JPH01122592A - Electromagnetic coil - Google Patents

Electromagnetic coil

Info

Publication number
JPH01122592A
JPH01122592A JP28001687A JP28001687A JPH01122592A JP H01122592 A JPH01122592 A JP H01122592A JP 28001687 A JP28001687 A JP 28001687A JP 28001687 A JP28001687 A JP 28001687A JP H01122592 A JPH01122592 A JP H01122592A
Authority
JP
Japan
Prior art keywords
thin film
coil
superconducting
film coil
electromagnetic coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28001687A
Other languages
Japanese (ja)
Inventor
Hiroshi Takahara
博司 高原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28001687A priority Critical patent/JPH01122592A/en
Publication of JPH01122592A publication Critical patent/JPH01122592A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate a possibility of a superconducting fracture even in the loss of the supercondctivity of a superconducting coil by forming the first thin film coil of a conductive material on an insulation substrate and the second thin film coil of a superconducting material on the aforesaid coil. CONSTITUTION:A conductive thin film coil 4 and a superconducting thin film coil 5 are formed on an insulation substrate 3, and an insulation coat 6 such as a glass coat is formed upon the thin film coils 4 and 5. This insulation coat 6 protects the thin film coils 4 and 5 from external mechanical stress and an adverse effect due to boiloff and the like, and heating due to radiant heat from a flat bottom. Also, the chemical change of the superconducting thin film coil 5 is prevented. In an ordinary condition, a high frequency current flows in the superconducting thin film coil 5. When the superconductivity of the coil 5 is lost for some reason, an electric current flows in the conductive thin film coil 4, thereby preventing a wire break due to heat generation.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はうず電流を用いて加熱する電磁調理器などに用
いる電磁コイルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an electromagnetic coil used in an electromagnetic cooker that uses eddy current for heating.

従来の技術 以下図面を参照しながら、従来の電磁コイルについて説
明する。第6図ta> (b)は従来の電磁コイルの平
面図および断面図である。第6図は電磁調理器などに用
いる平板の電磁コイルを示しており、また作図および説
明を容易にするため、コイルの巻数を3巻としている。
BACKGROUND OF THE INVENTION A conventional electromagnetic coil will be described below with reference to the drawings. FIG. 6(b) is a plan view and a sectional view of a conventional electromagnetic coil. FIG. 6 shows a flat electromagnetic coil used in an electromagnetic cooker, and the number of turns of the coil is three for ease of drawing and explanation.

また以下の図面において拡大あるいは縮小した部分が存
在する。第6図において1は高周波電流の表皮効果によ
る損失を防ぐために径0.5+r++程度の導線を複数
本よりあわせたリッツ線、2は前記リッツ線を被覆する
ための絶縁被膜である。前記電磁コイルはリッツ線に高
周波電流を印加することにより電磁コイルの中央部をと
おる磁界が発生する。前記磁界により前記電磁コイル上
におかれたなべ底にうず電流が生じ、前記うず電流によ
りなべ底が加熱される。
In addition, there are enlarged or reduced portions in the drawings below. In FIG. 6, numeral 1 is a litz wire made by twisting together a plurality of conducting wires with a diameter of about 0.5+r++ in order to prevent loss due to the skin effect of high-frequency current, and numeral 2 is an insulating coating for covering the litz wire. The electromagnetic coil generates a magnetic field passing through the center of the electromagnetic coil by applying a high frequency current to the litz wire. The magnetic field generates an eddy current in the bottom of the pan placed on the electromagnetic coil, and the eddy current heats the bottom of the pan.

発明が解決しようとする問題点 しかしながら従来の電磁コイルでは、リンツ線を平面上
に加工する必要がある。前記加工のためにコストが増大
する。また、リンツ線に高周波電流を流す必要があるた
め、前記高周波電流により、リンツ線での発熱が生じ、
磁界発生の効率が非常に悪く、−窓以上の強さの磁界を
発生させることができなかった。
Problems to be Solved by the Invention However, in the conventional electromagnetic coil, it is necessary to process the Linz wire into a flat surface. Said processing increases costs. In addition, since it is necessary to flow a high frequency current through the Linz wire, the high frequency current causes heat generation in the Linz wire.
The efficiency of magnetic field generation was very poor, and it was not possible to generate a magnetic field stronger than that of the - window.

