JPH01121342A - Immobilized lignin composite and use thereof - Google Patents

Immobilized lignin composite and use thereof

Info

Publication number
JPH01121342A
JPH01121342A JP27930987A JP27930987A JPH01121342A JP H01121342 A JPH01121342 A JP H01121342A JP 27930987 A JP27930987 A JP 27930987A JP 27930987 A JP27930987 A JP 27930987A JP H01121342 A JPH01121342 A JP H01121342A
Authority
JP
Japan
Prior art keywords
lignin
immobilized
carrier
protein
cellulose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27930987A
Other languages
Japanese (ja)
Other versions
JP2548240B2 (en
Inventor
Hiromi Kitano
博巳 北野
Masanori Hasegawa
長谷川 雅典
Mitsuo Nishida
光生 西田
Norio Ise
伊勢 典夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Paper Co Ltd filed Critical Oji Paper Co Ltd
Priority to JP62279309A priority Critical patent/JP2548240B2/en
Publication of JPH01121342A publication Critical patent/JPH01121342A/en
Application granted granted Critical
Publication of JP2548240B2 publication Critical patent/JP2548240B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

PURPOSE:To provide the title composite having bonding affinity for proteins, thus suitable as an enzyme-immobilizing material and protein-eliminating one, containing a carrier consisting of polymeric solid granules and lignin matter layer immobilized on said carrier. CONSTITUTION:The objective composite containing (A) a carrier consisting of polymeric solid granules [pref. of cellulose (derivative), amino acid (derivative), polyacrylate, etc.] and (B) lignin matter immobilized on this carrier (pref. kraft lignin). Said polymeric solid granules are pref. 10-100mum for the size, being porous. In addition, it is preferable that said lignin matter be chemically or physically immobilized on the carrier and the content of said matter be 2-20wt.% based on the carrier.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、蛋白質を固定することのできる固定化リグニ
ン組成物に関するものであり、更に詳しく述べるならば
、酵素固定材料および蛋白質除去材料などとして有用な
固定化リグニン複合体に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an immobilized lignin composition capable of immobilizing proteins, and more specifically, it can be used as an enzyme immobilization material, a protein removal material, etc. The present invention relates to useful immobilized lignin complexes.

〔従来の技術および発明が解決しようとする問題点〕[Problems to be solved by conventional technology and invention]

酵素は蛋白質よりなるものであって、穏和な条件下で特
異的な反応を極めて高い効率で促進する触媒効果を有し
ている。従って酵素による物質の。
Enzymes are made of proteins and have a catalytic effect that promotes specific reactions with extremely high efficiency under mild conditions. Therefore of substances due to enzymes.

生産、あるいは分解は、エネルギーの節約、さらにはバ
イオマスの活用などの産業上の面からも極めて有益なも
のと考えられる。ところで、酵素を不溶性の担体に固定
化することがモきるならば、高価でかつ比較的不安定な
蛋白質である酵素の物理的化学的安定性を増し、さらに
操り返し使用性を付与することができるなどの多くの利
点を創出することができる。
Production or decomposition is considered to be extremely beneficial from an industrial perspective, such as saving energy and utilizing biomass. By the way, if it were possible to immobilize enzymes on insoluble carriers, it would be possible to increase the physical and chemical stability of enzymes, which are expensive and relatively unstable proteins, and to give them reusability. It is possible to create many advantages such as:

このため、これまでにも酵素をセルロース、プラスチッ
ク、金属、シリカ等数多くの担体への固定化が試みられ
た。これらの固定化法も物理的吸着法、包括法、あるい
は化学的結合法など多岐にねたうている。このなかで、
化学的結合法は強固ではあるが、この方法には固定化の
際に酵素が変性したり、或は失活、活性低下するという
問題がある。包括法においては、物質のマトリックスへ
の透過が比較的遅い事や、反応物質が分子量の低いもの
に限られるなどの問題がある。また物理的吸着法におい
ては、簡便であるという大きな利点は有するものの、一
般に環境の変化により酵素の脱着が避けられないことや
、反応基質、生成物の吸着があるなどの問題点がある。
For this reason, attempts have been made to immobilize enzymes on numerous carriers such as cellulose, plastic, metal, and silica. A wide variety of immobilization methods are proposed, including physical adsorption, entrapment, and chemical bonding methods. Among these,
Although the chemical bonding method is strong, this method has the problem that the enzyme may be denatured, deactivated, or reduced in activity during immobilization. The inclusion method has problems such as the relatively slow permeation of substances into the matrix and the fact that the reactants are limited to those with low molecular weights. Although physical adsorption methods have the great advantage of being simple, they generally have problems such as unavoidable desorption of enzymes due to changes in the environment and adsorption of reaction substrates and products.

これを解決するには、蛋白質を特異的に結合する基を有
する高分子を担体として用いることが有効と考えられる
。このように、蛋白質と特異的に結合する基としては、
ホルミル基、イソチオシアネート基等が考えられる。し
かしこれらはいずれも、比較的安定性が低いことや、イ
ソチオシアネート基の場合には、導入に要する手順が比
較的煩雑である等の問題がある。また特i的結合基を有
する高分子を固定化用担体として用いる場合には、これ
ら高分子と酵素が結合する際に活性基を破壊或は変性し
ないものでなければならないという制約がある。
To solve this problem, it is thought to be effective to use a polymer having a group that specifically binds proteins as a carrier. In this way, the groups that specifically bind to proteins include:
Possible examples include formyl group and isothiocyanate group. However, all of these have problems such as relatively low stability and, in the case of isothiocyanate groups, relatively complicated procedures for introduction. Furthermore, when a polymer having a specific bonding group is used as an immobilization carrier, there is a restriction that the active group must not be destroyed or denatured when the enzyme is bonded to the polymer.

上記の理由により、酵素固定材料として満足できる材料
は、未だ見出されていない。
For the above reasons, a material that is satisfactory as an enzyme immobilization material has not yet been found.

また、種々な蛋白質を選択的に除去するのに有用な固定
材料も求められている。
There is also a need for immobilization materials useful for selectively removing various proteins.

例えば、血液や尿、髄液中の成分の分析は各種疾病の診
断の際の、いわゆる臨床分析の中でも最も重要なものの
ひとつである。わけても、血液、あるいはそれを除血法
処理した血漿や血清の分析が最も頻繁に行なわれており
、被検対象としては低分子成分であるブドウ糖、尿素、
尿酸などがポピユラーである。
For example, analysis of components in blood, urine, and cerebrospinal fluid is one of the most important so-called clinical analyzes when diagnosing various diseases. In particular, blood, or blood plasma or serum that has been treated with blood removal methods, is most frequently analyzed, and the test targets include low-molecular components such as glucose, urea, and
Popular substances include uric acid.

