JPH01121756A - Method for measuring antigen-antibody reaction - Google Patents

Method for measuring antigen-antibody reaction

Info

Publication number
JPH01121756A
JPH01121756A JP28004087A JP28004087A JPH01121756A JP H01121756 A JPH01121756 A JP H01121756A JP 28004087 A JP28004087 A JP 28004087A JP 28004087 A JP28004087 A JP 28004087A JP H01121756 A JPH01121756 A JP H01121756A
Authority
JP
Japan
Prior art keywords
antigen
reaction
antibodies
antibody
antigens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28004087A
Other languages
Japanese (ja)
Inventor
Masanobu Sawai
沢井 政信
Junko Nozaki
野崎 純子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP28004087A priority Critical patent/JPH01121756A/en
Publication of JPH01121756A publication Critical patent/JPH01121756A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To rapidly and easily measure many specimens by shielding a part of the base of a vessel with a freely attachable and detachable shielding material and executing antigen-antibody reaction, precipitation of agglutinated matter and optical reading within the same optical cell. CONSTITUTION:A part of the base in the bottom of the vessel forming a microplate 3 is shielded with the shielding material 2 of a freely attachable and detachable cap 2 and the antigens or antibodies deposited on insoluble carrier particles 3 are brought into reaction with the antibodies or antigens under heating in a liquid solvent which serves as a buffer soln. The agglutinated matter of the positive specimen precipitates on the non-shielded part at the base of the plate 3 and the insoluble carriers of the negative specimen are suspended in an unreacted state. The positive specimen is, therefore, discriminated by a decrease in optical density if the cap 1 is removed and optical reading is executed. As a result, the reaction of the antigens and antibodies, the precipitation of the agglutinated matter and the optical reading are executed within the same optical cell. The many specimens are thus rapidly and easily measured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、エイズ(AIDS:後天性免疫不全症候群)
抗体、ヘルペスウィルス抗体及びATL(成人T細胞白
血病)抗体などの存在を短時間で測定でき、エイズ診断
等に幅広く利用できる抗原抗体反応の迅速測定方法に関
するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to the treatment of AIDS (AIDS: Acquired Immune Deficiency Syndrome).
The present invention relates to a method for rapidly measuring antigen-antibody reactions that can measure the presence of antibodies, herpesvirus antibodies, ATL (adult T-cell leukemia) antibodies, etc. in a short time and can be widely used in AIDS diagnosis and the like.

〔従来の技術〕[Conventional technology]

各種ウィルスに対する抗体検出の方法が種々提案されて
いる。例えば、エイズウィルス感染者の体内に生じる抗
体を測定してエイズウィルスに感染しているか否かを測
定する方法としては、酵素免疫法、ゼラチン粒子凝集法
及びウェスタンプロット法などがあるが、これらの方法
では−、検体の数を問わず、即ちl検体のみであっても
判定に30分〜3時間、長いものでは1日以上必要であ
った。しかしながら、輸血用血液のチエツク等を緊急に
検査する場合には、これらの方法では時間がかかりすぎ
るという問題があった。
Various methods for detecting antibodies against various viruses have been proposed. For example, enzyme immunoassay, gelatin particle agglutination method, and Western blot method are methods for determining whether a person is infected with the AIDS virus by measuring antibodies produced in the body of a person infected with the AIDS virus. The method requires 30 minutes to 3 hours for determination, regardless of the number of specimens, that is, even if only one specimen is used, and in the case of a long test, it takes more than one day. However, when urgently checking blood for transfusion, etc., these methods have the problem of being too time consuming.

そこで1本発明者の1人は、上記問題を解決すべく合成
ゴムラテックスにエイズ抗原を担持させ、これを被検者
の血清と反応させると、被検体中に存在するエイズ抗体
と反応して前記ラテックスが凝集し迅速にエイズ検査が
できるラテックス凝集法を開発して第35回日本輸血学
会(昭和62年3月26日)で発表した。
Therefore, in order to solve the above problem, one of the inventors of the present invention made synthetic rubber latex carry an AIDS antigen and reacted it with the serum of a subject. We developed a latex agglutination method that allows rapid AIDS testing by agglutinating the latex, and presented it at the 35th Japan Society of Blood Transfusion (March 26, 1988).

一方、抗単純ヘルペスウィルス抗体の測定には、補体結
合反応が常用されているが、この方法は特異性の面で問
題がある。そこで、特異性を高めるにはウィルス中和反
応又は螢光抗体染色法がすぐれているが、いずれも組織
培養技術と器材とが要求され、−膜検査室では実施しに
くいという問題がある。
On the other hand, complement fixation reaction is commonly used to measure anti-herpes simplex virus antibodies, but this method has problems in terms of specificity. Therefore, virus neutralization reaction or fluorescent antibody staining are excellent ways to increase specificity, but both require tissue culture techniques and equipment, and have the problem of being difficult to implement in a membrane testing laboratory.

