JPH01122320A - Flashover detector for fault point orientation device - Google Patents

Flashover detector for fault point orientation device

Info

Publication number
JPH01122320A
JPH01122320A JP62279670A JP27967087A JPH01122320A JP H01122320 A JPH01122320 A JP H01122320A JP 62279670 A JP62279670 A JP 62279670A JP 27967087 A JP27967087 A JP 27967087A JP H01122320 A JPH01122320 A JP H01122320A
Authority
JP
Japan
Prior art keywords
phosphorescence
light
flashover
flashlight
waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62279670A
Other languages
Japanese (ja)
Other versions
JPH0667108B2 (en
Inventor
Kiyoshi Fujii
清 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP62279670A priority Critical patent/JPH0667108B2/en
Publication of JPH01122320A publication Critical patent/JPH01122320A/en
Publication of JPH0667108B2 publication Critical patent/JPH0667108B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)
  • Gas-Insulated Switchgears (AREA)

Abstract

PURPOSE:To prevent malfunction due to the invasion of electric noise, by a method wherein decision whether phosphorescence and flashover light have existed simultaneously or not is decided when the flashover light has disappeared. CONSTITUTION:Flashover light 1C, generated in a sealed vessel 1, is introduced into a light branching device 4 through a fiber cable 3 to branch it into two lights. One of the lights is inputted into a flashover light detecting means to output the electric signal of a predetermined waveform while the other light is inputted into a phosphorescence generating means 30 to generate phosphorescence and the phosphorescence is converted into another electric signal by a phosphorescence detecting means 50 to output a predetermined waveform. The output signal is continued for several seconds after the flashover light has disappeared. The output signals of the flashover light detecting means 40 and the phosphorescence detecting means 50 are inputted into a decision device 14 to compare these two input signals and output an electric signal when both of the signals are not zero whereby the existence of the flashover light 1C is indicated. According to this method, the malfunction of an electronic circuit due to electric noise, which caused the emission of the flashover light, will never caused and mistaken decision will never be effected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電力系統に使用されるGISなどのガス絶
縁機器のような密封容器に収納された電気機器の閃絡故
障に伴う閃絡光を検出することにより故障位置を検出す
る装置における閃絡光検出に関する。
[Detailed Description of the Invention] [Field of Industrial Application] This invention is directed to the prevention of flash light caused by a flash fault in electrical equipment housed in a sealed container, such as gas-insulated equipment such as GIS used in power systems. This invention relates to flashlight detection in a device that detects a fault location by detecting.

〔従来の技術〕[Conventional technology]

密封容器に収納された電気機器、たとえばSF。 Electrical equipment stored in a sealed container, such as SF.

ガスが封入されたGISなどのガス絶縁機器内部での高
電圧部から接地電位部への閃絡故障を検出する手段とし
て、従来前記密封容器に光透過用の窓を設け、この窓を
通過する閃絡光を受光部を介して検出する方式がとられ
る。
Conventionally, as a means for detecting a flash fault from a high voltage section to a ground potential section inside a gas-insulated device such as a GIS filled with gas, a window for transmitting light is provided in the sealed container, and the light passes through the window. A method is used in which flashlight is detected via a light receiving section.

第5図に従来の閃絡光検出による事故点標定装置の一例
を示す構成の概念図を示す、この図において、密封容器
1内の高圧リードIAが閃絡事故を起こしアークIBが
発生して閃絡光tCを発したとすると、密封容器1に開
孔しである窓2の外部に設けたファイバーケーブル3の
先端で受光し、この閃絡光はファイバーケーブル3を通
って光電気変換器5によって電気信号に変換され、この
電気信号を増幅器6で増幅の上波形整形器7で所定の波
形に整形の上表示器15で閃絡が生じたことを示すため
の表示をする。
Fig. 5 shows a conceptual diagram of the configuration of an example of a conventional accident point locating device using flashlight detection. When a flash of light tC is emitted, it is received at the tip of a fiber cable 3 installed outside a window 2 which is a hole in the sealed container 1, and this flash of light passes through the fiber cable 3 to a photoelectric converter. 5, the electric signal is amplified by an amplifier 6, shaped into a predetermined waveform by a waveform shaper 7, and displayed on a display 15 to indicate that a flashover has occurred.