本発明は上記問題点に鑑み、強い磁界を効率よく発生で
き、かつ電磁調理器などに取り付けが容易な電磁コイル
を提供するものである。
In view of the above problems, the present invention provides an electromagnetic coil that can efficiently generate a strong magnetic field and that can be easily attached to an electromagnetic cooker or the like.

問題点を解決するための手段 上記問題点を解決するため本発明の電磁コイルは絶縁基
板上に導電性物質からなる第1の薄膜コイルを形成し、
前記第1の薄膜コイル上に超電導物質からなる第2の薄
膜コイルを形成したものである。
Means for Solving the Problems In order to solve the above problems, the electromagnetic coil of the present invention includes a first thin film coil made of a conductive material formed on an insulating substrate,
A second thin film coil made of a superconducting material is formed on the first thin film coil.

作用 本発明は絶縁基板上に薄膜コイルを形成しているため、
前記絶縁基板を電磁調理器の内部に取りつけるだけでよ
く、取りあつかいが非常に容易である。また、超電導物
質からなる薄膜コイルを形成しているため、熱損失なく
強磁界を発生させることができ、通常の導電体物質と超
電導物質からなる薄膜コイルを形成しているため、超電
導物質からなる薄膜コイルの超電導状態が破れたとき、
発熱により断線することを防ぐことができる。
Function: Since the present invention forms a thin film coil on an insulating substrate,
It is only necessary to attach the insulating substrate inside the electromagnetic cooker, and handling is very easy. In addition, because it forms a thin film coil made of superconducting material, it is possible to generate a strong magnetic field without heat loss, and because it forms a thin film coil made of normal conductive material and superconducting material, When the superconducting state of the thin film coil is broken,
This can prevent wire breakage due to heat generation.

実施例 以下本発明の電磁コイルの一実施例について図面を参照
しながら説明する。なお本発明のいう薄膜とはスパッタ
などを用いて形成される薄膜の他に、スクリーン印刷技
術、塗布技術などで形成される通常厚膜と呼ばれるもの
などをも含む。第1図(a) (b)は本発明の第1の
実施例における電磁コイルの平面図および断面図である
。第1図において3はセラミック基板などの絶縁基板、
4は銀ペーストあるいは銅ペーストなどを焼成して形成
した導電性物質からなる薄膜コイル(以後、導電薄膜コ
イルと呼ぶ。)、5は超電導物質からなる薄膜コイル(
以後、超電導薄膜コイルと呼ぶ。)、6はガラスあるい
は樹脂などからなる絶縁被膜、7は電磁コイルの中央部
に形成された薄膜コイルの一端を周辺部に引き出すため
に形成された絶縁膜である。
EXAMPLE Hereinafter, an example of the electromagnetic coil of the present invention will be described with reference to the drawings. Note that the thin film referred to in the present invention includes not only a thin film formed using sputtering or the like, but also what is normally called a thick film formed by screen printing technology, coating technology, or the like. FIGS. 1(a) and 1(b) are a plan view and a sectional view of an electromagnetic coil in a first embodiment of the present invention. In Fig. 1, 3 is an insulating substrate such as a ceramic substrate;
4 is a thin film coil made of a conductive material formed by firing silver paste or copper paste (hereinafter referred to as a conductive thin film coil); 5 is a thin film coil made of a superconducting material (hereinafter referred to as a conductive thin film coil);
Hereinafter, this will be referred to as a superconducting thin film coil. ), 6 is an insulating coating made of glass or resin, and 7 is an insulating film formed to draw out one end of the thin film coil formed in the center of the electromagnetic coil to the periphery.

