JPH011220A - Polarizable electrode and its manufacturing method - Google Patents

Polarizable electrode and its manufacturing method

Info

Publication number
JPH011220A
JPH011220A JP62-156841A JP15684187A JPH011220A JP H011220 A JPH011220 A JP H011220A JP 15684187 A JP15684187 A JP 15684187A JP H011220 A JPH011220 A JP H011220A
Authority
JP
Japan
Prior art keywords
layer
carbon
metal
polarizable electrode
mixed layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62-156841A
Other languages
Japanese (ja)
Other versions
JPS641220A (en
JPH0821525B2 (en
Inventor
昭彦 ▲吉▼田
敦 西野
棚橋 一郎
Original Assignee
松下電器産業株式会社
Filing date
Publication date
Application filed by 松下電器産業株式会社 filed Critical 松下電器産業株式会社
Priority to JP62156841A priority Critical patent/JPH0821525B2/en
Priority claimed from JP62156841A external-priority patent/JPH0821525B2/en
Publication of JPS641220A publication Critical patent/JPS641220A/en
Publication of JPH011220A publication Critical patent/JPH011220A/en
Publication of JPH0821525B2 publication Critical patent/JPH0821525B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電気二重層キャパシタ、二次電池などのエネ
ルギ貯蔵装置や、エレクトロクロミック表示素子の対向
電極などに用いられる、分極性電極およびその製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a polarizable electrode used for energy storage devices such as electric double layer capacitors and secondary batteries, and counter electrodes of electrochromic display elements, and a method for manufacturing the same. It is related to.

従来の技術 従来、例えば電気二重層キャパシタを例にあげると、こ
れに用いられている分極性電極は第4図に示されるもの
がある。すなわち、活性炭繊維から成る布1ooなどの
表面にアルミニウム金属をプラズマ溶射法によシ成膜し
た層1o1を有するものである。この分極性電極一対と
セパレータ102、ケース103,104、ガスケット
リング105によりコイン型電気二重層キャパシタが開
発されている。活性炭繊維100およびセパレータ10
2にはテトラエチルアンモニウムバークロレートのよう
な電解質をプロピレンカーボネートのような溶媒に溶解
した電解液が含浸されている。ここで金属層: シ1 
’、嘘7(3性炭繊維から成る布10oとケース103
 、104との電気的な接触を充分に保つだめのもので
あり、両者の接触抵抗を低くすることによって活性炭繊
維表面に蓄積される電気二重層容量を効率的に引出し、
かつキャパシタの低内部抵抗を達成する。
BACKGROUND ART Conventionally, for example, take an electric double layer capacitor as an example, a polarizable electrode used therein is shown in FIG. That is, it has a layer 1o1 formed by depositing aluminum metal on the surface of a cloth 1oo made of activated carbon fibers by plasma spraying. A coin-type electric double layer capacitor has been developed using this pair of polarizable electrodes, separator 102, cases 103 and 104, and gasket ring 105. Activated carbon fiber 100 and separator 10
2 is impregnated with an electrolyte solution in which an electrolyte such as tetraethylammonium verchlorate is dissolved in a solvent such as propylene carbonate. Here metal layer: 1
', lie 7 (cloth 10o made of tricarbon fiber and case 103
, 104, and by lowering the contact resistance between the two, the electric double layer capacity accumulated on the activated carbon fiber surface can be efficiently drawn out.
and achieve low internal resistance of the capacitor.

発明が解決しようとする問題点 第6図は上に述べた従来の構成の分極性電極を有するキ
ャパシタを、直列2.8v印加、86°Cの条件で保持
した時の容量と抵抗の経時変化を示すものである。この
図かられかるように、初期の大容量、低抵抗値は、ライ
フテストの時間とともに変化し、1000 h r経過
後では容量値は一15%。
Problems to be Solved by the Invention Figure 6 shows the changes in capacitance and resistance over time when a capacitor with polarizable electrodes having the conventional configuration described above is maintained under conditions of 2.8 V applied in series and 86°C. This shows that. As can be seen from this figure, the initial large capacity and low resistance value changes with the time of the life test, and after 1000 hours, the capacitance value is -15%.