さらにATLについても迅速測定法が望まれている。Furthermore, a rapid measurement method for ATL is also desired.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者の一人は先に、各種抗原抗体反応、に適用でき
、かつ大量の被検体を短時間で測定セきる抗原抗体反応
の迅速測定方法として、不溶性担体粒子に担持された抗
原に、加温下で抗体を液体媒体中で反応させ1反応生成
物を沈降させた後、該反応液の光学的変化を測定するこ
とを特徴とする抗原抗体反応の測定方法を提案した。
One of the inventors of the present invention previously developed a method for rapidly measuring antigen-antibody reactions that can be applied to various antigen-antibody reactions and can measure a large amount of analytes in a short time. We have proposed a method for measuring antigen-antibody reactions, which is characterized by reacting antibodies in a liquid medium at room temperature, precipitating a reaction product, and then measuring the optical change in the reaction solution.

かかる方法によれば1例えば、96穴のマイクロプレー
ト内の反応、および凝集物の沈降までは簡単に行うこと
ができる。しかし、上清液の光学的読みとりに際しては
、他容器への移しかえを必要とし、多数検体の処理方法
としては更に改良が望まれていた。
According to this method, for example, reactions in a 96-well microplate and precipitation of aggregates can be easily carried out. However, when optically reading the supernatant, it is necessary to transfer the supernatant to another container, and further improvements have been desired as a method for processing multiple samples.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、この点を解決して、反応、凝集物の沈降なら
びに光学的読みとりのすべてを同一の多孔式光学セル内
で行うことを可能にする測定方法を提供することを目的
とするものである。
The present invention aims to solve this problem and provide a measurement method that allows reaction, sedimentation of aggregates and optical reading to all be carried out in the same porous optical cell. be.

本発明者らの検討によれば、不溶性担体に担持させた抗
原又は抗体が対応する抗体又は抗原と反応して生成する
凝集塊は、容易に沈降する性質を有し、しかも遠心分離
法もしくは自然沈降法等で沈降せしめたとき、その沈降
物は容器底面に固着する傾向をもち、−旦沈降したのち
は容易には拡散しない性質を有する。
According to the studies conducted by the present inventors, the aggregates produced by the reaction of antigens or antibodies supported on insoluble carriers with the corresponding antibodies or antigens have the property of being easily sedimented, and can be obtained by centrifugation or natural When sedimented by a sedimentation method or the like, the sediment tends to stick to the bottom of the container and does not easily diffuse once it has settled.

一方、これに反して未反応の不溶性担体粒子は沈降し難
く、かったとえ沈降しても上述の如き固着性は示さない
On the other hand, unreacted insoluble carrier particles, on the other hand, are difficult to settle, and even if they do settle, they do not exhibit the above-mentioned fixing properties.

そこで、容器の底面の一部を遮蔽するような着脱可能な
遮蔽物を設けた容器を用いて沈降処理すれば、凝集物を
生成した検体の場合は、沈降処理により凝集物は容器底
面の非遮蔽部分に沈降し、遮蔽部分には沈降しないので
それらの間に光学的差異を生じるが、凝集物を生成しな
かった検体の場合には、それらの間に光学的差異を生じ
ることがないので、抗原抗体反応が生じたか否かを簡便
に判別し得ることを知得し。
Therefore, if sedimentation is performed using a container equipped with a removable shield that shields a portion of the bottom of the container, in the case of a sample that has formed aggregates, the sedimentation will remove the aggregates from the bottom of the container. The sample settles in the shielded area and does not settle in the shielded area, creating an optical difference between them, but in the case of a sample that does not form aggregates, there is no optical difference between them. , and learned that it is possible to easily determine whether an antigen-antibody reaction has occurred.

本発明を完成するに至った。The present invention has now been completed.

即ち1本発明の要旨は、容器の底面の一部を遮蔽するよ
うに着脱可能な遮蔽物を設け得る容器を用いて、不溶性
担体粒子に担持させた抗原又は抗体を液性媒体中で抗体
又は抗原と加温下に反応せしめ、生成した凝集物を沈降
せしめたのちに、該遮蔽物を取りのぞき、光学的変化を
測定することを特徴とする抗原抗体反応の測定方法に存
する。
That is, 1. The gist of the present invention is to use a container that can be provided with a removable shield that covers a part of the bottom surface of the container, and to transfer antigens or antibodies supported on insoluble carrier particles to the antibodies or antibodies in a liquid medium. The present invention is a method for measuring an antigen-antibody reaction, which comprises reacting with an antigen under heating and precipitating the generated aggregate, then removing the shield and measuring an optical change.

以下本発明を説明する。The present invention will be explained below.

本発明では不溶性担体粒子に担持された抗原又は抗体を
使用する。ここで、不溶性担体粒子としては、抗原抗体
反応を行う液体媒体に実質的忙溶解しない微粒子状の有
機物質1例えば。
The present invention uses antigens or antibodies supported on insoluble carrier particles. Here, the insoluble carrier particles include, for example, a particulate organic substance 1 that does not substantially dissolve in the liquid medium in which the antigen-antibody reaction occurs.