このような低分子成分の臨床検査の際には、血清中に含
まれている高分子成分、わけてもアルブミン、グロブリ
ンや各種プロテアーゼなどの蛍白質成分が検出を妨害す
ることがしばしばある。たとえば、固定化酵素法に限っ
てみても蛋白質成分が酵素カラムにつまったり、あるい
は固定化されている酵素の分解・失活をもたらすことが
あり、サンプル中の蛋白質をあらかじめ除いておくこと
が酵素カラムの寿命を延ばし、検査の精度を上げること
につながる。
During clinical testing of such low-molecular-weight components, detection is often hindered by high-molecular components contained in serum, especially fluorescent components such as albumin, globulin, and various proteases. For example, even when using the immobilized enzyme method, protein components may clog the enzyme column or cause decomposition or deactivation of the immobilized enzyme, so it is recommended to remove the protein in the sample in advance. This extends the life of the column and improves inspection accuracy.

従来の除蛋白法として代表的なものはアセトンやアセト
ニトリルのような水溶性の有機溶媒による沈澱法、酢酸
エチル、塩化メチレン、エーテルのような非水溶性有機
溶媒による被検物質の抽出法、また、硫酸アンモニウム
、硫酸ナトリウム、亜硫酸ナトリウムなどによる塩析法
、さらにはタングステン酸、リンタングステン酸、トリ
クロロ酢酸などの酸による沈澱法がある。これらの手法
は現在もしばしば実用されており、たとえばPo1in
−Wu法、では、血液と10%タングステン酸ナトリウ
ム、2/3N硫酸を1:1:1に混ぜたものに、水7容
を加え、10〜20分放置後に2500〜3000rp
mで5〜10分間遠沈することにより、蛋白を除去する
ことができる。
Typical conventional protein removal methods include precipitation with water-soluble organic solvents such as acetone and acetonitrile, extraction of the test substance with water-insoluble organic solvents such as ethyl acetate, methylene chloride, and ether, and There are salting out methods using ammonium sulfate, sodium sulfate, sodium sulfite, etc., and precipitation methods using acids such as tungstic acid, phosphotungstic acid, and trichloroacetic acid. These methods are still often used today, for example, Po1in
- In the Wu method, 7 volumes of water are added to a 1:1:1 mixture of blood, 10% sodium tungstate, and 2/3N sulfuric acid, and after leaving it for 10 to 20 minutes, the mixture is heated at 2500 to 3000 rpm.
Protein can be removed by centrifugation at m for 5 to 10 minutes.

しかし上に示した手法は、いずれも、おもに大量の血清
などの処理に用いられるものであり、遠沈、分液、濾過
などの手順が必要なことも併せて、現在の臨床科学の自
損している微量検体の迅速な除蛋白処理と、それに続く
分析にはいささか不向きである。一方、現在使用されて
いる固定化酵素カラムを有する臨床診断用機器では、透
析器を用いて除蛋白を行なっているものが多いが、サン
プル中の目的物質のほとんどが透析膜を通らずに無駄に
なり、結果として多量のサンプルが要求されることや、
試料が希釈されること、テーリングが大きいことなど多
くの問題が指摘されている。
However, all of the above methods are mainly used to process large amounts of serum, etc., and they also require steps such as centrifugation, separation, and filtration, which are disadvantageous to current clinical science. It is somewhat unsuitable for rapid protein removal treatment and subsequent analysis of trace amounts of samples. On the other hand, many of the currently used clinical diagnostic devices with immobilized enzyme columns use a dialysis machine to remove protein, but most of the target substance in the sample does not pass through the dialysis membrane and is wasted. As a result, large amounts of samples are required,
Many problems have been pointed out, such as sample dilution and large tailing.

そこで、これら従来の蛋白質除去方法に代わるものとし
て、蛋白質とに対して特異的相互作用を示す高分子樹脂
を充填した前処理用プレカラムを用いる簡便な蛋白除去
法が注目されはじめている。
Therefore, as an alternative to these conventional protein removal methods, a simple protein removal method using a pretreatment precolumn packed with a polymer resin that exhibits specific interaction with proteins is beginning to attract attention.

しかしながら、簡便な操作で困難なく蛋白質を固定除去
することのできる材料の開発は、未だ十分にはなされて
いない。
However, materials capable of fixing and removing proteins with simple operations and without difficulty have not yet been sufficiently developed.

一方、リグニンは自然界に多量に存在する物質ではある
が、従来その高度利用法が無いために、燃料として日々
焼却されているのが現状である。
On the other hand, although lignin is a substance that exists in large quantities in nature, there is currently no advanced way to use it, so it is currently incinerated daily as a fuel.

リグニン物質が、蛋白質に対し、結合性を有することが
知られていたが、これを蛋白質固定材料として利用する
ことは、行なわれていない。それは、リグニン物質には
水溶性を有するものが多く、このため除蛋白処理した液
体からリグニン物質の完全な除去が困難であるという問
題があるためである。
Although lignin substances have been known to have binding properties to proteins, their use as a protein immobilization material has not been attempted. This is because many of the lignin substances are water-soluble, which makes it difficult to completely remove the lignin substances from the protein-removed liquid.

リグニンには、人体、動植物に無害であり、しかも抗菌
作用を有することが知られている。
Lignin is known to be harmless to the human body, animals and plants, and to have antibacterial effects.

本発明者らは、上記のような特性を有するリグニンの有
効利用について種々研究を重ね、これを高分子固形粒子
上に固定して蛋白質固定用材料として利用することを試
み、上述の問題点を解決して本発明を完成させたもので
ある。
The present inventors have conducted various studies on the effective use of lignin, which has the above-mentioned properties, and have attempted to fix it on solid polymer particles and use it as a material for protein fixation, thereby solving the above-mentioned problems. This problem has been solved and the present invention has been completed.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の固定化リグニン複合体は、高分子固形粒子から
なる担体と、この担体に固定されたリグニン物質層とを
含んでなることを特徴とするものである。
The immobilized lignin composite of the present invention is characterized by comprising a carrier made of solid polymer particles and a lignin material layer fixed to the carrier.

本発明の複合体において、担体として用いられる高分子
固形粒子は、例えば、セルロース、水不溶性セルロース
誘導体、例えば、アセチル化度の低いアセチルセルロー
ス、硝化度の低いニトロセルロース、など、キトサン類
、パルプ、植物繊維、水不溶性デンプン、およびその誘
導体、および、蛋白質物質、などの天然高分子材料、並
びに、ポリアミド、ポリスチレン、ポリアクリル酸エス
テル、ポリメタクリル酸工冬チル、などの合成熱可塑性
高分子材料、およびフェノール−ホルムアルデヒド樹脂
、メラシンーホルムアルデヒド樹脂および尿素−ホルム
アルデヒド樹脂などの合成熱硬化性高分子材料などから
選ぶことができる。また、水不溶性高分子材料は、ガラ
スなどのような無機高分子材料であってもよい。
In the composite of the present invention, the solid polymer particles used as a carrier include, for example, cellulose, water-insoluble cellulose derivatives, such as acetylcellulose with a low degree of acetylation, nitrocellulose with a low degree of nitrification, chitosan, pulp, etc. Natural polymeric materials such as plant fibers, water-insoluble starches and their derivatives, and protein substances, as well as synthetic thermoplastic polymeric materials such as polyamides, polystyrene, polyacrylic esters, polymethacrylates, and synthetic thermosetting polymeric materials such as phenol-formaldehyde resin, melasin-formaldehyde resin, and urea-formaldehyde resin. Further, the water-insoluble polymer material may be an inorganic polymer material such as glass.