抵抗値は+300%にまで変化している。このような特
性変化の原因としては、第3図に示すように活性炭繊維
層11oと金属層111との界面に空隙112が生じた
り、金属面に酸化層113が生成したりすることが考え
られる。このような空隙や酸化層は、高温、電圧印加の
条件下で加速され、この時発生する電解液の微量分解ガ
スがこの空隙や、金属層111とケース114との間に
局在してさらに上記特性の劣化が促進されることもある
The resistance value has changed to +300%. Possible causes of such changes in characteristics include the formation of voids 112 at the interface between the activated carbon fiber layer 11o and the metal layer 111, and the formation of an oxide layer 113 on the metal surface, as shown in FIG. . Such voids and oxidized layers are accelerated under conditions of high temperature and voltage application, and trace decomposition gas of the electrolyte generated at this time is localized in these voids and between the metal layer 111 and the case 114 and further Deterioration of the above characteristics may be accelerated.

本発明は、このような金属集電層と活性炭繊維層との接
触を強固にし、高温負荷テストにおいてもその接触抵抗
を変化を極力小さくし、容量、抵抗の初期高性能値を長
期にわたって保たんとするものであり、このための分極
性電極構成およびその製造法を提供するものである。
The present invention strengthens the contact between the metal current collecting layer and the activated carbon fiber layer, minimizes the change in contact resistance even during high-temperature load tests, and maintains the initial high performance values of capacitance and resistance over a long period of time. The present invention provides a polarizable electrode structure and a method for manufacturing the same.

問題点を解決するだめの手段 本発明は、炭素または活性炭と、この表面の金属と炭素
原子との混合層と、この混合層の上の金属層とから構成
される分極性電極である。
Means for Solving the Problems The present invention is a polarizable electrode composed of carbon or activated carbon, a mixed layer of metal and carbon atoms on the surface thereof, and a metal layer on this mixed layer.

さらに炭素の表面を窒素、アルゴンのいずれかの不活性
ガスのイオンビーム照射を行いながら、Ta、Ti、A
fi、f(f、Nb、Zr、Si のいずれかの金属を
蒸着またはスパッタリングで成膜析出することによって
前記炭素表面に前記金属と炭素との混合層、さらにこの
混合層の上にひきつづき前記金属層を成膜することを特
徴とする分極性電極の製造方法に関するものである。
Furthermore, while irradiating the carbon surface with an ion beam of an inert gas such as nitrogen or argon, Ta, Ti, and A
fi, f(f, Nb, Zr, Si) A mixed layer of the metal and carbon is formed on the carbon surface by depositing a metal such as Nb, Zr, or Si by vapor deposition or sputtering. The present invention relates to a method for manufacturing a polarizable electrode, which is characterized by forming a layer.

作  用 本発明によれば、金属集電層と活性炭繊維層との間に金
属が活性炭の表面に注入されて生成した両者の混合層が
存在するために、相互の物理的、電気的接触力が強固に
なり、高温負荷使用においても両層間の接着はほとんど
初期状態と変わることなく保たれ、この結果、これを用
いた電気二重層キャパシタ、電池、エレクトロクロミッ
ク表示素子の高性能が長期にわたって維持される。
Function According to the present invention, since there is a mixed layer between the metal current collecting layer and the activated carbon fiber layer, which is generated by injecting metal into the surface of the activated carbon, mutual physical and electrical contact forces are reduced. becomes strong, and the adhesion between the two layers remains almost unchanged even when used under high-temperature loads.As a result, the high performance of electric double layer capacitors, batteries, and electrochromic display elements using this material is maintained over a long period of time. be done.

実施例 本発明の具体的な実施例を述べる前に、本発明の基本的
な考え方および炭素、金属混合層の形成法について詳し
く述べる。
EXAMPLES Before describing specific examples of the present invention, the basic idea of the present invention and the method of forming a carbon/metal mixed layer will be described in detail.