これらの受光手段や閃絡光検出手段については既に種々
の提案がなされており、特開昭56−15133号公報
、同56−29423号公報、同59−53018号公
報、同59−53019号公報などの例がある。
Various proposals regarding these light receiving means and flash light detection means have already been made, and are disclosed in Japanese Patent Application Laid-open Nos. 56-15133, 56-29423, 59-53018, and 59-53019. There are examples.

第5図での光電気変換器5はフォトダイオードが使用さ
れるのが普通であるが、このフォトダイオードの出力電
流は微弱であるので、この出力電流回路に何らかの電気
的なノイズが重畳したとき、この故障検出回路が誤動作
を起こす可能性がある。
The photoelectric converter 5 in Fig. 5 usually uses a photodiode, but since the output current of this photodiode is weak, if some electrical noise is superimposed on this output current circuit, , this failure detection circuit may malfunction.

このノイズとして考えられるのは、しゃ断器の開閉時の
急峻な電圧もしくは電流変動によって生ずるノイズ、送
電系統もしくは変電所内の短絡事故の際に発生する短絡
電流、あるいは、落雷などであり、このようなノイズは
電子装置の電源供給のために外部より導入する商用周波
交流のリードから侵入する場合や、電磁波として空間を
伝播して前記のフォトダイオードの出力回路に侵入する
場合などが考えられる。このようなノイズの存在を考慮
して、電源用の交流に対してはノイズカットトランスを
使用するとか、電磁波の侵入に対してはこれらの電子回
路を鉄製ケースの中に収納してこのケースに電磁シール
ドの役割を果たさせる構成にするなどの対策が講じられ
るのであるが、あらかじめすべてのノイズ源とそれに対
する対策を講すると言う訳には行かず、想定外のノイズ
が侵入しても検出装置が誤動作しないようフェイルセイ
フの構成を採っておく必要がある。
Possible sources of this noise include noise caused by sudden voltage or current fluctuations when circuit breakers open and close, short-circuit currents that occur during short-circuit accidents in power transmission systems or substations, or lightning strikes. It is conceivable that noise may enter from a commercial frequency AC lead introduced from the outside to supply power to an electronic device, or may propagate through space as electromagnetic waves and enter the output circuit of the photodiode. In consideration of the presence of such noise, noise-cutting transformers are used for AC power supplies, and electronic circuits are housed in iron cases to prevent intrusion of electromagnetic waves. Countermeasures are taken, such as creating a structure that acts as an electromagnetic shield, but it is not possible to detect all noise sources and take countermeasures in advance, and even if unexpected noise enters, it cannot be detected. It is necessary to have a fail-safe configuration to prevent the equipment from malfunctioning.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記のように、変電所内に設置する電子装置に対しては
充分なノイズ対策を必要とするのであるが、ノイズを除
去する対策にも限界があり、むしろノイズが侵入しても
誤動作しない方式を採用した検出回路が望まれる。
As mentioned above, sufficient noise countermeasures are required for electronic equipment installed in substations, but there are limits to measures to eliminate noise, and it is better to develop a method that does not malfunction even if noise enters. A detection circuit that employs this method is desirable.

この発明は、電気的ノイズが侵入しても誤動作しないガ
ス絶縁機器の故障点標定装置を提供することを目的とす
る。
An object of the present invention is to provide a failure point locating device for gas insulated equipment that does not malfunction even if electrical noise intrudes.