第1図で明らかなように絶縁基板3上に導電薄膜コイル
4および超電導薄膜コイル5を形成し、前記薄膜コイル
上にガラスなどの絶縁被膜6を形成している。前記絶縁
被膜6は、薄膜コイル4および5を外部からの機械的応
力およびふきこぼれによる影響などから保護するととも
に、なべ底からの放射熱などにより加熱されることを防
いでいる。また超電導物質からなる薄膜コイルの化学的
変化を防止する効果もある。
As is clear from FIG. 1, a conductive thin film coil 4 and a superconducting thin film coil 5 are formed on an insulating substrate 3, and an insulating coating 6 such as glass is formed on the thin film coil. The insulating coating 6 protects the thin film coils 4 and 5 from external mechanical stress and the effects of boiling over, and prevents them from being heated by radiant heat from the bottom of the pan. It also has the effect of preventing chemical changes in thin film coils made of superconducting materials.

本発明の電磁コイルの機能は従来の電磁コイルと同様で
あり、薄膜コイル4,5に高周波電流を印加することに
より磁界を発生させることができる。通常状態のとき、
前記高周波電流は超電導薄膜コイル5を流れる。何らか
の影響により超電導薄膜コイル5の超電導状態がやぶれ
たとき、導電薄膜コイル4に前記電流がながれ、発熱に
よる断線から保護する。
The function of the electromagnetic coil of the present invention is similar to that of a conventional electromagnetic coil, and a magnetic field can be generated by applying a high frequency current to the thin film coils 4 and 5. When in normal condition,
The high frequency current flows through the superconducting thin film coil 5. When the superconducting state of the superconducting thin film coil 5 is broken due to some influence, the current flows through the conductive thin film coil 4 to protect it from disconnection due to heat generation.

第2図(a) (b)は本発明の第2の実施例における
電磁コイルの平面図および断面図である。第2図におい
て8はフェライト、センダストなどからなる高透磁率薄
膜または基板である。本発明の第2の実施例と第1の実
施例の相違は高透磁率薄膜または基板8を付加した点に
ある。前記高透磁率薄膜または基板8の形成方法として
は、フェライトなどをスパッタなどの蒸着技術で蒸着あ
るいは、フェライトで構成された板を絶縁基板3に取り
付けることにより形成する。第2図の実施例では発生す
る磁束は第2図の点線で示すように高透磁率薄膜または
基板8中を透過する。したがって高透磁率薄膜または基
板8の下部には、磁束の影響を受けないようにすること
ができる。ゆえに、電[11理器内で本発明の電磁コイ
ルを取り付けることにより、電磁コイルの下部に形成さ
れた電子回路に磁束の影響をうけることおよび下部の金
属体が加熱されることを防止することができる。
FIGS. 2(a) and 2(b) are a plan view and a sectional view of an electromagnetic coil in a second embodiment of the present invention. In FIG. 2, 8 is a high magnetic permeability thin film or substrate made of ferrite, sendust, or the like. The difference between the second embodiment of the present invention and the first embodiment is that a high magnetic permeability thin film or substrate 8 is added. The high magnetic permeability thin film or substrate 8 may be formed by depositing ferrite or the like using a vapor deposition technique such as sputtering, or by attaching a plate made of ferrite to the insulating substrate 3. In the embodiment of FIG. 2, the generated magnetic flux is transmitted through the high magnetic permeability thin film or substrate 8 as indicated by the dotted line in FIG. Therefore, the high magnetic permeability thin film or the lower part of the substrate 8 can be made unaffected by magnetic flux. Therefore, by installing the electromagnetic coil of the present invention in an electric appliance, it is possible to prevent the electronic circuit formed at the bottom of the electromagnetic coil from being affected by magnetic flux and to prevent the metal body at the bottom from being heated. Can be done.

第3図(a) (blは本発明の第3の実施例における
電磁コイルの平面図および断面図である。第3図におい
て9は超電導物質からなる薄膜(以後、超電導薄膜と呼
ぶ。)である。本発明の第3の実施例と第2の実施例の
相違は高透磁率薄膜または基板8上に超電導薄膜9を形
成した点にある。第3の実施例では超電導薄膜9を形成
したことにより前記超電導薄膜の反磁性の効果によりさ
らに本発明の電磁コイルの下部に磁束の影響をなくする
ことができる。
FIG. 3(a) (bl is a plan view and a cross-sectional view of an electromagnetic coil in a third embodiment of the present invention. In FIG. 3, 9 is a thin film made of a superconducting substance (hereinafter referred to as a superconducting thin film). The difference between the third embodiment of the present invention and the second embodiment is that a superconducting thin film 9 is formed on a high magnetic permeability thin film or a substrate 8. In the third embodiment, a superconducting thin film 9 is formed on a high magnetic permeability thin film or a substrate 8. As a result, the effect of magnetic flux on the lower part of the electromagnetic coil of the present invention can be further eliminated due to the diamagnetic effect of the superconducting thin film.

