JPH01121826A - Organic nonlinear optical material - Google Patents

Organic nonlinear optical material

Info

Publication number
JPH01121826A
JPH01121826A JP62280721A JP28072187A JPH01121826A JP H01121826 A JPH01121826 A JP H01121826A JP 62280721 A JP62280721 A JP 62280721A JP 28072187 A JP28072187 A JP 28072187A JP H01121826 A JPH01121826 A JP H01121826A
Authority
JP
Japan
Prior art keywords
electron
nonlinear optical
group
optical
substituent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62280721A
Other languages
Japanese (ja)
Inventor
Shiro Matsumoto
松元 史朗
Takashi Kurihara
隆 栗原
Toshikuni Kaino
戒能 俊邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62280721A priority Critical patent/JPH01121826A/en
Publication of JPH01121826A publication Critical patent/JPH01121826A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/361Organic materials

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Pyrrole Compounds (AREA)

Abstract

PURPOSE:To improve a nonlinear optical effect by forming the title element in such a manner as to have a specific acceptor contg. an imide group in place of a nitro group. CONSTITUTION:The compd. which is formed by bonding an electron-donating substituent D and electron-attracting substituent A to a pi electron conjugated system Z and is expressed by A-Z-D is used. The electron-attracting group A is the org. group expressed by formula I. The orientation of molecules and the control of the orientation are facilitated by the molecular interaction group such as hydrogen bondable substituents and the difficulty in the radical polymn. advantageous for development of optical nonlinearity is averted by this material having the acceptor. The org. nonlinear optical material which exhibits the optical nonlinear response of high-speed and high efficiency is thereby obtd.

Description

【発明の詳細な説明】 〔発明の産業上利用分野〕 本発明は有機非線形光学材料、さらに詳細には光双安定
素子などの非線形光学素子用素材として有用な有機非線
形光学材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field of the Invention] The present invention relates to an organic nonlinear optical material, and more particularly to an organic nonlinear optical material useful as a material for a nonlinear optical element such as an optical bistable element.

〔発明の従来技術〕[Prior art to the invention]

光電場已によって誘起された、非線形効果を含む電気分
極Pは一般に P=x(1)E+x ”  E−E+x ”  E−E
−E−+−−−−−−−のように表される。x (n)
をn次の非線形感受率とよび、n次の非線形光学効果を
定量的に表現するテンソルである。二次の非線形光学効
果としては、ポッケルス効果、パラメトリック効果、パ
ラメトリック発振、第二高調波発生(S f(G)など
が、三次の非線形光学効果としては、第三高調波発生(
THG)、カー効果、静電誘導5HO1光強度による屈
折率の変化などがある。中でも光強度によって屈折率が
変化する現象を利用すれば、電気回路が介在しない真性
型の光双安定素子の実現が原理的には可能であり、この
素子を用いた、光メモリや光論理素子の構成もツではな
い。このため、将来の光素子の中心素材として大いに期
待しうる、大きな非線形光学効果を存する材料の探索、
開発が、無機材料、有機材料を問わず盛んに行われてき
ている。
The electric polarization P, including nonlinear effects, induced by the optical electric field is generally P=x(1)E+x ``E-E+x''E-E
It is expressed as -E-+--------. x (n)
is called the n-th nonlinear susceptibility, and is a tensor that quantitatively expresses the n-th nonlinear optical effect. Second-order nonlinear optical effects include the Pockels effect, parametric effects, parametric oscillation, second harmonic generation (S f (G), etc.), and third-order nonlinear optical effects include third harmonic generation (S f (G)).
THG), Kerr effect, and electrostatic induction 5HO1 Change in refractive index depending on light intensity. In particular, by utilizing the phenomenon in which the refractive index changes depending on the light intensity, it is theoretically possible to realize an intrinsic optical bistable device without an electrical circuit, and it is possible to create optical memories and optical logic devices using this device. The composition is also not good. For this reason, we are searching for materials with large nonlinear optical effects that hold great promise as core materials for future optical devices.
Development is being actively carried out on both inorganic and organic materials.