本発明に用いられるリグニン物質には、それが蛋白質に
対し結合性を有している限り、格別の制限はなく、例え
ばクラフトリグニン、ソーダリグニンなどのようなアル
カリリグニン類、並びに、ソルボリシスリグニン、サル
ファイトリグニン、および爆砕リグニンなどを利用する
ことができる。
The lignin material used in the present invention is not particularly limited as long as it has binding properties to proteins, and includes, for example, alkaline lignins such as kraft lignin and soda lignin, as well as solvolysis lignin and monkey lignin. Phytolignin, blasted lignin, and the like can be used.

本発明の複合体において、担体に対して、リグニン物質
層が化学的結合によって固定されていてもよく、或は、
物理的結合により固定されていてもよい。
In the composite of the present invention, the lignin material layer may be fixed to the carrier by chemical bonding, or
It may be fixed by physical bonding.

化学的結合による固定方法において、リグニン物質、お
よび担体物質の少なくとも一方に、化学的に活性な官能
基を導入してもよい。このような化学的活性な官能基と
しては、例えばエポキシ基の開環による結合、或は、ア
ミノ基、水酸基、カルボキシル基、およびカルキニル基
なとの縮合反応による結合を利用することができる。
In the fixation method by chemical bonding, a chemically active functional group may be introduced into at least one of the lignin material and the carrier material. As such a chemically active functional group, for example, a bond by ring opening of an epoxy group, or a bond by a condensation reaction with an amino group, a hydroxyl group, a carboxyl group, a carkynyl group, etc. can be used.

エポキシ基を担体物質、又はリグニン物質に導入するに
は、エピクロルヒドリン、グリシジルメタクリレートの
ようなエポキシ化試薬を、通常のエポキシ化反応条件、
例えばアルカリ条件下での加熱により反応させればよい
To introduce epoxy groups into a carrier material or a lignin material, an epoxidation reagent such as epichlorohydrin or glycidyl methacrylate is used under normal epoxidation reaction conditions.
For example, the reaction may be carried out by heating under alkaline conditions.

縮合反応基を利用するには、リグニン物質中の官能基、
例えばカルボキシル基を利用し、担体に、この官能基と
縮合反応する官能基、例えばアミノ基を導入すればよい
。或は、担体物質の有する官能基に応じてリグニンにア
ミノ基、水酸基、カルボキシル基、又はカルボニル基な
どを常法に従って導入してもよい。
To utilize the condensation reaction group, functional groups in the lignin material,
For example, using a carboxyl group, a functional group that undergoes a condensation reaction with this functional group, such as an amino group, may be introduced into the carrier. Alternatively, amino groups, hydroxyl groups, carboxyl groups, carbonyl groups, etc. may be introduced into lignin according to the functional groups possessed by the carrier material according to a conventional method.

また、物理的結合によるリグニン物質の担体への固定法
において、例えば、高分子材料固形粒子をリグニン物質
水溶液中に懸濁し、これに20〜30kHzの超音波を
所要時間、例えば1〜24時間照射し、これによって、
固形粒子担体にリグニン物質を物理的に結合固定するこ
とができる。
In addition, in a method of fixing a lignin substance to a carrier by physical bonding, for example, solid particles of a polymer material are suspended in an aqueous solution of a lignin substance, and then irradiated with ultrasonic waves of 20 to 30 kHz for a required period of time, for example, 1 to 24 hours. And by this,
The lignin material can be physically bonded and fixed to the solid particle carrier.

本発明の複合体において、リグニン物質の含有量には、
格別の限定はないが、−船に担体重量に対して2〜20
重量%の範囲内にあることが好ましい。
In the composite of the present invention, the content of lignin material includes:
There is no particular limitation, but - 2 to 20
Preferably, it is within the range of % by weight.

また、本発明に用いられる高分子材料固形粒子は、lO
〜1000−の粒径を有することが好ましく、更に、そ
れが多孔質であることが好ましく、この場合、その気孔
の孔径は、0.02〜0.2−であることが好ましい。
Furthermore, the polymer material solid particles used in the present invention are lO
Preferably, it has a particle size of ~1000-1,000 -, and more preferably it is porous, in which case the pore size of its pores is preferably 0,02-0,2-.

本発明の固定化リグニン複合体は、酵素固定材料の有効
成分として有用なものである。
The immobilized lignin complex of the present invention is useful as an active ingredient of enzyme immobilization materials.

この酵素固定材料は、ウレアーゼ、ウリカーゼ、グルコ
ースオキシダーゼ、ペルオキシダーゼ、コレステロール
エステラーゼ、アルカリホスファターゼ、β−ガラクト
シダーゼ、キモトリプシン、カルボキシペプチダーゼ、
およびサーモライシンなどの酵素を固定するのに有用で
ある。酵素の固定は、従来慣用の方法で行うことができ
る。例えば、所定の酵素の溶液中に、本発明の固定化リ
グニン組成物を懸濁し、所定の温度、例えば5〜37℃
に、所定時間、例えば1〜3時間静置し、その後、酵素
固定物を分離捕集すればよい。
This enzyme immobilization material includes urease, uricase, glucose oxidase, peroxidase, cholesterol esterase, alkaline phosphatase, β-galactosidase, chymotrypsin, carboxypeptidase,
and is useful for immobilizing enzymes such as thermolysin. Enzyme immobilization can be performed by conventional methods. For example, the immobilized lignin composition of the present invention is suspended in a solution of a predetermined enzyme, and the immobilized lignin composition of the present invention is suspended at a predetermined temperature, for example, 5 to 37°C.
The enzyme may be left to stand for a predetermined period of time, for example, 1 to 3 hours, and then the enzyme immobilized product may be separated and collected.

また、本発明の固定化リグニン複合体は、蛋白質除去材
料の有効成分として有用なものである。
Furthermore, the immobilized lignin complex of the present invention is useful as an active ingredient of protein removal materials.

前述のように、従来の除蛋白法として代表的な沈澱法や
限外濾過法は、多量のサンプルを必要とする。この問題
を解決するために、プレカラム法について検討し、その
結果、本発明の組成物を使用してすぐれた成果を得るこ
とができた。
As mentioned above, the precipitation method and ultrafiltration method, which are typical conventional protein removal methods, require a large amount of sample. In order to solve this problem, a pre-column method was investigated, and as a result, excellent results were obtained using the composition of the present invention.