なお本発明の電磁コイルは第4図の断面図に示すように
薄膜コイ゛ルの形成は導電薄膜コイルと超電導薄膜コイ
ルの2層に限定するものではなく、導電薄膜コイル4上
に超電導薄膜コイル5を形成し、さらに導電薄膜コイル
4を形成してもよく、さらに多層化してもよい。前記多
層化は超電導状態あるいは超電導状態を維持するのに効
果がある。
As shown in the sectional view of FIG. 4, in the electromagnetic coil of the present invention, the formation of the thin film coil is not limited to two layers of a conductive thin film coil and a superconducting thin film coil, but a superconducting thin film coil is formed on the conductive thin film coil 4. 5 may be formed, and then the conductive thin film coil 4 may be further formed, or the conductive thin film coil 4 may be further formed into multiple layers. The multilayer structure is effective in maintaining the superconducting state or the superconducting state.

また本発明の実施例において導電薄膜コイル4上に超電
導薄膜コイル5を形成するとしたが、これに限定するも
のではなく、第5図に示すように超電導薄膜コイル5上
に導電薄膜コイル4を形成してもよい。
Furthermore, in the embodiment of the present invention, the superconducting thin film coil 5 is formed on the conductive thin film coil 4, but the present invention is not limited to this, and the conductive thin film coil 4 is formed on the superconducting thin film coil 5 as shown in FIG. You may.

また、上記実施例中、超電導体物質としては、たとえば
、いわゆる常温超電導体を用いるか、または、超電導臨
界温度が室温と液体窒素の沸点の間の材料を用いて液体
窒素で冷却するか(図示せず)、もしくは超電導臨界温
度が液体窒素の沸点以下の材料を用いて液体ヘリウムで
冷却するか(図示せず)をすればよい。常温超電導体の
一例としては、組成としてストロンチウム(Sr)、バ
リウム(Ba)、イツトリウム(Y)および銅(Cu)
を夫々1:1:1:3の比率で含有するセラミック酸化
物がある。その製造方法の一例としては、出発原料とし
てS r CO:l 、B a CO3、Y203 、
CuOの夫々の粉体を所定量混合し、粉砕し、空気中に
おいて920℃で5時間焼成する。
In addition, in the above examples, as the superconductor material, for example, a so-called room-temperature superconductor is used, or a material whose superconducting critical temperature is between room temperature and the boiling point of liquid nitrogen is used and cooled with liquid nitrogen (Fig. (not shown), or a material with a superconducting critical temperature below the boiling point of liquid nitrogen may be used and cooled with liquid helium (not shown). Examples of room-temperature superconductors include strontium (Sr), barium (Ba), yttrium (Y), and copper (Cu).
There is a ceramic oxide containing these in a ratio of 1:1:1:3, respectively. As an example of the manufacturing method, S r CO:l, B a CO3, Y203,
A predetermined amount of each powder of CuO is mixed, pulverized, and fired in air at 920° C. for 5 hours.

この焼成、粉砕を3回繰り返し、均質性を高める。This baking and pulverization process is repeated three times to improve homogeneity.

このようにして処理した混合粉体を冷間圧縮成型した後
、空気中において1000℃で5時間焼成し、徐冷する
ことにより製造する。
After cold compression molding the mixed powder treated in this way, it is produced by firing in air at 1000° C. for 5 hours and slowly cooling.