〔問題を解決するための手段〕[Means to solve the problem]

上記問題点を解決するために、この発明によれば、密封
容器内に発生した閃絡光を受光手段によって前記密封容
器外で受光し、受光した閃絡光を電気変換手段によって
電気信号に変換する閃絡光検出手段を備えた故障点標定
装置において、前記受光手段で受光した閃絡光をりん光
物質に照射してこのりん光物質を励起してりん光を発生
させるりん光発生手段と、このりん光発生手段で発生し
たりん光を受光し電気信号に変換するりん光検出手段と
、前記閃絡光検出手段の出力信号と前記りん光検出手段
の出力信号との双方が検出されたときに電気信号を発す
る判定手段とを備えるものとする。
In order to solve the above problems, according to the present invention, flash light generated inside a sealed container is received outside the sealed container by a light receiving means, and the received flash light is converted into an electrical signal by an electrical conversion means. phosphorescence generating means for irradiating a phosphorescent substance with the flashlight received by the light receiving means to excite the phosphorescent substance and generate phosphorescence; , a phosphorescence detection means that receives phosphorescence generated by the phosphorescence generation means and converts it into an electrical signal, and both an output signal of the flashlight detection means and an output signal of the phosphorescence detection means are detected. and a determination means that sometimes emits an electric signal.

〔作用] この発明の構成において、密封容器内で発生した閃絡光
を、閃絡光受光手段で受光し、受光した閃絡光を電気信
号に変換する閃絡光検出回路に加えて、この閃絡光をり
ん光発生手段に導入してりん光を発生させると、このり
ん光は閃絡光が消滅した後も継続して発光するので、こ
のりん光をりん光検出手段により電気信号に変換すると
、この電気信号は閃絡光が消滅した後も継続する電気信
号として検出することができる。したがって閃絡光を発
生した原因である短絡電流に起因するノイズが電子回路
の閃絡光検出を誤動作する場合でも閃絡故障が生じたこ
とを確実に検出することができる。りん光の減衰時定数
は数秒のものを選定でき、またこのりん光検出手段に数
Hz以上の周波数をカットするローパスフィルターを設
けることにより、高周波のノイズ成分を確実に除外しな
がらりん光検出手段の出力信号は殆ど変わらないように
することができることから、このりん光検出手段は高周
波の電気的ノイズに対して誤動作の恐れのない回路にす
ることができる。さらに、閃絡光検出手段の出力信号と
りん光検出手段の出力信号の双方が発生したときにのみ
閃絡故障が発生したと判断する判定手段を設けることに
より、たとえば外部からの漏れ光によってりん光検出手
段が誤動作した場合でも閃絡光検出手段が電気信号を発
しないために判定手段は閃絡故障が発生したとは判定し
ないので、りん光検出手段の誤動作対策になっている。
[Function] In the configuration of the present invention, in addition to the flash detection circuit that receives flash light generated in the sealed container by the flash light receiving means and converts the received flash light into an electrical signal, When flashlight is introduced into the phosphorescence generating means to generate phosphorescence, this phosphorescence continues to emit light even after the flashlight disappears, so this phosphorescence is converted into an electrical signal by the phosphorescence detection means. Once converted, this electrical signal can be detected as an electrical signal that continues even after the flash light has disappeared. Therefore, even if the electronic circuit malfunctions in detecting flash due to noise caused by the short circuit current that causes the flash, it is possible to reliably detect the occurrence of a flash fault. The decay time constant of phosphorescence can be selected to be several seconds, and by providing the phosphorescence detection means with a low-pass filter that cuts off frequencies of several Hz or more, the phosphorescence detection means can be used while reliably excluding high-frequency noise components. Since the output signal of the phosphorescence detection means can be made to remain almost unchanged, the phosphorescence detection means can be made into a circuit that is free from malfunction due to high-frequency electrical noise. Furthermore, by providing a determination means that determines that a flash fault has occurred only when both the output signal of the flash light detection means and the output signal of the phosphor light detection means are generated, it is possible to prevent phosphorescence caused by leakage light from the outside. Even if the photodetection means malfunctions, the flashlight detection means does not emit an electrical signal, so the determination means does not determine that a flashover failure has occurred, so this is a countermeasure against malfunction of the phosphorescence detection means.