従来のプレカラム法の中のスイッチ法は、途中にサンプ
ルバルブを設ける必要を生じていたし、また、ベンティ
ング法では、バルブを3ケ所も設けることを必要とする
ものであった。本発明の材料を用いると、−旦吸着した
ものを送り出すのではなく、検出物自身がカラムを素通
りし、蛋白質のみを選択的にカラムにより吸着除去する
という全く筒便な方法が可能になった。また従来のプレ
カラム法では、疎水性担体を用いているために、蛋白質
に対して非特異的吸着を利用せざるを得なかったが、本
発明の組成物を用いると、この点をも解消することがで
きる。
The switch method among the conventional pre-column methods requires the provision of a sample valve midway, and the venting method requires the provision of valves at three locations. By using the material of the present invention, a completely convenient method has become possible in which the detected substance itself passes through the column and only the protein is selectively adsorbed and removed by the column, rather than sending out the adsorbed substance. . In addition, in the conventional pre-column method, since a hydrophobic carrier is used, non-specific adsorption of proteins has to be used, but the composition of the present invention solves this problem. be able to.

蛋白質の除去効果の評価法としては、バッチ法とカラム
法があり、導入された蛋白質量の除去率により除去材料
の性能を判定することができる。
There are batch methods and column methods for evaluating the protein removal effect, and the performance of the removal material can be determined based on the removal rate of the amount of introduced protein.

〔実施例〕〔Example〕

本発明を実施例により更に説明する。 The present invention will be further explained by examples.

実施例1においてメルク社製のセルロース微結晶(^r
t、2331)  5 gを20−の水に懸濁し、5℃
に冷却した。これに、あらかじめ調製して5℃に冷却し
た6N−水酸化ナトリウム75M1を加え、攪拌して均
一にした。この懸濁液を5℃にて1時間静置した復水1
5(ldを加え60℃にて1時間攪拌した。うぎにエピ
クロルヒドリン50−を加え60℃で3時間攪拌し、得
られたエポキシ活性化セルロースを濾取して500−の
水で洗浄した。得られたエポキシ活性化セルロースを、
水酸化ナトリウムによりpH12に調整した1、2%へ
キサメチレンジアミンニ塩酸塩水溶液150m1に懸濁
し、60℃にて3時間攪拌した。得られたアミノヘキシ
ルセルロースを濾取し500−の水で洗浄してっぎの反
応に用いた。
In Example 1, cellulose microcrystals (^r
t, 2331) 5 g was suspended in 20-℃ water and heated to 5℃.
It was cooled to To this was added 75M1 of 6N sodium hydroxide, which had been prepared in advance and cooled to 5°C, and stirred to make it homogeneous. Condensate 1 in which this suspension was allowed to stand at 5°C for 1 hour
5(ld) was added and stirred at 60° C. for 1 hour. Epichlorohydrin 50° was added to the eel and stirred at 60° C. for 3 hours, and the obtained epoxy-activated cellulose was collected by filtration and washed with 500° C. water. The obtained epoxy activated cellulose was
The suspension was suspended in 150 ml of a 1.2% aqueous solution of hexamethylenediamine dihydrochloride adjusted to pH 12 with sodium hydroxide, and stirred at 60°C for 3 hours. The obtained aminohexylcellulose was collected by filtration, washed with 500 ml of water, and used in the next reaction.

0.5N−水酸化ナトリウム20〇−中に前記アミノヘ
キシルセルロースを懸濁し、60℃にて1時間攪拌した
後エピクロルヒドリン401n1を加えさらに2時間攪
拌した。得られたエポキシ活性化アミノヘキシルセルロ
ースを濾取し500dの水により洗浄してこれを、水酸
化ナトリウムによりpttllに調整した6%アルカリ
リグニン(東京化成L082)水溶液100−中に懸濁
し45℃にて4時間攪拌した。リグニン固定化セルロー
スを濾取し水・1/l0N−水酸化ナトリウムおよびメ
タノールで洗浄し未反応のリグニンを除去した後得られ
たリグニン固定化セルロースを真空乾燥した。
The aminohexylcellulose was suspended in 200ml of 0.5N sodium hydroxide, stirred at 60°C for 1 hour, and then 401n1 of epichlorohydrin was added and stirred for an additional 2 hours. The obtained epoxy-activated aminohexyl cellulose was collected by filtration, washed with 500 d of water, and suspended in a 100% aqueous solution of 6% alkaline lignin (Tokyo Kasei L082) adjusted to pttll with sodium hydroxide and heated to 45°C. The mixture was stirred for 4 hours. The lignin-immobilized cellulose was collected by filtration and washed with water, 1/10N sodium hydroxide, and methanol to remove unreacted lignin, and the obtained lignin-immobilized cellulose was vacuum-dried.

また実施例2において東洋濾紙型のセルロース粉末(濾
紙粉末A、100〜200メソシェ)を用いて実施例1
と同様の方法でリグニンを固定した。得られたリグニン
固定化セルロースは標準ふるいにより分級し、200〜
350メツシユのものを捕集した。
In addition, in Example 2, Toyo Roshi type cellulose powder (filter paper powder A, 100 to 200 mesochetes) was used in Example 1.
Lignin was fixed in the same manner. The obtained lignin-immobilized cellulose was classified using a standard sieve and
350 meshes were collected.

なお、リグニン固定化セルロースのリグニン含量の測定
法を以下に示す。得られたリグニン固定化セルロースの
リグニン含量は以下に述べるようにアセチルブロマイド
法を用いて測定した。
The method for measuring the lignin content of lignin-immobilized cellulose is shown below. The lignin content of the obtained lignin-immobilized cellulose was measured using the acetyl bromide method as described below.

得られたリグニン固定化セルロース2■にアセチルプロ
ミドの25%酢酸溶液を1−加えて30分間70℃に加
熱し、リグニン固定化セルロースを溶解させた。これを
水浴中で冷やした後ZN−水酸化ナトリウム0.9 m
と氷酢酸5mを加え混和した。これに7.5M塩酸ヒド
ロキシルアミン溶液0、1 mgを加え冷却しながら振
り混ぜた。氷酢酸を加え全量を20−とした後280n
sの吸光度を測定することによりリグニン含量を求めた
A 25% acetic acid solution of acetyl bromide was added to 2 parts of the obtained lignin-immobilized cellulose and heated to 70°C for 30 minutes to dissolve the lignin-immobilized cellulose. After cooling this in a water bath, add 0.9 m of ZN-sodium hydroxide.
and 5 m of glacial acetic acid were added and mixed. To this was added 0.1 mg of 7.5M hydroxylamine hydrochloride solution, and the mixture was shaken while cooling. After adding glacial acetic acid to make the total volume 20-280n
The lignin content was determined by measuring the absorbance of s.

また、得られたリグニン固定試料の触媒活性の比較用試
料として未修飾のセルロースを用いた。
In addition, unmodified cellulose was used as a sample for comparison of the catalytic activity of the obtained lignin-fixed sample.

得られた本実施例1および2のリグニン固定化試料のリ
グニン含有量は、セルロース担体の重量に対し、それぞ
れ11%および5.7%であった。
The lignin contents of the obtained lignin-immobilized samples of Examples 1 and 2 were 11% and 5.7%, respectively, based on the weight of the cellulose carrier.

