-Sr-Cu-O systems
JP2749194B2 (en) Method for producing Bi-Sr-Ca-Cu-O-based superconductor
JPH04300202A (en) Superconductor using oxide and production thereof
JP2854338B2 (en) Copper oxide superconductor
JP2778100B2 (en) Oxide superconducting material and method for producing the same
JPS63176353A (en) Superconductive raw material
JP2778104B2 (en) Oxide superconducting material
JPH0230618A (en) Oxide high-temperature superconductor
JPH04154623A (en) Bi-or bi-pb-based oxide superconducting material
JPH02107518A (en) Oxide superconducting material
JPH0825744B2 (en) Manufacturing method of superconducting material