ポリスチレン、スチレン−ブタジェン共重合体などの乳
化重合によって得られるポリマーラテックス、担体とし
て広く使用されている各種無機化合物1例えばシリカ、
アルミナ、アルミノシリケート、カオリンなど、金属粉
、さらにブドウ球菌などの細菌や細胞膜片などがあげら
れる。これらのうち、ポリマーラテックスが好ましい。
Polymer latex obtained by emulsion polymerization such as polystyrene and styrene-butadiene copolymer, various inorganic compounds widely used as carriers, such as silica,
Examples include metal powders such as alumina, aluminosilicate, and kaolin, as well as bacteria such as staphylococcus and cell membrane fragments. Among these, polymer latex is preferred.

上記担体粒子は、任意の形状のものでよいが、平均粒径
0.0!−/、4μ、好ましくはQ、/〜o、trμの
ものが望ましい。
The carrier particles may have any shape, but the average particle size is 0.0! -/, 4μ, preferably Q, /~o, trμ.

上記担体に担持させる抗原としては、エイズ抗原、ヘル
ペスウィルス抗原、ATL抗原、肝炎ウィルス、サイト
メガロウィルス−EBウィルス、水痘−帯状庖疹ウィル
ス、インフルエンザウィルス、風疹ウィルス、ロタウィ
ルス及びその他のウィルス、又、クラミジアやりケノチ
ャの如く細胞寄生性の微生物、更に各種細菌類などがあ
げられる。抗体は蛋白質で構成されており、一方抗原は
たとえば蛋白質、ポリペプチド、ステロイド、多糖類、
脂質、花粉等種々のものからなる。これらの抗原又は抗
体は、上記担体に公知の方法で物理的及び/又は化学的
に吸着させる。本発明では上記抗原又は抗体をそのまま
担体に担持させることができるが1例えばエイズ抗原を
構成するHIVタンパク質を界面活性剤及び/又はキレ
ート剤とメルカプタンで還元処理し1分子量2万以下、
好ましくはq万l千及びコ万q千前後の宿主細胞由来成
分を除去したタンパク質を担体に担持させるのがよい。
Examples of the antigen supported on the carrier include AIDS antigen, herpesvirus antigen, ATL antigen, hepatitis virus, cytomegalovirus-EB virus, varicella-zoster virus, influenza virus, rubella virus, rotavirus, and other viruses. , cell-parasitic microorganisms such as chlamydia and chlamydia, and various bacteria. Antibodies are composed of proteins, whereas antigens are, for example, proteins, polypeptides, steroids, polysaccharides,
It consists of various things such as lipids and pollen. These antigens or antibodies are physically and/or chemically adsorbed onto the carrier by a known method. In the present invention, the above-mentioned antigen or antibody can be directly supported on the carrier, but 1. For example, the HIV protein constituting the AIDS antigen is reduced with a surfactant and/or a chelating agent and a mercaptan, so that the antigen or antibody has a molecular weight of 20,000 or less.
Preferably, the carrier supports a protein from which about 1,000 to 1,000 host cell-derived components have been removed.

このように低分子量のタンパク質を除去したものは非特
異的凝集反応をおこしに〈<1本発明の抗原抗体反応を
エイズ検査等だ利用する場合、精度の高い検査結果が得
られる。
When low molecular weight proteins are removed in this way, a non-specific agglutination reaction occurs.<<1 When the antigen-antibody reaction of the present invention is used for AIDS testing, etc., highly accurate test results can be obtained.

ここで用いる界面活性剤としては、非イオン系界面活性
剤(例えばTriton 、 Tween  (いずれ
も登録商標)やアニオン界面活性剤(例えばドデシル硫
酸ナトリウムCS D S )など)があげられ、キレ
ート剤としてはEDTAなどのアミノポリカルボン酸塩
やホスホン酸塩が、またメルカプタンとしては、β−メ
ルカプトエタノール、ジチオスレイトールなどがあげら
れる。
Examples of the surfactant used here include nonionic surfactants (for example, Triton and Tween (both registered trademarks) and anionic surfactants (for example, sodium dodecyl sulfate CSDS)), and chelating agents include Aminopolycarboxylic acid salts and phosphonates such as EDTA, and mercaptans include β-mercaptoethanol, dithiothreitol, and the like.