琵素傅l定 仔牛小腸由来のアルカリホスファターゼ(シグマ社P−
3877、1,40/*)  15mgを、3d(7)
pl(8,0゜0.5M、2−(シクロへキシルアミノ
)エタンスルホン酸(CHES)緩衝液に溶解させたこ
の溶液に、あらかじめ同じ緩衝液中で脱気しておいた約
0.3gのリグニン固定試料を懸濁させ、25℃で1時
間静置することにより固定した。
Alkaline phosphatase derived from calf small intestine (Sigma P-
3877, 1,40/*) 15mg, 3d(7)
To this solution dissolved in pl (8,0° 0.5M, 2-(cyclohexylamino)ethanesulfonic acid (CHES) buffer) was added about 0.3 g of the solution, which had been previously degassed in the same buffer. The lignin fixed sample was suspended and fixed by standing at 25° C. for 1 hour.

評玉成談 酵素を固定する操作を行った後、固定に用いたものと同
じ緩衝液で酵素固定試料を十分洗浄し内径10酊の恒温
ジャケット付きガラスカラムに充填した。これに、pH
9,o CHESil衝液(MgC1z  80r@m
ol/l)に溶解した1 1m moff /7!リン
酸p−ニトロフェニルエステルニナトリウム塩を25℃
で0.05−/ff1inの速度で潅流させた。流出溶
液中の生成物p−ニトロフェノールアニオンに由来する
430nmにおける吸光度変化を測定することによりカ
ラムの触媒活性を検討した。
After performing an operation to immobilize the enzyme, the enzyme-immobilized sample was thoroughly washed with the same buffer solution used for immobilization and packed into a thermostatically jacketed glass column with an inner diameter of 10 mm. In addition, the pH
9,o CHESil solution (MgC1z 80r@m
ol/l) dissolved in 1 1m moff /7! Phosphoric acid p-nitrophenyl ester disodium salt at 25°C
Perfusion was performed at a rate of 0.05-/ff1 in. The catalytic activity of the column was examined by measuring the absorbance change at 430 nm resulting from the product p-nitrophenol anion in the effluent solution.

リグニン固定試料と酵素を1時間インキュベーションし
た際の酵素固定量はリグニン固定化セルロース(実施例
1,2)および未修飾のセルロースのみのどちらの場合
にも5.4■/g−gelであったが、それらの触媒活
性は、リグニン固定化セルロース(実施例1.2)の場
合には未修飾のセルロースのみの場合の5〜7倍あった
。これはリグニンを介して酵素が担体に固定されている
ため、直接セルロースの表面に吸着している場合よりも
酵素の触媒反応に有利なコンフォメーシロンで担体上に
固定されているためであると考えられる。
When the lignin-fixed sample and enzyme were incubated for 1 hour, the amount of enzyme immobilized was 5.4 μ/g-gel for both lignin-immobilized cellulose (Examples 1 and 2) and unmodified cellulose alone. However, their catalytic activity was 5 to 7 times higher in the case of lignin-immobilized cellulose (Example 1.2) than in the case of unmodified cellulose alone. This is because the enzyme is immobilized on the carrier via lignin, which is more advantageous for the enzyme's catalytic reaction than when it is directly adsorbed on the cellulose surface. Conceivable.

またリグニン固定化セルロース(実施例1.2)にアル
カリホスファターゼを固定した場合の酵素活性の半減期
は約7日と良好であり、リグニン固定化セルロースから
酵素が脱離しにくいことが明らかであった。
Furthermore, when alkaline phosphatase was immobilized on lignin-immobilized cellulose (Example 1.2), the half-life of the enzyme activity was as good as about 7 days, and it was clear that the enzyme was difficult to detach from lignin-immobilized cellulose. .

実11L■ム鴫Σ土 実施例1および2の各々記載のリグニン固定試料を下記
のように蛋白質除去材料として用いた。
The lignin-fixed samples described in Examples 1 and 2 were used as protein removal materials as described below.

I亘亘少盈去 1)バッチ法 ウシ血清アルブミンあるいはウシ血清γ−グロブリンを
1/30Mリン酸緩衝液に溶解させたものにリグニン固
定試料を懸濁させた。25℃にて攪拌した後メンブラン
フィルタ−(東洋濾紙DISMIC25cs 、孔径0
.45m)を用いて濾過し、濾液中のタンパク濃度をロ
ーリ−法により測定して樹脂へのタンパク質結合量を測
定した。
1) Batch method A lignin-fixed sample was suspended in a solution of bovine serum albumin or bovine serum γ-globulin in 1/30M phosphate buffer. After stirring at 25°C, membrane filter (Toyo Roshi DISMIC25cs, pore size 0
.. 45m), and the protein concentration in the filtrate was measured by the Lowry method to determine the amount of protein bound to the resin.

2)カラム法 内径4.7龍、長さ5511mのガラスカラムに充填し
た約0.2gのリグニン固定試料を通常の低圧クロマト
グラフ用装置に組み込んだ。移動相にpH5,5、1/
30Mリン酸緩衝液を用い、流量は1−/sinとした
。移動相と同じ緩衝液を用いて調製した2、5■/−の
濃度のウシ血清アルブミン溶液をオートインジェクター
を用いて、lOIずつ10分ごとに繰り返しこの分析装
置に注入した。
2) Column method Approximately 0.2 g of a fixed lignin sample packed in a glass column with an internal diameter of 4.7 mm and a length of 5511 m was incorporated into a conventional low-pressure chromatography device. Mobile phase pH 5,5, 1/
A 30M phosphate buffer was used and the flow rate was 1-/sin. A bovine serum albumin solution with a concentration of 2.5 μ/- prepared using the same buffer as the mobile phase was repeatedly injected into the analyzer using an autoinjector at 1OI every 10 minutes.

蛋白結合量を、カラムからの流出溶液中のタンパク質を
UVモニターを用いて追跡し、積分計を用いてピーク面
積を求めることにより定量した。
The amount of protein binding was determined by tracking the protein in the solution flowing out from the column using a UV monitor and determining the peak area using an integrator.

猪−来 次にリグニン固定化セルロースへのタンパク質の結合の
結果を記す。
Ino-Raiji describes the results of protein binding to lignin-immobilized cellulose.

リグニンをセルロース微結晶に固定したもの(実施例3
.リグニン含量11%)をバッチ法により評価したとこ
ろ、ウシ血清アルブミンの結合量は、担体であるセルロ
ースのみの戸人に べてfsU−左増加した。特にpu
s、o〜5.5の弱酸性条件においてその傾向は顕著で
6〜30倍に結合量が増加していた(表1)。このよう
にタンパクの等電点(ウシ血清アルブミンの等電点 4
.7−= 4.9 )付近でリグニン固定試料へのタン
パク質結合量が増加する傾向は他のタンパク質吸着剤に
おいてもみられる。タンパク質等電点付近のpos、o
〜5.5といった条件下では、タンパク質の疎水性が増
大しており、タンパク質とリグニン固定試料との疎水性
相互作用が大きくなっていると考えられる。
Lignin fixed to cellulose microcrystals (Example 3
.. When the lignin content (11%) was evaluated by a batch method, the amount of bound bovine serum albumin increased compared to the cellulose carrier alone. Especially pu
This tendency was remarkable under weakly acidic conditions of s, o ~ 5.5, with the amount of binding increasing 6 to 30 times (Table 1). In this way, the isoelectric point of protein (the isoelectric point of bovine serum albumin 4
.. 7-=4.9), the tendency for the amount of protein binding to the lignin-fixed sample to increase is also seen in other protein adsorbents. pos, o near the protein isoelectric point
Under conditions of ~5.5, the hydrophobicity of the protein increases, and it is thought that the hydrophobic interaction between the protein and the lignin-fixed sample increases.