〔実施例〕〔Example〕

以下この発明を実施例に基づいて説明する。第1図はこ
の発明の実施例を示す概念図で、lは密封容器、IAは
高圧リード、IBは高圧リードIAから密封容器lに閃
絡した際に発生するアーク、ICはこのアークが発する
光としての閃絡光、20は受光手段で窓2、ファイバー
ケーブル3、とから成り、40は閃絡光検出手段で光電
気変換器5、増幅器6、波形整形器7から成り、以上は
いずれも第5図と同じである。4は光分岐器、30はり
ん光発生手段で、たとえば減衰時定数が9.4秒のコロ
ネン溶液のようなりん光物質9とから成り、50はりん
光検出手段で光電気変換器10、増幅器11、ローパス
フィルター12、波形整形器13とから成り、14は判
定手段としての判定器である。
The present invention will be explained below based on examples. FIG. 1 is a conceptual diagram showing an embodiment of the present invention, where l is a sealed container, IA is a high voltage lead, IB is an arc generated when a flash occurs from the high voltage lead IA to the sealed container l, and IC is an arc generated by this arc. 20 is a light receiving means consisting of a window 2 and a fiber cable 3; 40 is a flash detecting means consisting of a photoelectric converter 5, an amplifier 6, and a waveform shaper 7; is also the same as Figure 5. 4 is a light branching device; 30 is a phosphorescence generating means, for example, consisting of a phosphorescent substance 9 such as a coronene solution with a decay time constant of 9.4 seconds; 50 is a phosphorescence detection means; a photoelectric converter 10; It consists of an amplifier 11, a low-pass filter 12, and a waveform shaper 13, and 14 is a determiner as a determining means.

密封容器l内の高圧リードIAが何らかの理由で閃絡し
密封容器1に向かってアークIBを発生したとき、この
アークIBから発生した閃絡光lCは密封容器l内の内
壁を反射する成分も含めて窓2から外部に漏れる。この
窓2から漏れた閃絡光ICを捉えファイバーケーブル3
で光分岐器4に導入され、光分岐器4で2つの光に分岐
し、一方の光は従来と同じく閃絡光検出手段40に入力
されて所定の波形の電気信号を出力する。一方、光分岐
器4から分岐したもう一つの光はりん光発生手段に入力
されてりん光を発生するが、このりん光は閃絡光が消滅
した後もりん光物質9特有の時定数で減衰しながらりん
光を発生し続ける。このりん光をりん光検出手段50で
電気信号に変換した上で所定の波形で出力するが、この
りん光検出信号の出力信号は閃絡光が消滅した後でも数
秒の間継続する信号となっている。前記の閃絡光検出手
段の出力信号とりん光検出手段の出力信号とを判定器1
4に入力し、判定器14はこれらの2つの入力信号を比
べて双方の信号が零でないときに電気信号を発すること
により閃絡光が存在したことを表現する。
When the high voltage lead IA in the sealed container 1 flashes for some reason and generates an arc IB toward the sealed container 1, the flash light 1C generated from the arc IB also has a component that reflects off the inner wall of the sealed container 1. Including leaks to the outside from window 2. The fiber cable 3 captures the flashlight IC leaking from the window 2.
The light is introduced into the optical splitter 4, where the light is split into two lights, and one of the lights is input to the flashlight detection means 40, as in the conventional case, and outputs an electrical signal with a predetermined waveform. On the other hand, the other light branched from the optical splitter 4 is input to the phosphorescence generating means and generates phosphorescence, but this phosphorescence continues with the time constant peculiar to the phosphorescent substance 9 even after the phosphorescent light disappears. Continues to generate phosphorescence while attenuating. This phosphorescence is converted into an electrical signal by the phosphorescence detection means 50 and output in a predetermined waveform, but the output signal of this phosphorescence detection signal is a signal that continues for several seconds even after the flashlight has disappeared. ing. The output signal of the flashlight detection means and the output signal of the phosphorescence detection means are determined by a determiner 1.
4, and the determiner 14 compares these two input signals and, when both signals are not zero, expresses the presence of flashlight by emitting an electric signal.