上記還元処理は、緩衝液中で行うのが好ましく、緩衝液
としてはトリス塩酸緩衝液、グリシン緩衝液、リン酸緩
衝液、酢酸緩衝液を用いるのがよい。また、HIVタン
パク質濃度0.θ/m9/ml 〜/ Om9/me、
界面活性剤濃度0.07〜〜10重量%(以下1%と略
称する。)、キレート剤濃度0.01−10%、メルカ
プタン濃度O,OS〜30%となるように濃度を調整し
、室で低分子量タンパク質分な除去する。
The above-mentioned reduction treatment is preferably carried out in a buffer solution, and as the buffer solution, it is preferable to use a Tris-HCl buffer, a glycine buffer, a phosphate buffer, or an acetate buffer. Furthermore, the HIV protein concentration was 0. θ/m9/ml ~/Om9/me,
The concentrations were adjusted so that the surfactant concentration was 0.07 to 10% by weight (hereinafter referred to as 1%), the chelating agent concentration was 0.01 to 10%, and the mercaptan concentration was O,OS to 30%. to remove low molecular weight proteins.

本発明で用いる抗原又は抗体は、任意の量で不溶性担体
に担持させたものでよいが、不溶性担体1g当り抗原を
5〜50μ?、好ましくはg〜30μ?担持させるのが
よい。尚、担体としてラテックスを用いる場合には、ラ
テックス保存用液体媒体として水又は/rriVI以下
の濃度のトリス塩酸緩衝液を用いるのがよい。
The antigen or antibody used in the present invention may be supported on an insoluble carrier in an arbitrary amount, but the antigen or antibody used in the present invention may be supported on an insoluble carrier in an amount of 5 to 50μ per gram of the insoluble carrier. , preferably g~30μ? It is better to carry it. In addition, when latex is used as a carrier, it is preferable to use water or a Tris-HCl buffer solution with a concentration of /rriVI or less as a liquid medium for storing the latex.

本発明では、上記抗原又は抗体を加温下で対応する抗体
又は抗原と液体媒体中で反応させる。
In the present invention, the above antigen or antibody is reacted with the corresponding antibody or antigen in a liquid medium under heating.

ここで液体媒体としては、水及びトリス塩酸緩衝液など
の各種緩衝液があげられる。さらに水にゼラチン、アル
ブミン、スキムミルクなどを0.000 /〜O,S%
、好ましくは0.00 /〜0.05%程度添加したも
のを用いると、反応感度が向上するので好ましい。抗原
抗体反応は任意の割合で反応させることができるが、抗
原又は抗体を担持した不活性担体粒子の液体媒体中の濃
度がo、s〜0.007チ、好ましくは0./〜O,O
S%程度の比較的希薄な濃度で分散懸濁させたものに、
対応する抗体又は抗原5〜2000μ2/−程度を含む
試料を添加して反応させるのがよい。尚、加温条件とし
ては、30℃以上、好ましくは35〜70℃、特に好ま
しくは35〜60℃である。抗原と抗体との反応時間は
Here, examples of the liquid medium include water and various buffer solutions such as Tris-HCl buffer. Furthermore, add gelatin, albumin, skim milk, etc. to water at 0.000/~O,S%
, preferably in an amount of about 0.00/-0.05%, since the reaction sensitivity is improved. Although the antigen-antibody reaction can be carried out at any ratio, the concentration of the inert carrier particles carrying the antigen or antibody in the liquid medium is from 0.07 to 0.07, preferably from 0.07 to 0.07. /~O,O
Dispersed and suspended at a relatively dilute concentration of about S%,
It is preferable to add a sample containing about 5 to 2000 .mu.2/- of the corresponding antibody or antigen for reaction. The heating conditions are 30°C or higher, preferably 35 to 70°C, particularly preferably 35 to 60°C. What is the reaction time between antigen and antibody?

不溶性担体の粒径、抗原や抗体の濃度、温度等により変
化するのが、7〜lS分間程度行えばよい。
It may be carried out for about 7 to 1S minutes, depending on the particle size of the insoluble carrier, the concentration of the antigen or antibody, the temperature, etc.

本発明では、上記抗原抗体反応によって生成した反応物
はラテックスを凝集して液体媒体中に沈殿するが、特に
強制的に沈降させるのがよい。該方法としては、磁場を
利用する方法や遠心分離法などがあげられる。このうち
遠心分離法が好ましい。遠心分離条件は不溶性担体の粒
径、抗原や抗体の濃度により変化するが−1000〜5
 o o o r、p、m、好ましくは2000−S−
1700Or、p、mで3〜20分間行うのがよい。
In the present invention, the reaction product generated by the above-mentioned antigen-antibody reaction aggregates the latex and precipitates in the liquid medium, and it is particularly preferable to force the precipitate. Examples of the method include a method using a magnetic field and a centrifugation method. Among these, centrifugation is preferred. The centrifugation conditions vary depending on the particle size of the insoluble carrier and the concentration of antigen and antibody, but the range is -1000 to 5.
o o o r, p, m, preferably 2000-S-
It is preferable to carry out the treatment at 1700 Or, p, m for 3 to 20 minutes.