活性炭繊維表面の電気二重層容量を効率的に集電するた
めに前述のように従来はA℃のプラズマ溶射、蒸着など
の方法によって集電色層が形成されていた。この界面の
様子を拡大して模式的に表すと第6図のようになり、炭
素層120の表面にAI金属層121が物理的に接触し
て形成されているのみであり、炭素原子122とAn原
子123が共存している層は存在せず両者の結合力は、
単なるフマンデアヴマールスカのみである。プラズマ溶
射法を用いると溶融した八2が炭素繊維の中にくいこみ
、いわゆる”アンカー効果”によって他の形成法よりは
密着力は強固になるが、接触部をミクロにみると第6図
と同じである。これに対し本発明の分極性電極の界面は
第1図に示す模式的構成を有する。すなわち、炭素層1
とこの層と連続的に存在する炭素、金属混合層2とさら
にこの層の上の金属層3とから構成されるもので、混合
層2は図からもわかるように例えばアルミニウム原子4
と炭素原子6とが混合したものである。
In order to efficiently collect current from the electric double layer capacity on the surface of activated carbon fibers, a current collecting color layer has conventionally been formed by a method such as plasma spraying or vapor deposition at A° C., as described above. An enlarged and schematic representation of this interface is shown in FIG. 6, where the AI metal layer 121 is only formed in physical contact with the surface of the carbon layer 120, and the carbon atoms 122 and There is no layer in which An atoms 123 coexist, and the bonding force between them is
It's just Humandeavmarska. When plasma spraying is used, the molten 82 is embedded into the carbon fibers, resulting in a so-called "anchor effect" that results in stronger adhesion than other forming methods, but if you look at the contact area microscopically, it is the same as shown in Figure 6. It is. In contrast, the interface of the polarizable electrode of the present invention has a schematic configuration shown in FIG. That is, carbon layer 1
It is composed of a carbon and metal mixed layer 2 that exists continuously with this layer, and a metal layer 3 on top of this layer.As can be seen from the figure, the mixed layer 2 contains, for example, aluminum atoms 4
and carbon atom 6 are mixed.

この混合層2は形成時の条件によって炭素層1と金属層
3との間で炭素原子と金属原子の深さ方向の組成比を任
意に制御でき最適な強度が保たれる。
In this mixed layer 2, the composition ratio of carbon atoms and metal atoms in the depth direction between the carbon layer 1 and the metal layer 3 can be arbitrarily controlled depending on the conditions at the time of formation, and the optimum strength can be maintained.

この混合の程度は、物理的に両元素が混合している場合
と、いわゆる金属の炭化化合物として存在する場合の両
方が考えられ、これも製造時の条件に依存する。
The degree of this mixing may be either a physical mixture of both elements or a so-called metal carbide compound, and this also depends on the conditions during production.

次に本発明の分極性電極の製造方法について述べる。第
2図は、本発明の分極性電極を形成するための装置の一
例を示すものである。ペルジャー1oの中を予め10−
7Torrの高真空に保ち、ガス導入孔11からアルゴ
ンガスを導入する。イオン化部12によってイオン化さ
れたArのイオンビームを、基台13に保持された活性
炭繊維布14に照射しながら、加熱ボート15に入れら
れたアルミニウム粉末16を加熱蒸発させイオンビーム
照射と同時に炭素繊維布14上に成膜させる。この時炭
素はイオンビームでたたかれているために蒸発して飛来
したアルミニウム原子は構成炭素原子の奥深く入り込み
(約1ooo人)炭素−へ2混合層ができ、さらにイオ
ンビームが入れなくなるまでこの混合層が生成し引続き
A2蒸着層が形成される。この結果、第1図に示したよ
うな断面構成の分極性電極が形成される。17はロータ
IJ −ポンプ、18は拡散ポンプ、19はイオン発生
のための電源と制御部、2oは蒸着のための電源と制御
部である。この目的のためには例えば日新電機(株)製
のIVD装置を用いることができる。
Next, a method for manufacturing the polarizable electrode of the present invention will be described. FIG. 2 shows an example of an apparatus for forming the polarizable electrode of the present invention. 10- in advance in Pelger 1o
A high vacuum of 7 Torr is maintained, and argon gas is introduced from the gas introduction hole 11. While irradiating the activated carbon fiber cloth 14 held on the base 13 with an Ar ion beam ionized by the ionization unit 12, the aluminum powder 16 placed in the heating boat 15 is heated and evaporated, and the carbon fibers are simultaneously irradiated with the ion beam. A film is formed on the cloth 14. At this time, the carbon is being hit by the ion beam, so the aluminum atoms that evaporate and fly penetrate deep into the constituent carbon atoms (approximately 100 people), forming a two-layer mixed layer on the carbon, and this continues until the ion beam no longer enters. A mixed layer is formed followed by an A2 deposited layer. As a result, a polarizable electrode having a cross-sectional configuration as shown in FIG. 1 is formed. 17 is a rotor IJ-pump, 18 is a diffusion pump, 19 is a power source and control unit for ion generation, and 2o is a power source and control unit for vapor deposition. For this purpose, for example, an IVD device manufactured by Nissin Electric Co., Ltd. can be used.