以上の動作を各部分の波形の変化を含めて説明すると、
閃絡光ICを入力とする光電気変換器5の出力信号の波
形は第2図の波形101のように交流を半波整流したよ
うな波形となるが、これは閃絡光の光強度に比例した波
形となっているからである。この波形101は増幅器6
で増幅され波形整形器7で波形102のように方形パル
スに整形される。これは図示しないが、波形101を系
統の周波数である50ないし60Hz以上の周波数をカ
ットするローパスフィルターを通した上で、一定の値以
下の人力に対しては出力信号が零でこの値を越えた人力
信号に対しては一定の電気信号を出力するコンパレータ
ーを通すことにより得ることができる。
To explain the above operation including changes in the waveform of each part,
The waveform of the output signal of the opto-electrical converter 5 that receives the flashlight IC as input is a waveform that is half-wave rectified alternating current, as shown in waveform 101 in FIG. This is because the waveform is proportional. This waveform 101 is
The pulse is amplified by the waveform shaper 7 and shaped into a rectangular pulse as shown in the waveform 102. Although this is not shown, the waveform 101 is passed through a low-pass filter that cuts frequencies above 50 to 60 Hz, which is the system frequency, and the output signal is zero for human power below a certain value and exceeds this value. A human input signal can be obtained by passing it through a comparator that outputs a constant electric signal.

一方、閃絡光を照射したりん光物質9から発するリン光
を人力とした光電気変換器10の出力信号ならびに増幅
器11の出力信号は波形201のような波形となるが、
閃絡光が存在する期間である時間t1からt2の間の期
間は閃絡光のりん光物質の表面に反射した反射光も光電
気変換器10の出力信号となることから波形201のよ
うに時間L1からL2の間は閃絡光に相当する波形が重
畳する。この閃絡光の成分を正確に電気信号に変換する
必要はないので光電気変換器IOや増幅器11はこの閃
絡光の成分に対しては飽和してしまう程度にするので波
形201のように閃絡光の成分は波頭部分がカットされ
た形になる。この波形203をローパスフィルター12
に入力するとその出力信号は波形203のようになり、
閃絡光成分に含まれていた高調波成分はすべてカットさ
れた波形になる。この波形203をコンパレータ13に
入力することにより出力信号として波形204が得られ
、この波形204は時間L1に近いt、から数秒継続し
て時間t4に至る間継続する方形パルスとなる。
On the other hand, the output signal of the opto-electrical converter 10 and the output signal of the amplifier 11 using the phosphorescent light emitted from the phosphorescent material 9 irradiated with flash light have a waveform like the waveform 201.
During the period from time t1 to t2, which is the period in which flashlight exists, the reflected light from the flashlight reflected on the surface of the phosphorescent material also becomes the output signal of the photoelectric converter 10, so that the waveform 201 is shown. Between time L1 and L2, waveforms corresponding to flashlight are superimposed. Since it is not necessary to accurately convert this flashlight component into an electrical signal, the opto-electrical converter IO and amplifier 11 are designed to be saturated with respect to this flashlight component, so the waveform 201 is shown. The flashlight component has a wavefront portion cut off. This waveform 203 is filtered by a low-pass filter 12.
When input to , the output signal will look like waveform 203,
All harmonic components contained in the flashlight component are cut out in the waveform. By inputting this waveform 203 to the comparator 13, a waveform 204 is obtained as an output signal, and this waveform 204 becomes a rectangular pulse that continues for several seconds from t near time L1 until time t4.