本発明では、上記反応及び反応物の沈降をマイクロプレ
ート、例えば96大のものを夏用して行うのがよく、こ
の方法によると多数の検体を短時間で処理することがで
きる。
In the present invention, the above-mentioned reaction and precipitation of the reactants are preferably carried out using a microplate, for example, a 96-sized one, and according to this method, a large number of specimens can be processed in a short time.

このときに用いるマイクロプレート3の各小孔に合わせ
て、たとえば図/Aに示す如きa板物2を具えた着脱可
能な蓋lが装着できるように用意しておく。反応開始後
直ちに、あるいは短時間の反応ならば反応完結後に該蓋
を装着して、凝集物の沈降操作を行う。この沈降操作の
条件は、担持用不溶性粒子の大きさでかわるが、たとえ
ば0.2μのラテックス粒子の場合には。
A removable lid 1 equipped with a plate 2 as shown in FIG. 1A is prepared so as to fit into each small hole of the microplate 3 used at this time. Immediately after the start of the reaction, or after the completion of the reaction in the case of a short reaction, the lid is attached and the flocculate sedimentation operation is performed. The conditions for this sedimentation operation vary depending on the size of the insoluble particles to be supported, but for example, in the case of latex particles of 0.2 μm.

遠心分離機を用いるならば200 Or、p、m、 /
 S分間程度で十分であるし、また重力下での沈降を希
望するならば12〜/g時間位でよい。いずれにせよ、
沈降条件は簡単な予備試験で決定できる。
If using a centrifuge, 200 Or, p, m, /
A time of about S minutes is sufficient, and if sedimentation under gravity is desired, a time of about 12 to 1 g/g hours is sufficient. in any case,
Sedimentation conditions can be determined by simple preliminary tests.

沈降終了後、陽性検体は図/Hに示す如く該容器底面の
非遮蔽部分に凝集物が沈降し、これに対して陰性検体は
図ICに示す如く未反応の状態で該不溶性担体は浮遊し
ている。
After the sedimentation is complete, in the case of a positive sample, aggregates settle on the unshielded part of the bottom of the container as shown in Figure H, whereas in the case of a negative sample, the insoluble carrier floats in an unreacted state as shown in Figure IC. ing.

遮蔽物コ付の蓋lを取りのぞくと、それぞれの小孔は、
上から見ると図/[)および図/Eのような像を示し、
これを通常のマイクロプレートリーダー等で光学的に読
みとることができる。。
When you remove the cover with the shield, each small hole is
When viewed from above, it shows images like Figure/[) and Figure/E,
This can be optically read using a normal microplate reader or the like. .

このとき陽性検体は光学密度が減少するが、陰性検体は
反応物を含まないブランクの試料を加えた場合と同じ光
学密度を示すので、プリントアウトされたデータから容
易に判別できる。
At this time, the optical density of the positive sample decreases, but the negative sample shows the same optical density as when a blank sample containing no reactant is added, so it can be easily distinguished from the printed data.

また、上述の陽性検体の区別は目視法でも正確に判断で
き1例えば、容器の下から光をあてる方式のイムノピュ
アー■を用いて極めて容易に判定することができる。
In addition, the above-mentioned positive specimens can be accurately determined by visual inspection (1), and can be very easily determined using, for example, Immunopure (2), which shines light from below the container.

本発明に用いる光学セルの形状としては、光学的読みと
りの上からは、平面の底を有する円筒形のセルが好まし
いが、それに限定されるものではなく1箱形のものでも
差支えない。遮蔽物の構造と・しては図7に示した円柱
形のものである必要はなく、たとえば断面を十型にして
おけば陽性反応は十と表示されるような工夫もできる。
The shape of the optical cell used in the present invention is preferably a cylindrical cell with a flat bottom from the viewpoint of optical reading, but the cell is not limited thereto and may be in the shape of a box. The structure of the shield does not have to be cylindrical as shown in FIG. 7; for example, if the cross section is made into a ten shape, a positive reaction can be displayed as a ten.

また遮蔽物を置く位置としては、通常のマイクロプレー
トリーダーを用いるとき、一般的には中央部が好ましい
が、たとえば図2に示す如く半円形にして半分を遮蔽す
れば、沈降後の左右の濁度の比較で更に判定が容易とな
る。
In addition, when using a normal microplate reader, it is generally preferable to place a shield in the center, but if you make it semicircular and shield half of it as shown in Figure 2, you can avoid turbidity on the left and right sides after sedimentation. Judgment becomes easier by comparing the degrees.

遮蔽する面積はあまり大きいとセルの容積を減少せしめ
るので、半分以下、好ましくはセル底面の直径の半分(
面積としてy4)位がよい。また、遮蔽物は、図1に示
すように蓋と一体になっている必要はなく1図3に示す
ような簡単なものでもよい。
If the area to be shielded is too large, it will reduce the volume of the cell, so it should be less than half, preferably half the diameter of the bottom of the cell (
The area should be about y4). Further, the shield need not be integrated with the lid as shown in FIG. 1, but may be a simple one as shown in FIG. 3.