このためタンパク質がリグニン固定試料粒子の表面に引
き寄せられ易(、タンパク質の樹脂へ結合に有利な条件
になり、このような領域においてタンパク質結合量が増
加したと考えられる。ウシ血清T−グロブリンの場合に
もリグニンを固定化することによりタンパク質結合量は
大きく増加した(表2)。ウシ血清γ−グロブリンの等
電点は5.7〜6,8であるが今回pH5,5付近で結
合量が最大になった。T−グロブリンが会合しやすいタ
ンパク質であることからpH6〜7の領域では大きな会
合粒子となっていると考えられる。このためセルロース
結晶表面に存在すると考えられる微小孔へのタンパク粒
子の拡散が妨げられ、このようなpH領域におけるT−
グロブリンの結合量が減少したと考えられる。
For this reason, proteins are likely to be attracted to the surface of the lignin-fixed sample particles (conditions are favorable for protein binding to the resin, and it is thought that the amount of protein binding increases in such regions. In the case of bovine serum T-globulin) By immobilizing lignin, the amount of protein binding increased significantly (Table 2).The isoelectric point of bovine serum γ-globulin is 5.7 to 6.8, but this time the amount of binding increased at around pH 5.5. Since T-globulin is a protein that easily associates, it is thought that it becomes large associated particles in the pH range of 6 to 7.For this reason, protein particles enter the micropores that are thought to exist on the surface of cellulose crystals. The diffusion of T-
It is thought that the amount of globulin bound decreased.

且ウシ血清アルブミン結合量が大きく増加した(表3)
。このセルロース粉末にリグニンを固定したものを用い
カラム法により評価を行ったところ、セルロース粉末の
みの場合には1回目のタンパク質溶液注入からタンパク
質の溶出がみられたのに対し、9回目の注入までタンパ
ク質の溶出は全くみられず、また流出曲線が飽和に達す
るまでのタンパク質溶液注入回数も増加し、タンパク質
結合量が大きく増加した(第1図)。またこのカラム法
では、タンパク質溶液を反復注入する間に移動相溶媒に
よってカラムが常に洗浄されている形になるため、可逆
的結合ではなく不可逆的なタンパク結合のみを測定して
いる。したがってタンパク溶出が始まるまでのタンパク
質溶液注入回数および流出曲線が飽和に達するまでの注
入回数が大きく増加することは、セルロースにリグニン
を固定した充填剤がタンパクと強固に結合することを示
している。
Moreover, the amount of bovine serum albumin bound increased significantly (Table 3)
. When we performed an evaluation using a column method using this cellulose powder with lignin fixed, we found that in the case of only cellulose powder, protein elution was observed from the first protein solution injection, but until the 9th injection. No elution of protein was observed, and the number of times protein solution was injected until the efflux curve reached saturation increased, resulting in a large increase in the amount of protein bound (Figure 1). Additionally, in this column method, the column is constantly washed with a mobile phase solvent during repeated injections of protein solutions, so only irreversible protein binding, not reversible binding, is measured. Therefore, the large increase in the number of protein solution injections until protein elution begins and the number of injections until the efflux curve reaches saturation indicates that the filler in which lignin is fixed to cellulose strongly binds to protein.

以下余白 表   1 リグニン固定化セルロースへの ウシ血清アルブミン結合量(実施例3)BSA結合! 
(mg/g−ge4 )5.0     180   
    5.45、5    147       1
1.86、 O35,811,3 6、518,85,3 7,013,90 実験条件 蛋白初濃度; 0.48■/−11/30Mリン酸緩。
Margin table below 1 Amount of bovine serum albumin bound to lignin-immobilized cellulose (Example 3) BSA binding!
(mg/g-ge4)5.0 180
5.45, 5 147 1
1.86, O35,811,36,518,85,37,013,90 Experimental conditions Initial protein concentration: 0.48/-11/30M phosphoric acid.

衝溶液 液比;5+++ffi/15■吸着剤、25℃、12時
間攪拌表   2 リグニン固定化セルロースへの ウシ血清T−グロブリン結合量(実施例3)B−r−G
結合量(■/g−gel )5、0     389 
     91.55、5     406     
 1526、5     276       29.
4?、 0     139       22.1実
験条件 蛋白初濃度; 0.48mg / ml、1/30Mリ
ン酸緩衝溶液 液比;5d/15■吸着剤、25℃、12時間攪拌表 
  3 リグニン固定化セルロース粉末への セルロース粉末     16.3 実験条件 タンパク初濃度; 0.48■/−1pl+5.5.1
/30Mリン酸緩衝溶液 液比;5mf/15■吸着剤、25°C112時間攪拌
富士紡績製キトパールCHM3001、(キトサンの商
標、粒径74〜1771M1孔径500〜2500人)
10g(湿潤重量)を、水酸化ナトリウムによりpHを
12に調整した10%リグニン水溶液10〇−中に懸濁
し超音波を18時間照射した。得られた固定化リグニン
を濾取し水・ 1/l0N−塩酸・ 1/1ON−水酸
化ナトリウムおよびメタノールにて洗浄し未反応のリグ
ニンを除去した。
Buffer solution/liquid ratio: 5+++ffi/15■ Adsorbent, 25°C, stirring for 12 hours Table 2 Amount of bovine serum T-globulin bound to lignin-immobilized cellulose (Example 3) B-r-G
Binding amount (■/g-gel) 5,0 389
91.55, 5 406
1526, 5 276 29.
4? , 0 139 22.1 Experimental conditions Initial protein concentration: 0.48 mg/ml, 1/30M phosphate buffer solution ratio: 5d/15■ Adsorbent, 25°C, 12 hours stirring table
3 Cellulose powder to lignin-immobilized cellulose powder 16.3 Experimental conditions Initial protein concentration; 0.48■/-1pl+5.5.1
/30M phosphate buffer solution ratio: 5mf/15■ Adsorbent, stirred at 25°C for 112 hours Chitopal CHM3001 manufactured by Fujibo Co., Ltd. (trademark of chitosan, particle size 74-1771M1 pore size 500-2500)
10 g (wet weight) was suspended in a 10% aqueous lignin solution whose pH was adjusted to 12 with sodium hydroxide, and irradiated with ultrasonic waves for 18 hours. The obtained immobilized lignin was collected by filtration and washed with water, 1/10N hydrochloric acid, 1/10N sodium hydroxide, and methanol to remove unreacted lignin.