第3図は判定器14の詳細を示すブロック図で、141
.142はワンショットマルチパイプレークで入力信号
の波尾を検出して一定の幅の方形パルスを発生する回路
であり、143はアンド回路で2つの入力信号が同時に
零でないときに出力信号を出力する回路である。第4図
は判定器14内の回路での各位置での電気信号の波形を
示すタイムチヤード図で、閃絡光検出手段40の出力信
号102はワンショットマルチバイブレーク141の人
力信号となり、このワンショットマルチバイブレーク1
41は幅がt 5−L 2の波形301を出力し、この
電気信号はワンショットマルチバイブレータ142の人
力信号となり、このワンショットマルチバイブレーク1
42は幅り、−L、の波形302を出力する。この波形
302とりん光検出手段の出力信号である波形204の
2つの波形がアンド回路143の入力信号となるが、波
形204の波尾の時間L4は波形302の波尾の時間t
6より後になるのが普通であるので結局アンド回路の出
力信号は波形302と同じく時間t。
FIG. 3 is a block diagram showing details of the determiner 14.
.. 142 is a circuit that detects the wave tail of an input signal using a one-shot multi-pipe rake and generates a rectangular pulse of a constant width, and 143 is an AND circuit that outputs an output signal when two input signals are not zero at the same time. It is a circuit. FIG. 4 is a time chart showing the waveform of the electric signal at each position in the circuit in the judger 14. One shot multi-bye break 1
41 outputs a waveform 301 with a width of t5-L2, and this electric signal becomes a human signal for the one-shot multivibrator 142, and this one-shot multivibrator 1
42 outputs a waveform 302 with a width of -L. The two waveforms, this waveform 302 and the waveform 204 which is the output signal of the phosphorescence detection means, become the input signals of the AND circuit 143, and the time L4 of the wave tail of the waveform 204 is the time t of the wave tail of the waveform 302.
6, so the output signal of the AND circuit is the same as the waveform 302 at time t.

から1.の間継続する方形パルスとなる。From 1. It becomes a rectangular pulse that continues for a period of time.

アンド回路143によって最終的な判定のための演算が
行われるのは、ワンショットマルチバイブレーク141
によって閃絡光の存在する期間から一定期間遅れた期間
なので、閃絡光の原因である短絡電流に起因するノイズ
の影響なしに正確な演算を行うことができる。
The one-shot multi-by-break 141 performs the calculation for the final judgment by the AND circuit 143.
Since this is a period delayed by a certain period from the period in which the flashlight exists, accurate calculations can be performed without the influence of noise caused by the short circuit current that is the cause of the flashlight.

また、何らかの理由で閃絡光検出手段40で誤動作が生
じて、閃絡光が発生しないのに出力信号102を発生し
た場合には、りん光検出手段の出力信号は零のままなの
で判定器14も出力信号を発しない。また、りん光検出
手段より前で誤動作が発生して閃絡光が発生しないのに
りん光検出回路が電気信号を発した場合も閃絡光検出手
段の出力信号が零なのでこの場合も判定器14は出力信
号を発しない。
Furthermore, if a malfunction occurs in the phosphorescent light detection means 40 for some reason and the output signal 102 is generated even though no flash light is generated, the output signal of the phosphorescence detection means remains zero, so the determiner 14 also produces no output signal. Furthermore, even if a malfunction occurs before the phosphorescence detection means and the phosphorescence detection circuit emits an electrical signal even though no flashlight is generated, the output signal of the flashlight detection means is zero, so in this case as well, the determiner 14 does not emit an output signal.

このようにいずれかの検出手段が誤動作をして出力信号
を発しても最終判定をする判定器によって判断をする構
成となっている。
In this way, even if any of the detection means malfunctions and generates an output signal, the decision is made by the decision device that makes the final decision.