遮蔽物を設ける高さは、その効果から自明の如く、各セ
ルの底面に近い程よいし、密着していれば最も好都合で
ある。しかしながら底面との距離が液面の高さにくらべ
て無視できる位であれば、はなれていても差支えない。
As is obvious from its effect, the height at which the shield is provided should be closer to the bottom of each cell, and it is most convenient if it is in close contact. However, as long as the distance from the bottom is negligible compared to the height of the liquid level, there is no problem even if they are far apart.

〔発明の効果〕〔Effect of the invention〕

本発明方法によれば、抗原抗体反応、凝集物の沈降なら
びに光学的読みとりのすべてを同一の多孔式光学セル内
で行うことができるので。
According to the method of the present invention, antigen-antibody reaction, precipitation of aggregates, and optical reading can all be performed within the same porous optical cell.

多数の検体を迅速にしかも簡便に測定することができる
のである。
A large number of specimens can be measured quickly and easily.

以下に実施例を挙げて更に本発明を具体的に説明する。EXAMPLES The present invention will be further explained in detail by giving examples below.

〔実施例〕〔Example〕

参考例1 抗原としてパスツール研究所のリック・モ/り= −f
−(Luc Montagnier )  教授より分
与されたエイズウィルスLAV−tを用い、これをCD
!I細胞(OEM/C1/3 )に感染させ、/2日間
培養後、上清を取り出し、シラ糖密度勾配による超遠心
分離を行い、ウィルス画分を得た。
Reference example 1 Ric Mori of the Pasteur Institute as an antigen = -f
- (Luc Montagnier) Using the AIDS virus LAV-t given to me by the professor, I made it into a CD.
! After infecting I cells (OEM/C1/3) and culturing for 2 days, the supernatant was removed and subjected to ultracentrifugation using a silica density gradient to obtain a virus fraction.

この分画sooμg−7iooμtを’? 00μtの
トリス塩酸緩衝液(pHg、3 )  に懸濁し、これ
に5DSJ%およびコーメルカブトエタノールS%を含
有する溶液1oooμtを添加し。
This fraction sooμg-7iooμt'? The cells were suspended in 00 μt of Tris-HCl buffer (pHg, 3), and 100 μt of a solution containing 5 DSJ% and Cormel Kabutoethanol S% was added thereto.

lθθ℃7分間加熱処理を行った。このとき。Heat treatment was performed at lθθ°C for 7 minutes. At this time.

ウィルスに起因する白濁は完全に消失した。この液を、
ミリボア社製1モルカッ)II−HKを用いて限外濾過
を行い、フィルター上に残存する分画な上記トリス塩酸
緩衝液l−宛で2回洗浄することによって実質的に分子
量io万以下の部分を除去した。その後−このフィルタ
ー上の残存物を1000μtのトリス塩酸緩衝液にとり
、これに5D82%およびλ−メルカプトエタノール5
チを含有するトリス塩酸緩衝液(pHA、g ) / 
0θOpLを加えて、100c1分間の再可溶化を行り
たのち、θ、q % NaC1含有リン酸緩衝液(pH
7,2)  に対して6〜ノコ時間透析を行った。透析
内液を蛋白量が300〜350μ54/−になるように
トリス塩酸緩衝液で調整し、その1rr1tを等量の2
チボリスチレンラテツクス(粒径0.ココμm)懸濁液
に加え。
The cloudiness caused by the virus completely disappeared. This liquid,
Ultrafiltration is performed using Millibore's 1 mol Ka) II-HK, and the fraction remaining on the filter is washed twice with the above-mentioned Tris-HCl buffer to remove the fraction with a molecular weight of 10,000 yen or less. was removed. Thereafter - the residue on the filter was taken up in 1000 μt Tris-HCl buffer and added with 5D 82% and λ-mercaptoethanol 5
Tris-HCl buffer (pHA, g) containing
After adding 0θOpL and resolubilizing at 100c for 1 minute, θ,q% NaCl-containing phosphate buffer (pH
7,2) was subjected to dialysis for 6 hours. The dialysis solution was adjusted with Tris-HCl buffer so that the protein content was 300 to 350μ54/-, and 1rr1t was mixed with an equal amount of 2
Add to Tivostyrene latex (particle size: 0.0 μm) suspension.

機械的に約70分間攪拌した。終了後、ラテックス懸濁
液を;10,000 r I) mで20分間冷却下に
遠心分離し、その上清を除去してから0.2%ウシアル
ブミン(BSA)溶液(トリス塩酸緩衝液中)l−を加
え、2分間機械的に攪拌し。
Stir mechanically for about 70 minutes. After completion, the latex suspension was centrifuged in the cold at 10,000 r I) m for 20 min, the supernatant was removed and then added to a 0.2% bovine albumin (BSA) solution (in Tris-HCl buffer). ) l- and stir mechanically for 2 minutes.

抗HIV抗体検出用ラテックス試薬を調製した。A latex reagent for anti-HIV antibody detection was prepared.