このような装置の他にも炭素に直接へ2などのイオンを
イオンビーム注入する方法も可能である。
In addition to such an apparatus, a method of directly implanting ions such as 2 into carbon with an ion beam is also possible.

次に本発明の具体的な実施例について述べる。Next, specific examples of the present invention will be described.

実施例1 目付160 y/ n?のフェノール系活性炭繊維より
成る布の表面に前述のrVD装置を用いてAl1の混合
層および単独層を形成する、混合層の厚さは1000人
単独層の厚さは9ooo人である。
Example 1 Weight: 160 y/n? A mixed layer and a single layer of Al1 were formed on the surface of a cloth made of phenolic activated carbon fibers using the rVD apparatus described above. The thickness of the mixed layer was 1000 mm, and the thickness of the single layer was 9 mm.

実施例2 実施例1で得られたものの表面にさらにプラズマ溶射法
によってへ2層を100μm形成する。
Example 2 A second layer of 100 μm was further formed on the surface of the material obtained in Example 1 by plasma spraying.

実施例3 実施例1と同じ活性炭繊維布の表面に厚さ1oooへの
深さ・にA4をイオンビーム注入する。
Example 3 The surface of the same activated carbon fiber cloth as in Example 1 was ion beam implanted with A4 to a depth of 100 mm.

この上にさらに100μmのプラズマ溶射A2層を形成
する。
On top of this, a plasma sprayed A2 layer of 100 μm is further formed.

それぞれの実施例で得られた分極性電標は直径5rmに
打ちぬかれ、第4図に示す構成のキャパシタに組まれる
The polarizable electrodes obtained in each example were punched out to a diameter of 5 rm, and assembled into a capacitor having the configuration shown in FIG.

比較例1 目付150 y/ m”のフェノール系活性炭繊維より
成る布を直径51に打ちあきキャパシタを組立てる。
Comparative Example 1 A capacitor was assembled by punching a cloth made of phenolic activated carbon fiber with a fabric weight of 150 y/m'' to a diameter of 51 mm.

比較例2 目付150 y/mのフェノール系活性炭繊維より伐る
布の表面に厚さ100μmのA2層をプラズマ溶射法で
形成し、これを5mm直径に打ちぬきキャパシタを組立
てる。
Comparative Example 2 A 100 μm thick A2 layer was formed on the surface of a cloth cut from phenolic activated carbon fiber with a basis weight of 150 y/m by plasma spraying, and then punched out to a diameter of 5 mm to assemble a capacitor.

以上の実験により得られたキャパシタの初期およびライ
フ特性を第1表に揚げる。
Table 1 lists the initial and life characteristics of the capacitors obtained through the above experiments.

発明の効果 以上記載のごとく本発明によれば、炭素と金属層との界
面に両者の相互拡散層が存在するために両者の接着力が
単なる物理的接着以上のものとなり、界面での両者のは
くり、金属層の酸化などが起こりにくくなり、これを用
いた電気二重層キャパシタの特性は大巾に改善される。
Effects of the Invention As described above, according to the present invention, since there is a mutual diffusion layer between the carbon and metal layers at the interface, the adhesive force between the two is greater than mere physical adhesion, and the bonding force between the two at the interface increases. Peeling and oxidation of the metal layer are less likely to occur, and the characteristics of electric double layer capacitors using this material are greatly improved.