特に、有機の非線形光学材料は、KDPやLiNbO3
などの無機強誘電体結晶に比べ、−船釣に非線形光学定
数が大きいこと、応答速度が速いこと、レーザー耐性が
優れていること、などの長所を有しているほか、分子の
修飾も比較的容易であるため、かなりの種類の低分子の
結晶や高分子の薄膜などで、非線形光学効果が評価され
てきた。その結果、π電子共役系を有する化合物で電子
供与(ドナー)性および電子吸引(アクセプタ)性の置
換基を持つものが非線形効率が高いことがわかった。中
でも、2−メチル、4−ニトロアニリン(MNA)や4
.4゛−ジエチルアミノニトロスチルベン(DEANS
)のように電子吸引性置換基としてニトロ基を有するも
のの非線形光学特性が大きく、現在代表的な非線形光学
材料のほとんどは、ニトロ基を有している。これは、ニ
トロ基が分子の遷移双極子モーメントを大きくし、これ
が非線形光学効果を晶めるためである。
In particular, organic nonlinear optical materials such as KDP and LiNbO3
Compared to inorganic ferroelectric crystals such as Because of its ease of use, nonlinear optical effects have been evaluated in many types of low-molecular crystals and polymer thin films. As a result, it was found that compounds with a π-electron conjugated system that have substituents with electron-donating (donor) and electron-withdrawing (acceptor) properties have high nonlinear efficiency. Among them, 2-methyl, 4-nitroaniline (MNA) and 4
.. 4'-Diethylaminonitrostilbene (DEANS
) that have a nitro group as an electron-withdrawing substituent have significant nonlinear optical properties, and most of the currently typical nonlinear optical materials have a nitro group. This is because the nitro group increases the transition dipole moment of the molecule, which produces nonlinear optical effects.

〔発明の解決する問題点〕[Problems to be solved by the invention]

しかしながら、ニトロ基を有する化合物では、この基の
強い電子吸引性のために基底状態での双極子モーメント
が大きく反転対称性を有する結晶構造をとりやすい。こ
の場合は二次の非線形光学効果は発現しない。また、ニ
トロ基はラジカルクウェンチ中−として働くために、こ
の基を有するモノマーのラジカル重合が難しく、ニトロ
基を有する実用的なポリマー系非線形光学材料の合成が
難しい。これらの欠点は、ニトロ基を含む材料において
は、常につきまとう問題であ恒、ニトロ基に替わりうる
新しい電子吸引基が要望されていた。
However, a compound having a nitro group has a large dipole moment in the ground state due to the strong electron-withdrawing property of this group, and tends to have a crystal structure having inversion symmetry. In this case, no second-order nonlinear optical effect occurs. Furthermore, since the nitro group acts as a radical quencher, it is difficult to radically polymerize a monomer having this group, and it is difficult to synthesize a practical polymer-based nonlinear optical material having a nitro group. These drawbacks have always been a problem in materials containing nitro groups, and there has been a demand for new electron-withdrawing groups that can replace nitro groups.

本発明は、上記問題点に鑑みなされたものであり、上記
従来材料の欠点を克服した、高速・高効率の光非線形応
答を示す有機非線形光学材料を提供することを目的とす
る。
The present invention has been made in view of the above problems, and an object of the present invention is to provide an organic nonlinear optical material that overcomes the drawbacks of the conventional materials and exhibits a fast and highly efficient optical nonlinear response.

〔問題を解決するための手段〕[Means to solve the problem]

上記問題点を解決するため、本発明による有機非線形光
学材料は、π電子共役系Zに、電子供与性置換基りおよ
び電子吸引性置換基Aが結合してなる、一般式、A−Z
−Dで示される化合物において、電子吸引性置換基Aが
下記(1)式に示す有機基であることを特徴としている
In order to solve the above problems, the organic nonlinear optical material according to the present invention has a general formula A-Z in which an electron-donating substituent group and an electron-withdrawing substituent A are bonded to a π-electron conjugated system Z.
The compound represented by -D is characterized in that the electron-withdrawing substituent A is an organic group represented by the following formula (1).

有機非線形光学材料に通したニトロ基に替わり得る新規
アクセプタを見出すために、アセチル基より電子吸引性
が大きく、かつニトロ基より電子吸引性が小さい各種置
換基を有するπ電子共役系化合物の光非線形効果を評価
した結果、イミド結合を有する置換基で大きな非線形光
学効果を示すことを見出し、本発明に至ったものである
In order to find a new acceptor that can replace the nitro group passed through organic nonlinear optical materials, we investigated the optical nonlinearity of π-electron conjugated compounds having various substituents that have larger electron-withdrawing properties than acetyl groups and smaller electron-withdrawing properties than nitro groups. As a result of evaluating the effect, it was discovered that a substituent having an imide bond exhibits a large nonlinear optical effect, leading to the present invention.

本発明をさらに詳しく述べる。The invention will now be described in more detail.

本発明は有機非線形光学材料に関する発明であって、 (式中Zはπ電子共役系を、Dは電子供与性基を示す)
で示されることを特徴とする有機非線形光学材料である
The present invention relates to an organic nonlinear optical material, (wherein Z represents a π-electron conjugated system and D represents an electron-donating group)
It is an organic nonlinear optical material characterized by:

式中のイミド基を含む置換基が電子吸引性の置換基であ
る。
A substituent containing an imide group in the formula is an electron-withdrawing substituent.