発明の効果 本発明は絶縁基板上に導電導物質からなる第1の薄膜コ
イルと超電導物質からなる第2の薄膜コイルを形成した
ものであるから、従来の電磁コイルのように電磁コイル
を平板上にする必要がなく、平板上にするコストが低減
され、また前記絶縁基板を電磁調理器などの内部に取り
つけるだけでよく、いたって取り扱いが容易である。ま
た超電導薄膜コイルを使用しているため、強磁界を発生
でき、高周波電流の磁束への変換効率が非常に高い。
Effects of the Invention Since the present invention forms a first thin film coil made of a conductive material and a second thin film coil made of a superconducting material on an insulating substrate, the electromagnetic coil can be placed on a flat plate like a conventional electromagnetic coil. This reduces the cost of forming a flat plate, and the insulating substrate only needs to be mounted inside an electromagnetic cooker, making it easy to handle. Additionally, because it uses superconducting thin-film coils, it can generate a strong magnetic field and has extremely high efficiency in converting high-frequency current into magnetic flux.

また導電薄膜コイルと超電導コイルと多層化しているた
め、超電導コイルの超電導状態が破れたさいも発熱によ
り超電導コイルが断線するという恐れがない。また、薄
膜コイル上を絶縁被膜6で被覆することにり、薄膜コイ
ル4および5を外部の機械的応力、なべなどからふきこ
ぼれによる影響およびなべ底からの放射熱などにより加
熱されることを防ぐことができる。また絶縁基板3の下
に高透磁率薄膜または基板8を形成することにより、前
記高透磁率薄膜または基板8下に磁束の影響をおよぼす
ことを防ぐことができる。以上のことより本発明の効果
は大である。
Furthermore, since the superconducting coil is multilayered with a conductive thin film coil and a superconducting coil, even if the superconducting state of the superconducting coil is broken, there is no fear that the superconducting coil will be disconnected due to heat generation. Furthermore, by covering the thin film coils with the insulating coating 6, the thin film coils 4 and 5 can be prevented from being heated by external mechanical stress, the effects of boiling over from a pan, etc., and radiant heat from the bottom of the pan. Can be done. Further, by forming a high magnetic permeability thin film or substrate 8 under the insulating substrate 3, it is possible to prevent the magnetic flux from exerting an influence under the high magnetic permeability thin film or substrate 8. From the above, the effects of the present invention are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) (b)は本発明の第1の実施例における
電磁コイルの平面図および断面図、第2図(a) (b
)は本発明の第2の実施例における電磁コイルの平面図
および断面図、第3図(a) (b)は本発明の第3の
実施例における電磁コイルの平面図および断面図、第4
図および第5図は本発明の電磁コイルの断面図、第6図
(a) (b)は従来の電磁コイルの平面図および断面
図である。 1・・・・・・リンツ線、2・・・・・・絶縁被膜、3
・・・・・・絶縁基板、4・・・・・・導電薄膜コイル
、5・・・・・・超電導薄膜コイル、6・・・・・・絶
縁被膜、7・・・・・・絶縁膜、8・旧・・高透磁率薄
膜または基板、9・・・・・・超電導薄膜。
FIGS. 1(a) and (b) are a plan view and a sectional view of an electromagnetic coil according to a first embodiment of the present invention, and FIGS. 2(a) and (b) are
) are a plan view and a sectional view of the electromagnetic coil in the second embodiment of the present invention, FIGS. 3(a) and (b) are a plan view and a sectional view of the electromagnetic coil in the third embodiment of the invention, and
5 and 5 are sectional views of an electromagnetic coil according to the present invention, and FIGS. 6(a) and 6(b) are a plan view and a sectional view of a conventional electromagnetic coil. 1... Linz wire, 2... Insulating coating, 3
...Insulating substrate, 4 ... Conductive thin film coil, 5 ... Superconducting thin film coil, 6 ... Insulating coating, 7 ... Insulating film , 8. Old... High magnetic permeability thin film or substrate, 9... Superconducting thin film.

Claims (6)