本実施例では、炭素材料として活性炭繊維についてのみ
述べたが、炭素繊維や、板状、ペレット状、膜状、シー
ト状、多孔体などの形状をした炭素、活性炭に対しても
同様の効果が得られることは云うまでもない。金属もA
2以外の弁作用金属(Ta、Hf、Ti、Nb、Zr)
やSLなどを用いてもよい。さらに、キャパシタ以外の
分極性電極用途、たとえばLi二次電池、エレクトロク
ロミック表示素子の対極などについても本発明は有効で
ある。
In this example, only activated carbon fibers were described as the carbon material, but the same effect can be obtained for carbon fibers, carbon in the form of plates, pellets, membranes, sheets, porous bodies, etc., and activated carbon. Needless to say, you can get it. Metal is also A
Valve metals other than 2 (Ta, Hf, Ti, Nb, Zr)
or SL may also be used. Furthermore, the present invention is also effective for polarizable electrode applications other than capacitors, such as Li secondary batteries and counter electrodes of electrochromic display elements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の分極性電極の断面模式図、第2図は本
発明に用いる金属混合層および金属層の製造のだめの装
置の一例を示す図、第3図は従来の分極性電極の劣化の
様子を示す図、第4図は電気二重層キャパシタの断面構
成図、第5図は従来の電気二重層キャパシタのライフ特
性図、第6図は従来の分極性電極の断面模式図である。 1・・・・・炭素層、2・・・・・・金属炭素混合層、
3・・・−・・金属層、4・・・−・・金属原子、6・
・・・・・炭素原子。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名の 
                  寸    艷O
L5 派            法       派痣塀枢
ゲ誓4 派
Fig. 1 is a schematic cross-sectional view of a polarizable electrode of the present invention, Fig. 2 is a diagram showing an example of a device for producing the metal mixed layer and metal layer used in the invention, and Fig. 3 is a diagram of a conventional polarizable electrode. A diagram showing the state of deterioration, Figure 4 is a cross-sectional configuration diagram of an electric double layer capacitor, Figure 5 is a life characteristic diagram of a conventional electric double layer capacitor, and Figure 6 is a schematic cross-sectional diagram of a conventional polarizable electrode. . 1... Carbon layer, 2... Metal carbon mixed layer,
3...-metal layer, 4...-metal atom, 6-
...Carbon atom. Name of agent: Patent attorney Toshio Nakao and one other person
Size O
L5 sect Law sect 4th sect

Claims (5)

【特許請求の範囲】[Claims] (1)炭素または活性炭と、この表面の金属と炭素原子
との混合層と、この混合層の上の金属層とから構成され
る分極性電極。
(1) A polarizable electrode composed of carbon or activated carbon, a mixed layer of metal and carbon atoms on the surface, and a metal layer on this mixed layer.
(2)炭素または活性炭が、板、シート、繊維、多孔質
成型体のいずれかの形状を有することを特徴とする特許
請求の範囲第1項記載の分極性電極。
(2) The polarizable electrode according to claim 1, wherein the carbon or activated carbon has the shape of a plate, sheet, fiber, or porous molded body.
(3)金属がTa、Al、Hf、Zr、Ti、Nb、S
iのうちのいずれかひとつ以上から成るものであること
を特徴とする特許請求の範囲第1項記載の分極性電極。
(3) The metal is Ta, Al, Hf, Zr, Ti, Nb, S
The polarizable electrode according to claim 1, characterized in that it is made of one or more of the following.
(4)混合層が、炭素と金属の化合物層または炭素と金
属元素の物理的な混合層のいずれかであることを特徴と
する特許請求の範囲第1項記載の分極性電極。
(4) The polarizable electrode according to claim 1, wherein the mixed layer is either a compound layer of carbon and metal or a physical mixed layer of carbon and metal elements.
(5)炭素の表面を窒素、アルゴンのいずれかの不活性
ガスのイオンビーム照射をしながら、Ta、Ti、Al
、Hf、Zr、Siのいずれかの金属を蒸着またはスパ
ッタリングで成膜析出することにより前記炭素表面に前
記金属と炭素との混合層、さらにこの混合層の上にひき
つづき前記金属層を成膜することを特徴とする分極性電
極の製造方法。
(5) While irradiating the surface of carbon with an ion beam of inert gas such as nitrogen or argon,
, Hf, Zr, and Si by vapor deposition or sputtering to form a mixed layer of the metal and carbon on the carbon surface, and further to form the metal layer successively on this mixed layer. A method for manufacturing a polarizable electrode, characterized by:
JP62156841A 1987-06-24 1987-06-24 Polarizable electrode and manufacturing method thereof Expired - Fee Related JPH0821525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62156841A JPH0821525B2 (en) 1987-06-24 1987-06-24 Polarizable electrode and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62156841A JPH0821525B2 (en) 1987-06-24 1987-06-24 Polarizable electrode and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JPS641220A JPS641220A (en) 1989-01-05
JPH011220A true JPH011220A (en) 1989-01-05
JPH0821525B2 JPH0821525B2 (en) 1996-03-04