式中のZはベンゼン環、ピリジン環、ピリミジン環、フ
ラン環、チアゾール環、オキサゾール環、オキサジアゾ
ール環、ナフタレン環などのπ電子共役系の環状化合物
でも、スチルベン、アゾベンゼン、ベンジリデンアニリ
ンなどのπ電子共役系の環状化合物を複数個有するπ電
子共役系であっでもよい。
In the formula, Z can be a π-electron conjugated cyclic compound such as a benzene ring, a pyridine ring, a pyrimidine ring, a furan ring, a thiazole ring, an oxazole ring, an oxadiazole ring, or a naphthalene ring; It may be a π-electron conjugated system having a plurality of electron-conjugated cyclic compounds.

一方、式中のDは、ジアルキルアミノ基、アミノ基、ア
ルコオキシ基などの電子供与性置換基である。
On the other hand, D in the formula is an electron-donating substituent such as a dialkylamino group, an amino group, or an alkoxy group.

上記Zに結合する上記AおよびD以外の置換基について
は、アルキル基、アセチル基、ハロゲン等、分子全体の
電子状態を大きく変化させない限り、その種類や数は限
定されるものではない。
Regarding the substituents other than the above A and D bonded to the above Z, the type and number thereof are not limited, such as alkyl groups, acetyl groups, halogens, etc., as long as they do not significantly change the electronic state of the entire molecule.

〔実施例] 以下、実施例に基づき本発明をさらに具体的に説明する
が、本発明はこれら実施例に限定されない。
[Examples] Hereinafter, the present invention will be explained in more detail based on Examples, but the present invention is not limited to these Examples.

本発明による実施例を表1に示す。非線形光学特性とし
てはTHG強度を測定した。光源としてNd:YAGレ
ーザと色素レーザの差周波発生から得られた1、9μm
の光を基本波として、粉末法(S、  K、  クルッ
 S、に、Kurz)ら、ジャーナル オブ アプライ
ド フィツクス(J。
Examples according to the present invention are shown in Table 1. THG intensity was measured as the nonlinear optical property. 1.9μm obtained from difference frequency generation between Nd:YAG laser and dye laser as light source
The powder method (S, K, Kurz) et al., Journal of Applied Fixtures (J.

Appl、Phys、)第39巻、第3798ページ(
196B’)参照〕により得られた物であり、値はバラ
ニトロアニリンのTHG強度を基準にした値である。
Appl, Phys,) Volume 39, Page 3798 (
196B')], and the values are based on the THG intensity of varanitroaniline.

実施例1〜3に示すように本発明によるイミド基を有す
るアクセプタ性置換基を有する化合物は、π電子共役系
がスチルベンの場合でも、アゾベンゼンの場合でも、ベ
ンジリデンアニリンの場合でも、大きな非線形光学効果
を有することがわかる。
As shown in Examples 1 to 3, the compounds having an acceptor substituent having an imide group according to the present invention have a large nonlinear optical effect, regardless of whether the π-electron conjugated system is stilbene, azobenzene, or benzylideneaniline. It can be seen that it has

即ち、本アクセプタはニトロ基と同様、π電子骨格の如
何に関わらず光非線形材料に適したアクセプタである。
That is, like the nitro group, this acceptor is suitable for optical nonlinear materials regardless of the π-electron skeleton.

夕を有することを特徴としている。このアクセプタは、
ニトロ基はど電子吸引性は大きくないので、この基をア
クセプタにもつ分子の基底状態での双極子モーメントは
、ニトロ基をアクセプタとした分子よりも小さい。この
ため、水素結合性置換基などの分子相互作用基などによ
って、分子の配向、配列の制御が容易になり、光非線形
性の発現に有利なラジカル重合の困難さも本アクセプタ
を有する非線形光学材料では回避できる。このため、本
アクセプタを有する非線形光学材料のポリマー化が容易
になる。
It is characterized by having evening. This acceptor is
Since the nitro group does not have a large electron-withdrawing property, the dipole moment in the ground state of a molecule with this group as an acceptor is smaller than that of a molecule with a nitro group as an acceptor. For this reason, molecular interaction groups such as hydrogen-bonding substituents make it easy to control the orientation and arrangement of molecules, and the difficulty of radical polymerization, which is advantageous in developing optical nonlinearity, can be avoided in nonlinear optical materials containing this acceptor. It can be avoided. Therefore, it becomes easy to polymerize a nonlinear optical material having the present acceptor.