1立夏徐去 次に、リグニン固定化キトパールへのタンパク質の結合
について記す。
1 Next, the binding of proteins to lignin-immobilized Chitopal will be described.

リグニン固定化キトパールへのウシ血清アルブミン結合
量の時間依存性をバッチ法により測定した(第2図)、
この結果からリグニン固定化キトパールへのタンパク質
の結合は24時間程度で平衡に達することが明らかにな
った。つぎに吸着量のタンパク濃度への依存性を示した
(第3図)。
The time dependence of the amount of bovine serum albumin bound to lignin-immobilized Chitopal was measured by a batch method (Figure 2).
These results revealed that protein binding to lignin-immobilized Chitopal reached equilibrium in about 24 hours. Next, the dependence of adsorption amount on protein concentration was shown (Figure 3).

リグニンを固定化することにより担体のキトパールのみ
の場合に比べてタンパク質結合量が増加しており、1.
6■/−程度の濃度で平衡に達することが明らかになっ
た。また平衡吸着量は500■/g−gel程度あり臨
床検査の際の除タンパク前処理用吸着剤あるいはタンパ
ク質含有排水処理用吸着剤として十分なタンパク質結合
能を有していた。
By immobilizing lignin, the amount of protein binding is increased compared to the case where only Chitopal is used as a carrier.1.
It was revealed that equilibrium was reached at a concentration of about 6/-. The equilibrium adsorption amount was approximately 500 .mu./g-gel, and it had sufficient protein binding ability as an adsorbent for protein removal pretreatment in clinical tests or as an adsorbent for treating protein-containing wastewater.

またリグニン固定化キトバール約0.1gをガラスカラ
ム(55+nX 4.7 n+ID)に充填し、ウシ血
清アルブミンを結合させた後1/l0N−酢酸で洗浄し
たところ、キトパールのみの場合には58%のタンパク
質が溶離したのに対し、リグニンを固定したものでは1
1%が溶離したにすぎず、リグニンをキトパールに固定
することによりタンパク質と強固に結合することが明ら
かになった。
In addition, when approximately 0.1 g of lignin-immobilized Chitovar was packed into a glass column (55+nX 4.7 n+ID), bovine serum albumin was bound and washed with 1/10 N-acetic acid. Protein eluted, whereas lignin immobilized eluted 1
Only 1% of the lignin was eluted, indicating that lignin is firmly bound to proteins by immobilizing it on Chitopearl.

〔発明の効果〕〔Effect of the invention〕

本発明の固定化リグニン複合体は、蛋白質に対し、すぐ
れた結合性を有し、酵素固定材料、蛋白質除去材料とし
て有用であり、更に産業廃水の処理、放射性同位元素廃
水の前処理(これは同位体吸着用活性炭は蛋白質により
著しく妨害を受けるために前処理を行うものである)、
清酒・ビールなどの食品のにごり防止等の分野へも有効
に利用することができる。
The immobilized lignin complex of the present invention has excellent binding properties to proteins and is useful as an enzyme immobilization material and a protein removal material. Activated carbon for isotope adsorption is pretreated because it is significantly interfered with by proteins).
It can also be effectively used in fields such as preventing turbidity in foods such as sake and beer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例4において調製された本発明に係る固
定化リグニン複合体の蛋白質除去効果を示すグラフであ
り、 第2図は、実施例5において調製された本発明に係る固
定化リグニン複合体のタンパク質結合量の時間的依存性
を示すグラフであり、 第3図は、実施例5において調整された本発明に係る固
定化リグニン複合体の蛋白濃度と蛋白結合量との関係を
示すグラフである。
FIG. 1 is a graph showing the protein removal effect of the immobilized lignin complex according to the present invention prepared in Example 4, and FIG. 2 is a graph showing the protein removal effect of the immobilized lignin complex according to the present invention prepared in Example 5. FIG. 3 is a graph showing the temporal dependence of the protein binding amount of the complex, and FIG. 3 shows the relationship between the protein concentration and the protein binding amount of the immobilized lignin complex according to the present invention prepared in Example 5. It is a graph.

Claims (1)

【特許請求の範囲】 1、高分子固形粒子からなる担体と、この担体に固定さ
れたリグニン物質層とを含んでなる固定化リグニン複合
体。 2、前記固形高分子粒子がセルロース、セルロース誘導
体、キトサン、キトサン誘導体、デンプン、デンプン誘
導体、アミノ酸類、アミノ酸誘導体、ポリアミド、ポリ
スチレン、ポリアクリル重合体、フェノール−ホルムア
ルデヒド重合体、メラミン−ホルムアルデヒド重合体、
尿素−ホルムアルデヒド重合体の粒子から選ばれる、特
許請求の範囲第1項記載の複合体。 3、前記リグニン物質がクラフトリグニン、ソーダリグ
ニン、ソルボリシスリグニン、サルファイトリグニン、
爆砕リグニンから選ばれる、特許請求の範囲第1項記載
の複合体。4、前記リグニン物質の含有量が、担体重量
に対し、2〜20重量%の範囲内にある、特許請求の範
囲第1項記載の複合体。 5、前記高分子固形粒子が、10〜1000μmの粒径
を有する、特許請求の範囲第1項記載の複合体。 6、前記高分子固形粒子が多孔質である、特許請求の範
囲第1項記載の複合体。 7、前記リグニン物質が、前記担体に化学的に固定され
ている、特許請求の範囲第1項記載の複合体。 8、前記リグニン物質が前記担体に物理的に固定されて
いる特許請求の範囲第1項記載の複合体。 9、固形高分子粒子からなる担体と、その上に固定され
たリグニン物質とを含んでなる固定化リグニン複合体を
有効成分とする酵素固定材料。 10、固形高分子粒子からなる担体と、その上に固定さ
れたリグニン物質とを含んでなる固定化リグニン複合体
を有効成分とする蛋白質除去材料。
[Scope of Claims] 1. An immobilized lignin composite comprising a carrier made of solid polymer particles and a lignin material layer fixed to the carrier. 2. The solid polymer particles are cellulose, cellulose derivatives, chitosan, chitosan derivatives, starch, starch derivatives, amino acids, amino acid derivatives, polyamides, polystyrene, polyacrylic polymers, phenol-formaldehyde polymers, melamine-formaldehyde polymers,
A composite according to claim 1, which is selected from particles of urea-formaldehyde polymers. 3. The lignin material is kraft lignin, soda lignin, solvolysis lignin, sulfite lignin,
A composite according to claim 1, selected from blasted lignin. 4. The composite according to claim 1, wherein the content of the lignin substance is within the range of 2 to 20% by weight based on the weight of the carrier. 5. The composite according to claim 1, wherein the polymer solid particles have a particle size of 10 to 1000 μm. 6. The composite according to claim 1, wherein the solid polymer particles are porous. 7. The composite according to claim 1, wherein the lignin material is chemically immobilized on the carrier. 8. The composite according to claim 1, wherein the lignin material is physically immobilized on the carrier. 9. An enzyme immobilization material whose active ingredient is an immobilized lignin complex comprising a carrier made of solid polymer particles and a lignin substance immobilized thereon. 10. A protein removal material whose active ingredient is an immobilized lignin complex comprising a carrier made of solid polymer particles and a lignin substance immobilized thereon.
JP62279309A 1987-11-06 1987-11-06 Immobilized lignin complex and its use Expired - Lifetime JP2548240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62279309A JP2548240B2 (en) 1987-11-06 1987-11-06 Immobilized lignin complex and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62279309A JP2548240B2 (en) 1987-11-06 1987-11-06 Immobilized lignin complex and its use