〔発明の効果〕〔Effect of the invention〕

この発明は前述のように、閃絡光を光分岐器で2つに分
け、その内の一つの閃絡光は従来の閃絡光検出手段に入
力し、もう一つの閃絡光はりん光発生手段に人力してり
ん光を発生させ、このりん光と閃絡光が同時に存在した
か否かの判定を閃絡光が消滅した時点で判定する判定手
段により、閃絡光を発する原因となった高圧リードの短
絡にょって発生した短絡電流によって生ずる電気的ノイ
ズなどによって前記諸手段としての電子回路が誤動作す
ることによる間違った判定を下すことのないような構成
とた。 その結果、ガス絶縁機器のような密封容器内に
生じた閃絡故障を閃絡光を検出して閃絡故障を生じた密
封容器内の位置標定を電子回路の誤動作による誤った判
定をすることの恐れのない信頼性の高い検出方式とする
ことができることになった。
As described above, this invention divides the flash light into two parts using an optical splitter, one of which is input to the conventional flash light detection means, and the other flash light is input to the conventional flash light detection means. The generation means manually generates phosphorescence, and the determination means determines whether or not the phosphorescence and flashlight exist at the same time when the flashlight disappears. The configuration is such that the electronic circuits serving as the means described above will not malfunction due to electrical noise caused by short-circuit current generated by short-circuiting of the high-voltage leads. As a result, when a flash fault occurs in a sealed container such as gas-insulated equipment, the position within the sealed container where the flash fault occurred is incorrectly determined by detecting the flash light due to a malfunction of the electronic circuit. This makes it possible to create a highly reliable detection method that is free from the fear of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す概念図、第2図は第1
図の動作を説明するタイムチャート図、第3図は判定器
のブロック図、第4図はこの判定器動作説明のためのタ
イムチャート図、第5図は従来技術の例の概念図。 1・・・密封容器、IA・・・高圧リード、1B・・・
アーク、IC・・・閃絡光、2・・・窓、20・・・受
光手段、3フアイバーケーブル、30・・・りん光発生
手段、4・・・光分岐器、40・・・閃絡光検出手段、 5.10・・・光電気変換手段、6.11・・・増幅器
、7・・・波形整形器、50・・・りん光検出手段、1
2・・・ローパスフィルター、9・・・りん光物質、9
1・・・りん光、13コンパレータ、14・・・判定器
、141.142・・・ワンショットマルチバイブレー
ク、143・・・アンド回路、 101.102,201,202,203゜204.3
01,302,303・・・波形。 1Az閃 第3?2I 第斗聞
Figure 1 is a conceptual diagram showing an embodiment of this invention, and Figure 2 is a conceptual diagram showing an embodiment of the invention.
FIG. 3 is a block diagram of the determiner, FIG. 4 is a time chart for explaining the operation of the determiner, and FIG. 5 is a conceptual diagram of an example of the prior art. 1... Sealed container, IA... High pressure lead, 1B...
Arc, IC...flash light, 2...window, 20...light receiving means, 3 fiber cable, 30...phosphorescence generating means, 4...optical splitter, 40...flash light Photodetection means, 5.10... Photoelectric conversion means, 6.11... Amplifier, 7... Waveform shaper, 50... Phosphorescence detection means, 1
2...Low pass filter, 9...phosphorescent substance, 9
1... Phosphorescence, 13 Comparator, 14... Determiner, 141.142... One-shot multi-by-break, 143... AND circuit, 101.102, 201, 202, 203° 204.3
01, 302, 303... Waveform. 1Az Sendai 3?2I Daitomon

Claims (1)