実施例1 市販の平面底の9Aウエルマイクロプレートの各ウェル
に、生理的食塩水で70倍に希釈した被験血清Sμtを
入れ、次に、0.iM)リス塩酸緩衝液(pHざ、J 
) / J sμtを入れた。
Example 1 Test serum Sμt diluted 70 times with physiological saline was placed in each well of a commercially available flat-bottomed 9A-well microplate, and then 0.00% diluted with physiological saline. iM) Lis-HCl buffer (pH, J
) / J sμt was added.

次いで、参考例1で調製した抗HIV抗体検出用ラテッ
クス試薬(粒径0.22μm、濃度0.05%)20μ
tを入れて振とう機で30秒間攪拌した。このプレート
を、水分の蒸発を防ぐためにポリ袋に入れて、60℃の
空気浴に10分間放置し1反応を完結させた。プレート
を取り出し1図/Aに示すような遮蔽物コな具えた蓋l
を図/Aに示すような状態となるようにプレートにフタ
をして、コo o o r、p、mで15分間遠心分離
した。
Next, 20μ of the anti-HIV antibody detection latex reagent prepared in Reference Example 1 (particle size 0.22μm, concentration 0.05%)
and stirred for 30 seconds using a shaker. This plate was placed in a plastic bag to prevent water evaporation and left in an air bath at 60° C. for 10 minutes to complete one reaction. Take out the plate and open the lid with a shield as shown in Figure 1/A.
The plate was covered with a lid so that the condition was as shown in Figure/A, and the plate was centrifuged for 15 minutes in an oven.

遠心分離後、蓋を取りはずし、直ちに波長3’lOnm
 にてマイクロプレートリーダーで測定した。その結果
を表1に示した。
After centrifugation, remove the lid and immediately turn the
Measured using a microplate reader. The results are shown in Table 1.

尚、参照のため各被験血清についてHIV抗体検出用試
薬として市販されているバイオラド社製のウェスタンプ
ロット用キットを用いて測定した結果を併記した。
For reference, the results of measuring each test serum using a Western Blot kit manufactured by Bio-Rad, which is commercially available as a reagent for detecting HIV antibodies, are also listed.

表1から判るように1両測定法の結果はよく一致してい
た。
As can be seen from Table 1, the results of both measurement methods were in good agreement.

表  7 実施例2 実施例1において、10倍希釈被験血清5μtの代りに
、原血清lμtを使用するほかは同様にして測定したと
ころ、全く同一の陰陽判定結果が得られた。
Table 7 Example 2 When measurements were carried out in the same manner as in Example 1 except that 1 μt of the original serum was used instead of 5 μt of the 10-fold diluted test serum, exactly the same Yin/Yang determination results were obtained.

実施例3 抗原として単純ヘルペスウィルス(H8V)のタイプ!
、ミャマ株を使用し、ペロ(Vero )細胞を宿主と
して増殖させた後、維持液中に放出されたウィルスをシ
ョ糖密度勾配遠心により精製し、得られた精製ウィルス
粒子を参考例/に準じて処理し1分子量ダ万以下の蛋白
が除去された可溶化抗原を得た。
Example 3 Type of herpes simplex virus (H8V) as antigen!
, Myama strain was grown using Vero cells as a host, and the virus released into the maintenance solution was purified by sucrose density gradient centrifugation, and the purified virus particles obtained were purified according to Reference Example/ A solubilized antigen from which proteins with a molecular weight of less than 1 million yen were removed was obtained.

この可溶化抗原を参考例1と同様にしてラテックスに担
持させ、抗H8V抗体検出用ラテックスを調製した。
This solubilized antigen was supported on latex in the same manner as in Reference Example 1 to prepare latex for anti-H8V antibody detection.

実施例/において使用した抗HIV抗体検出用ラテック
スの代りだ、上記により得られた抗H8V抗体検出用ラ
テックスを使用し、又、被検体としてフロイントの完全
アジュバントと共に精製ウィルス粒子をウサギ皮下に接
種し。
The anti-H8V antibody detection latex obtained above was used instead of the anti-HIV antibody detection latex used in Example 1, and purified virus particles were subcutaneously inoculated into rabbits together with Freund's complete adjuvant as a test sample. .

30日後K1ff1Mウィルス粒子単独で眼内に感染さ
せた時の血清及び眼内液を使用する以外は。
30 days later, the serum and intraocular fluid from the time of intraocular infection with K1ff1M virus particles alone were used.

実施例1に準じて測定を行ったところ、実施例/と同様
に陰陽の判定を良好に行うことができた。
When measurements were carried out according to Example 1, Yin and Yang could be determined satisfactorily in the same manner as in Example.