Publications (2)

Publication Number Publication Date
JPH01121342A true JPH01121342A (en) 1989-05-15
JP2548240B2 JP2548240B2 (en) 1996-10-30

Family

ID=17609368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62279309A Expired - Lifetime JP2548240B2 (en) 1987-11-06 1987-11-06 Immobilized lignin complex and its use

Country Status (1)

Country Link
JP (1) JP2548240B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0953634A4 (en) * 1996-12-06 2000-03-15 Showa Denko Kk Composition for treating porous article, treatment method, and use thereof
US6402953B1 (en) 1998-03-10 2002-06-11 Rwe Nukem Gmbh Adsorption means for radionuclides
WO2006123686A1 (en) * 2005-05-20 2006-11-23 Jsr Corporation Support polymer particle, process for producing the same, magnetic particle for specific trapping, and process for producing the same
JP2006321932A (en) * 2005-05-20 2006-11-30 Jsr Corp Carrier polymer particle and its production method
JP2007145985A (en) * 2005-11-28 2007-06-14 Jsr Corp Method for producing support polymer particle
WO2010080531A1 (en) * 2008-12-17 2010-07-15 Novozymes North America, Inc. Methods for enzymatic modification
JP2013035886A (en) * 2011-08-03 2013-02-21 Asahi Organic Chemicals Industry Co Ltd Lignin, composition containing the lignin and method for producing the lignin
JP2013035885A (en) * 2011-08-03 2013-02-21 Asahi Organic Chemicals Industry Co Ltd Lignin, composition containing lignin and method for producing the lignin
JP2013520226A (en) * 2010-02-19 2013-06-06 テマセク ポリテクニック Substrate for immobilizing functional substance and method for producing the same
CN111036052A (en) * 2019-12-27 2020-04-21 武汉宝绿环保科技有限公司 Process method for treating indoor formaldehyde pollution

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013152492A1 (en) * 2012-04-12 2013-10-17 淮北中润生物能源技术开发有限公司 Method for adsorbing phenolic chemicals from water phase

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54475A (en) * 1977-06-01 1979-01-05 Takuma Co Ltd Apparatus for gasifying and combustion waste material
JPS5810076A (en) * 1981-07-13 1983-01-20 株式会社ソフイア Pinball game playing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54475A (en) * 1977-06-01 1979-01-05 Takuma Co Ltd Apparatus for gasifying and combustion waste material
JPS5810076A (en) * 1981-07-13 1983-01-20 株式会社ソフイア Pinball game playing method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0953634A4 (en) * 1996-12-06 2000-03-15 Showa Denko Kk Composition for treating porous article, treatment method, and use thereof
US6402953B1 (en) 1998-03-10 2002-06-11 Rwe Nukem Gmbh Adsorption means for radionuclides
WO2006123686A1 (en) * 2005-05-20 2006-11-23 Jsr Corporation Support polymer particle, process for producing the same, magnetic particle for specific trapping, and process for producing the same
JP2006321932A (en) * 2005-05-20 2006-11-30 Jsr Corp Carrier polymer particle and its production method
US9447232B2 (en) 2005-05-20 2016-09-20 Jsr Corporation Carrier polymer particle, process for producing the same, magnetic particle for specific trapping, and process for producing the same
JP2007145985A (en) * 2005-11-28 2007-06-14 Jsr Corp Method for producing support polymer particle
WO2010080531A1 (en) * 2008-12-17 2010-07-15 Novozymes North America, Inc. Methods for enzymatic modification
JP2013520226A (en) * 2010-02-19 2013-06-06 テマセク ポリテクニック Substrate for immobilizing functional substance and method for producing the same
JP2013035886A (en) * 2011-08-03 2013-02-21 Asahi Organic Chemicals Industry Co Ltd Lignin, composition containing the lignin and method for producing the lignin
JP2013035885A (en) * 2011-08-03 2013-02-21 Asahi Organic Chemicals Industry Co Ltd Lignin, composition containing lignin and method for producing the lignin
CN111036052A (en) * 2019-12-27 2020-04-21 武汉宝绿环保科技有限公司 Process method for treating indoor formaldehyde pollution

Also Published As

Publication number Publication date
JP2548240B2 (en) 1996-10-30

Similar Documents

Publication Publication Date Title
US8496123B2 (en) Process for cross-linking cellulose ester membranes
Cuatrecasas et al. [31] Affinity chromatography
US4352884A (en) Carrier having acrylate copolymer coating for immobilization of bioactive materials
CA1056746A (en) Biologically active membrane material
US4169804A (en) Magnetically responsive composite microparticle
US4269605A (en) Method and kit for separation of glycoproteins
Hixson Jr et al. Affinity chromatograpy: Purification of bovine trypsin and thrombin
Bı́lková et al. Oriented immobilization of galactose oxidase to bead and magnetic bead cellulose and poly (HEMA-co-EDMA) and magnetic poly (HEMA-co-EDMA) microspheres
JP2008156617A (en) Resin for chromatograph and method for using the same
JPH01121342A (en) Immobilized lignin composite and use thereof
Jiro et al. Use of immobilized enzymes in automated clinical analysis: determination of uric acid and glucose using immobilized enzymes in column form
US4523997A (en) Affinity chromatography matrix with built-in reaction indicator
OH et al. Immobilized condensed tannins and their interaction with proteins
AU8173387A (en) A novel immunoaffinity purification system
CN109248668B (en) Adsorbent for removing LDL (low-density lipoprotein) by blood extracorporeal circulation, preparation method thereof and perfusion apparatus
WO1994015951A1 (en) Affinity purification by the use of a complexed ligand
EP0186347B1 (en) Method for producing high-active biologically efficient compounds immobilized on a carrier
US10508297B2 (en) Method for immobilization of glucuronidase enzymes for the detection of products derived from glucuronide compounds
JPS6155415B2 (en)
JPH02236153A (en) Permselective membrane and electrode using the same
US20060121559A1 (en) Saccharide composition purification instrument
Knežević-Jugović et al. Covalent immobilization of enzymes on Eupergit® supports: Effect of the immobilization protocol
CA1316858C (en) Method and device for attachment of biologically useful materials to a solid phase
JPH0634633A (en) Hen's egg antibody fixation carrier and its production
AU2001292104B2 (en) Selective binding materials