【特許請求の範囲】[Claims] 1)密封容器内に発生した閃絡光を受光手段によって前
記密封容器外で受光し、受光した閃絡光を電気変換手段
によって電気信号に変換する閃絡光検出手段を備えた故
障点標定装置において、前記受光手段で受光した閃絡光
をりん光物質に照射してこのりん光物質を励起してりん
光を発生させるりん光発生手段と、このりん光発生手段
で発生したりん光を受光し電気信号に変換するりん光検
出手段と、前記閃絡光検出手段の出力信号と前記りん光
検出手段の出力信号との双方が検出されたときに電気信
号を発する判定手段とを備えたことを特徴とする故障点
標定装置の閃絡検出器。
1) A failure point locating device equipped with a flashlight detection means for receiving flashlight generated inside the sealed container outside the sealed container by a light receiving means and converting the received flashlight into an electrical signal by an electrical conversion means. , a phosphorescence generating means for irradiating a phosphorescent substance with the flash of light received by the light receiving means to excite the phosphorescent substance to generate phosphorescence; and a phosphorescence generating means for receiving the phosphorescence generated by the phosphorescence generating means. phosphorescence detection means for converting the phosphorescence into an electric signal; and determination means for emitting an electric signal when both the output signal of the flashlight detection means and the output signal of the phosphorescence detection means are detected. A flash fault detector for a failure point locating device.
JP62279670A 1987-11-05 1987-11-05 Flash point detector of fault location device Expired - Lifetime JPH0667108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62279670A JPH0667108B2 (en) 1987-11-05 1987-11-05 Flash point detector of fault location device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62279670A JPH0667108B2 (en) 1987-11-05 1987-11-05 Flash point detector of fault location device

Publications (2)

Publication Number Publication Date
JPH01122320A true JPH01122320A (en) 1989-05-15
JPH0667108B2 JPH0667108B2 (en) 1994-08-24

Family

ID=17614226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62279670A Expired - Lifetime JPH0667108B2 (en) 1987-11-05 1987-11-05 Flash point detector of fault location device

Country Status (1)

Country Link
JP (1) JPH0667108B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012060879A (en) * 2010-09-07 2012-03-22 Ls Industrial Systems Co Ltd High-speed accident determination device and method in electric power system
CN102589689A (en) * 2012-03-12 2012-07-18 南京五石金传感技术有限公司 Optical fiber electric arc optical detection device with self-checking function and detection method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012060879A (en) * 2010-09-07 2012-03-22 Ls Industrial Systems Co Ltd High-speed accident determination device and method in electric power system
CN102589689A (en) * 2012-03-12 2012-07-18 南京五石金传感技术有限公司 Optical fiber electric arc optical detection device with self-checking function and detection method thereof

Also Published As

Publication number Publication date
JPH0667108B2 (en) 1994-08-24

Similar Documents

Publication Publication Date Title
US9322865B2 (en) Method for detection of leakage or fault currents from equipment in an electrical power system
US20050122643A1 (en) Apparatus and method employing an optical fiber for closed-loop feedback detection of arcing faults
KR100638635B1 (en) Earth leakage circuit breaker
JPS5873846A (en) Optical fiber sensor for detecting arc discharge
EP0441291B1 (en) Withstand-voltage testing method and apparatus
US11808821B2 (en) Method of and system for detecting a serial arc fault in a power circuit
CN200982992Y (en) Remote distance wave guide arc light detector
JP2007057319A (en) Ground fault position detection system
JP2000346705A (en) Arc light detector
JPH01122320A (en) Flashover detector for fault point orientation device
CN104792409A (en) High-power microwave ignition detecting system and high-power microwave ignition detecting method
KR960703234A (en) METHOD AND DEVICE FOR DETECTING AND IDENTIFYING ELECTRICAL CABLES
JP6776065B2 (en) Internal arc protection device
KR101178882B1 (en) Pulse driven ground performance analyzer
JP2000065887A (en) Fault locator for electric power equipment
JP3102129B2 (en) Internal arc detector for gas insulation equipment
JP2580738B2 (en) Fault location device
JP3172626B2 (en) Partial discharge detection method for high voltage equipment
KR101865295B1 (en) Apparatus for detecting cable failure place
JPH01177809A (en) Trouble point locating device for gas insulated apparatus
JPH11125653A (en) Internal arc detection device of gas insulation apparatus
JPH0278975A (en) Electric apparatus
JPS6069570A (en) Impulse corona detector of stationary electric apparatus
JPH09178789A (en) Detector and detecting method
JPS604433B2 (en) Partial discharge detection device for oil-filled electrical equipment