【図面の簡単な説明】[Brief explanation of the drawing]

図/は5本発明による測定方法を説明するための概略図
を表わす。図/Aは、反応物ダが入っている容器3に遮
蔽物2を具えた蓋/を着装したところを示す。 図1B及び図/Cは、凝集物の沈降後の様子を、又、図
/D及び図/Eは、遮蔽物を取除き。 容器の上部から観察した様子を示す。 尚、図1B及び図/Dは陽性検体の場合を示し1図/C
及び図/Eは陰性検体の場合を示す。 図コ及び図3は1本発明の遮蔽物の例示を表わす。 出願人  三菱化成工業株式会社 代理人  弁理士 長谷用  − 口2 手続主甫正書(方式) 昭和63年2月又ケ日
Figure 5 represents a schematic diagram for explaining the measurement method according to the present invention. Figure /A shows a container 3 containing a reactant DA fitted with a lid equipped with a shield 2. Figures 1B and 1C show the appearance of aggregates after they have settled, and Figures 1D and 1E show the situation after the shielding material was removed. The state observed from the top of the container is shown. In addition, Figure 1B and Figure/D show the case of a positive sample; Figure 1/C
and Figure/E show the case of a negative specimen. Figures 1 and 3 show one example of the shield of the present invention. Applicant Mitsubishi Chemical Industries Co., Ltd. Agent Patent Attorney Hase - Part 2 Procedural Master's Manual (Method) Date of February 1988

Claims (1)

【特許請求の範囲】[Claims] (1)容器の底面の一部を遮蔽するように着脱可能な遮
蔽物を設け得る容器を用いて、不溶性担体粒子に担持さ
せた抗原又は抗体を液性媒体中で抗体又は抗原と加温下
に反応せしめ、生成した凝集物を沈降せしめたのちに、
該遮蔽物を取りのぞき、光学的変化を測定することを特
徴とする抗原抗体反応の測定方法。
(1) Using a container that can be equipped with a removable shield that covers a part of the bottom of the container, the antigen or antibody supported on insoluble carrier particles is mixed with the antibody or antigen in a liquid medium under heating. After reacting with and settling the formed aggregate,
A method for measuring an antigen-antibody reaction, which comprises removing the shield and measuring an optical change.
JP28004087A 1987-11-05 1987-11-05 Method for measuring antigen-antibody reaction Pending JPH01121756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28004087A JPH01121756A (en) 1987-11-05 1987-11-05 Method for measuring antigen-antibody reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28004087A JPH01121756A (en) 1987-11-05 1987-11-05 Method for measuring antigen-antibody reaction

Publications (1)

Publication Number Publication Date
JPH01121756A true JPH01121756A (en) 1989-05-15

Family

ID=17619461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28004087A Pending JPH01121756A (en) 1987-11-05 1987-11-05 Method for measuring antigen-antibody reaction

Country Status (1)

Country Link
JP (1) JPH01121756A (en)

Similar Documents

Publication Publication Date Title
US4847199A (en) Agglutination immunoassay and kit for determination of a multivalent immune species using a buffered salt wash solution
JPH01163662A (en) Detection of antigen and/or antibody and test kit for detection
CA1149277A (en) Process for determining immuno-complexes
JP5223676B2 (en) Magnetic immunodiagnostic method, especially for the demonstration of the presence of blood group antibody / antigen complexes
JP4995079B2 (en) Use of ferrofluids and related applications to test blood phenotype
EP0280559B1 (en) Agglutination immunoassay and kit for determination of a multivalent immune species using a buffered salt wash solution
JPH01305357A (en) Compositon, diagnosis kit and method for detecting antibody quickly
WO1987003692A1 (en) Reaginic test for syphilis
JPS63229367A (en) Immuno-reactive reagent, manufacture thereof and application thereof for measuring immuno-reactive specy
JP3708942B2 (en) Carrier particle latex for measuring reagent and measuring reagent
CA2015941A1 (en) Method of forming agglutinates in blood samples
EP0194156A1 (en) Method of measuring the amount of immune antibody in serum
DK173781B1 (en) A method for determining in a sample of one or more components in the reaction between a specific binding protein and the corresponding binding substance using at least one labeled component, a process for preparing
NL8105341A (en) DIAGNOSTIC TEST METHOD.
JP2603843B2 (en) Measuring method of antigen or antibody
JP2000221196A (en) Immunological assay
JPH01121756A (en) Method for measuring antigen-antibody reaction
JPH03502247A (en) Method and kit for measuring herpes simplex virus antigen by direct binding to polymer particles
JP3786543B2 (en) Immunological reagent
AU625344B2 (en) Chlamydia half-sandwich immunoassay
WO1986007463A1 (en) Microtiter - surface - flocculation assay for antigen or antibody screening
EP0426170B1 (en) Indirect agglutination immunoassay and apparatus therefor
JPS6113135A (en) Method of measuring other party of reaction and device for said method
EP0280556B1 (en) Water-insoluble particle and immunoreactive reagent, analytical elements and methods of use
JPH03191864A (en) Method and apparatus for measuring indirect agglutination immunity