【特許請求の範囲】[Claims] (1)絶縁基板上に導電性物質からなる第1の薄膜コイ
ルを形成し、前記第1の薄膜コイル上に超電導物質から
なる第2の薄膜コイルを形成していることを特徴とする
電磁コイル。
(1) An electromagnetic coil characterized in that a first thin film coil made of a conductive material is formed on an insulating substrate, and a second thin film coil made of a superconducting material is formed on the first thin film coil. .
(2)第1および第2の薄膜コイルをガラス系の絶縁物
質にて被覆していることを特徴とする特許請求の範囲第
(1)項記載の電磁コイル。
(2) The electromagnetic coil according to claim (1), wherein the first and second thin film coils are coated with a glass-based insulating material.
(3)絶縁基板はアルミナ基板であることを特徴とする
特許請求の範囲第(1)項記載の電磁コイル。
(3) The electromagnetic coil according to claim (1), wherein the insulating substrate is an alumina substrate.
(4)第1の薄膜コイルが形成された絶縁基板の裏面に
高透磁率の物質からなる第1の薄膜又は基板を形成して
いることを特徴とする特許請求の範囲第(1)項記載の
電磁コイル。
(4) Claim (1) characterized in that the first thin film or substrate made of a material with high magnetic permeability is formed on the back surface of the insulating substrate on which the first thin film coil is formed. electromagnetic coil.
(5)第1の薄膜または基板上に超電導物質からなる第
2の薄膜を形成していることを特徴とする特許請求の範
囲第(4)項記載の電磁コイル。
(5) The electromagnetic coil according to claim (4), characterized in that a second thin film made of a superconducting material is formed on the first thin film or the substrate.
(6)第1の薄膜はフェライトからなることを特徴とす
る特許請求の範囲第(4)項記載の電磁コイル。
(6) The electromagnetic coil according to claim (4), wherein the first thin film is made of ferrite.
JP28001687A 1987-11-05 1987-11-05 Electromagnetic coil Pending JPH01122592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28001687A JPH01122592A (en) 1987-11-05 1987-11-05 Electromagnetic coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28001687A JPH01122592A (en) 1987-11-05 1987-11-05 Electromagnetic coil

Publications (1)

Publication Number Publication Date
JPH01122592A true JPH01122592A (en) 1989-05-15

Family

ID=17619126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28001687A Pending JPH01122592A (en) 1987-11-05 1987-11-05 Electromagnetic coil

Country Status (1)

Country Link
JP (1) JPH01122592A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009050337A1 (en) * 2009-10-22 2011-04-28 GM Global Technology Operations, Inc., Detroit Component unit for a fuel system of an internal combustion engine and internal combustion engine
CN102734847A (en) * 2011-04-07 2012-10-17 广州通泰能源科技有限公司 Superconductive heater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009050337A1 (en) * 2009-10-22 2011-04-28 GM Global Technology Operations, Inc., Detroit Component unit for a fuel system of an internal combustion engine and internal combustion engine
CN102734847A (en) * 2011-04-07 2012-10-17 广州通泰能源科技有限公司 Superconductive heater

Similar Documents

Publication Publication Date Title
CA2033137C (en) Microwave component and method for fabricating substrate for use in microwave component
JPH06349347A (en) High-temperature superconductor and usage method of said high-temperature superconductor
Jin et al. Superconducting joint between multi-filamentary Bi2Sr2Ca2Cu3O10+ δ tapes based on incongruent melting for NMR and MRI applications
JPH09129438A (en) Oxide superconductive coil and manufacture thereof
JPH01122592A (en) Electromagnetic coil
US20220246329A1 (en) High temperature superconductor having multiple superconducting layers, and high temperature superconductor manufacturing method for same
JPS63196016A (en) Superconducting coil
JP3018534B2 (en) High temperature superconducting coil
JPS63236218A (en) Superconductive wire
JPH01246801A (en) Superconducting magnet
JPH01134811A (en) Extremely low temperature cable
JPH01137609A (en) Chip inductor
JPS63284720A (en) Superconducting wire
JPH01297894A (en) Shielding body
JPH01122107A (en) Thin film electric element
Hasegawa et al. Performance test of a refrigerator cooled magnet fabricated using Bi-2212 multilayer superconducting tapes
JPH01302752A (en) Integrated circuit package
JPS63263706A (en) Permanent electromagnet and manufacture thereof
Lanagan et al. Fabricating polycrystalline high-T c superconductors
JPH01144602A (en) Superconducting magnet
Nakamura et al. Inductance characteristics of pipe-type oxide superconductor for various configurations
JPS63272015A (en) Laminated ceramic inductance component
JPH02246101A (en) Oxide superconductive coil
JPS59218783A (en) Thermal superconductive switch
JPS63241826A (en) Manufacture of superconducting wire