以上述べたように、本発明による非線形光学材料は、大
きな非線形光学特性以外にもいろいろな特徴を有してい
るので、この材料のバルク結晶あるいは薄膜結晶は、非
線形光学効果を利用した光学素子、例えば波長変換素子
、光双安定性素子、光スィッチ、光メモリなど将来の光
通信用集積素子の中心素材として大いに利用できる。
As described above, the nonlinear optical material according to the present invention has various characteristics in addition to large nonlinear optical properties, so bulk crystals or thin film crystals of this material can be used as optical elements that utilize nonlinear optical effects. For example, it can be widely used as a core material for future optical communication integrated devices such as wavelength conversion devices, optical bistable devices, optical switches, and optical memories.

Claims (2)

【特許請求の範囲】[Claims] (1)π電子共役系Zに、電子供与性置換基Dおよび電
子吸引性置換基Aが結合してなる、一般式:A−Z−D
で示される化合物において、電子吸引性置換基Aが下記
(1)式に示す有機基であることを特徴とする有機非線
形光学材料。 ▲数式、化学式、表等があります▼・・・・(1)
(1) General formula: A-Z-D in which an electron-donating substituent D and an electron-withdrawing substituent A are bonded to a π-electron conjugated system Z
An organic nonlinear optical material characterized in that the electron-withdrawing substituent A is an organic group represented by the following formula (1) in the compound represented by the formula (1). ▲There are mathematical formulas, chemical formulas, tables, etc.▼・・・(1)
(2)π電子共役系Zがスチルベン、あるいはアゾベン
ゼン、あるいはベンジリデンアニリンであることを特徴
とする特許請求の範囲第1項記載の有機非線形光学材料
(2) The organic nonlinear optical material according to claim 1, wherein the π-electron conjugated system Z is stilbene, azobenzene, or benzylideneaniline.
JP62280721A 1987-11-06 1987-11-06 Organic nonlinear optical material Pending JPH01121826A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62280721A JPH01121826A (en) 1987-11-06 1987-11-06 Organic nonlinear optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62280721A JPH01121826A (en) 1987-11-06 1987-11-06 Organic nonlinear optical material

Publications (1)

Publication Number Publication Date
JPH01121826A true JPH01121826A (en) 1989-05-15

Family

ID=17629019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62280721A Pending JPH01121826A (en) 1987-11-06 1987-11-06 Organic nonlinear optical material

Country Status (1)

Country Link
JP (1) JPH01121826A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992003417A2 (en) * 1990-08-28 1992-03-05 E.I. Du Pont De Nemours And Company Nonlinear optical materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992003417A2 (en) * 1990-08-28 1992-03-05 E.I. Du Pont De Nemours And Company Nonlinear optical materials

Similar Documents

Publication Publication Date Title
Kulyk et al. Metal-induced efficient enhancement of nonlinear optical response in conjugated azo-based iminopyridine complexes
Zhang et al. Carbazole photorefractive materials
Marder et al. Materials for nonlinear optics: chemical perspectives
US4859876A (en) Nonlinear optical materials and devices
Liakatas et al. Importance of intermolecular interactions in the nonlinear optical properties of poled polymers
US4707303A (en) High performance nonlinear optical substrates
Bosshard et al. Second-order nonlinear optical organic materials: recent developments
US4999139A (en) Organic nonlinear optical material and nonlinear optical device
JPS6296930A (en) Non-linear optical material and apparatus
Kawabe et al. Second-order non-linear optical properties of new organic conjugated molecules
Wada et al. Photoconductive crystals for nonlinear optics: molecular design and crystal structure
JP2514045B2 (en) Organic nonlinear optical material
JPH01121826A (en) Organic nonlinear optical material
US5145610A (en) Organic optical elements and nonlinear optical devices
Kawamata et al. Salient nonlinear optical properties of novel organic crystals comprising π‐conjugated ketones
JPS62448A (en) Quinodimethane compound
Singer et al. Organic Materials for Second-Order Nonlinear Optical Devices
JPH04121717A (en) Novel organic nonlinear optical material and method for converting light wavelength by using this material
US4983325A (en) High performance nonlinear optical media
US4707305A (en) Naphthoquinodimethane compositions
JP2789957B2 (en) Nonlinear optical element
Munn et al. Theory of molecular optoelectronics. X: Calculations for MBANP and NMBA
JP2713422B2 (en) Organic nonlinear optical material
JP2503136B2 (en) Non-linear optical element
US5264512A (en) Amorphous copolymers, transparent in the visible range, for non-linear optical applications