Family

ID=15636542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62156841A Expired - Fee Related JPH0821525B2 (en) 1987-06-24 1987-06-24 Polarizable electrode and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0821525B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2113421A1 (en) * 1992-05-15 1993-11-25 Kazuya Kuriyama Secondary battery and its manufacturing method
US5862035A (en) * 1994-10-07 1999-01-19 Maxwell Energy Products, Inc. Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes
US5621607A (en) * 1994-10-07 1997-04-15 Maxwell Laboratories, Inc. High performance double layer capacitors including aluminum carbon composite electrodes
US6233135B1 (en) 1994-10-07 2001-05-15 Maxwell Energy Products, Inc. Multi-electrode double layer capacitor having single electrolyte seal and aluminum-impregnated carbon cloth electrodes
US6332900B1 (en) * 1999-02-08 2001-12-25 Wilson Greatbatch Ltd. Physical vapor deposited electrode component and method of manufacture
US6449139B1 (en) 1999-08-18 2002-09-10 Maxwell Electronic Components Group, Inc. Multi-electrode double layer capacitor having hermetic electrolyte seal
US6631074B2 (en) 2000-05-12 2003-10-07 Maxwell Technologies, Inc. Electrochemical double layer capacitor having carbon powder electrodes
US6813139B2 (en) 2001-11-02 2004-11-02 Maxwell Technologies, Inc. Electrochemical double layer capacitor having carbon powder electrodes
JP4986222B2 (en) * 2006-01-31 2012-07-25 Jfeケミカル株式会社 Method for producing negative electrode material for lithium ion secondary battery
JP5351990B2 (en) * 2006-01-31 2013-11-27 Jfeケミカル株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
EE05629B1 (en) * 2010-09-06 2013-02-15 O� Skeleton Technologies Method for the preparation of an electrochemical system of a high power and energy density supercapacitor, a corresponding supercapacitor and a method for making it
JP5058381B1 (en) * 2012-02-09 2012-10-24 日本蓄電器工業株式会社 Current collector and electrode, and power storage device using the same
RU2573387C2 (en) * 2011-02-21 2016-01-20 Джапан Капаситор Индастриал Ко., Лтд. Electrode foil, current tap, electrode and element for electric energy accumulation with their usage
JP2013165250A (en) * 2012-06-07 2013-08-22 Japan Capacitor Industrial Co Ltd Collector and electrode, and power storage element using the same

Similar Documents

Publication Publication Date Title
TWI573157B (en) Electrode material, solid electrolytic capacitor and cathode foil
EP0112923B1 (en) Double electric layer capacitor
JPH011220A (en) Polarizable electrode and its manufacturing method
JPH0963905A (en) Electric double-layer capacitor and manufacture thereof
JPH0821525B2 (en) Polarizable electrode and manufacturing method thereof
JP4940362B1 (en) Electrode foil for solid electrolytic capacitors
JP2017157394A (en) All-solid battery
JPS60189162A (en) Manufacture of polarization electrode
JP3407130B2 (en) Electrode, secondary battery and manufacturing method thereof
US20020061362A1 (en) Process for producing an impermeable or substantially impermeable electrode
JP2007095772A (en) Electric double-layer capacitor
JP2004524686A (en) Electrolytic capacitor and method for producing the same
JPH0241885B2 (en)
JPS63121272A (en) Chargeable electrochemical device
JPH0770448B2 (en) Method of manufacturing polarizable electrodes
JPH07201681A (en) Electric double layer capacitor
WO2020239512A1 (en) Electrochemical cell and method for producing same
JP2723578B2 (en) Organic electrolyte battery
JP2609847B2 (en) Non-aqueous secondary battery
JPS59196576A (en) Solid electrolyte cell
JPS6025166A (en) Chargable battery
JP2000299259A (en) Electric double layer capacitor and manufacture thereof
JP2684776B2 (en) Method for producing thin film on porous substrate
JPH011221A (en) Method for manufacturing polarizable electrodes
JPS59103277A (en) Organic electrolyte battery