JPH01120877A - Buffer material - Google Patents

Buffer material

Info

Publication number
JPH01120877A
JPH01120877A JP62278222A JP27822287A JPH01120877A JP H01120877 A JPH01120877 A JP H01120877A JP 62278222 A JP62278222 A JP 62278222A JP 27822287 A JP27822287 A JP 27822287A JP H01120877 A JPH01120877 A JP H01120877A
Authority
JP
Japan
Prior art keywords
superconductor
area
buffer material
alleviate
employed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62278222A
Other languages
Japanese (ja)
Inventor
Toshiharu Inoue
井上 俊春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP62278222A priority Critical patent/JPH01120877A/en
Publication of JPH01120877A publication Critical patent/JPH01120877A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vibration Prevention Devices (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To easily apply a buffer material to the case of a large size, a large area and a continuous length and to improve universality without limiting with the shape and the area of an installation surface by composing the material employed to prevent various units from colliding with an equipment or to alleviate its impact of a superconducting oxide. CONSTITUTION:A superconductor is employed as a material of expecting to prevent a collision and alleviate its impact due to a magnetic repelling force. That is, complete diamagnetism or Meissner effect exhibited in case that the superconducting material is at a critical temperature (Tc) or lower is applied. Accordingly, when the superconductor is disposed at one side, a pole disposed oppositely thereto may be any of N- and S-poles, which are not strictly necessarily disposed oppositely, but a magnetic force of arbitrary direction may be sufficient. Then, a magnet or a solenoid 2 is so provided at the end of a moving body as to face oppositely to a buffer material 1. Thus, the cost of increasing its size, area and length can be reduced.

Description

【発明の詳細な説明】 [技術分野] 本発明は、種々の装置や機器の衝突防止あるいは衝撃緩
和のために用いられる緩衝材に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a cushioning material used for collision prevention or shock mitigation of various devices and equipment.

[従来技術] 従来衝撃を緩和する目的でもって磁石のN極又はS極の
いずれかを互いに対向させ、近接距離における磁気反撥
力で衝突を防ぐ、もしくは衝撃をやわらげる効果を出し
ている。この方法においては磁力の強さに限度があるこ
と、強力の磁石はコスト高であること、大型大面積長尺
の物体あるいは装置部品に対してはコスト高は勿論のこ
と磁石の製作や磁力による他部品への障害の点で害も現
れることなどの問題があった。
[Prior Art] Conventionally, for the purpose of alleviating impact, either the N or S poles of magnets are opposed to each other, and the magnetic repulsion at close distances has the effect of preventing collisions or softening the impact. In this method, there is a limit to the strength of the magnetic force, strong magnets are expensive, and for large, large-area, long objects or equipment parts, it is not only expensive, but also due to the production of the magnet and the magnetic force. There were problems such as harm caused by interference with other parts.

[目 的] 本発明は、従来技術の上聞問題点を解消し、衝突防止と
衝撃緩和のための高性能な緩衝材を提供することを目的
としている。
[Objective] An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a high-performance cushioning material for collision prevention and impact mitigation.

[構 成] 上記目的を達成するための本発明の構成は、超電導酸化
物で構成する緩衝材である。
[Structure] The structure of the present invention for achieving the above object is a buffer material made of superconducting oxide.

すなわち、本発明においては基本的に磁気反撥力による
衝突防止と衝撃緩和を期待し、その材料として超電導体
を用いるものである。すなわち超電導材が臨界温度(T
c)以下の温度で示す完全反磁性またはマイスナー効果
を応用するものである。したがって、従来の材料に比較
して本材料を用いることの利点としては1)超電導体が
一方にある時、これに対する磁極(以下対極と略称する
)は、N極、S極のいずれであっても良い。さらにNあ
るいはSを厳密に対向させる必要はなく、任意の向きの
磁力で充分である。第1図に示すように、緩衝材1に対
向するように、磁石またはソレノイド2を移動体の先端
部に備えればよい。
That is, the present invention basically uses a superconductor as a material in hopes of preventing collisions and mitigating shocks through magnetic repulsion. In other words, the superconducting material reaches the critical temperature (T
c) It applies perfect diamagnetism or the Meissner effect shown at the following temperatures. Therefore, the advantages of using this material compared to conventional materials are: 1) When the superconductor is on one side, the magnetic pole (hereinafter referred to as the counter pole) for this can be either the N pole or the S pole. Also good. Furthermore, it is not necessary to strictly oppose N or S, and magnetic force in any direction is sufficient. As shown in FIG. 1, a magnet or a solenoid 2 may be provided at the tip of the moving body so as to face the buffer material 1.

2)対極の磁力の発生源として通電したソレノイドを用
いることができるのはもちろんである。
2) Of course, an energized solenoid can be used as the source of the magnetic force of the opposite pole.

3)上記l)の構成によって大型・大面積・長尺化が低
コストで実現できる。
3) With the configuration l) above, large size, large area, and long length can be realized at low cost.

ところで、上記超電導酸化物においてその組成がR,X
SZ、D、Aからなるような化合物(R,X5ZSD、
A)=R,X−Z、Da A。
By the way, the composition of the superconducting oxide mentioned above is R,
Compounds consisting of SZ, D, A (R, X5ZSD,
A) = R, X-Z, Da A.

なる超電導緩衝材 ただし、 RはSc、YSLaおよびランタン族の元素、XはBa
、Sr、Caなどの■族の元素、ZはCuなどの遷移金
属元素、 Dは0などの■族カルコゲン元素、 AはB、C,N、Fの元素 であって各々は各グループ内の2種以上の元素を同時に
含有する場合があり得る。
A superconducting buffer material, where R is Sc, YSLa, and a lanthanum group element, and X is Ba.
, Sr, Ca, etc., Z is a transition metal element such as Cu, D is a group II chalcogen element such as 0, A is an element of B, C, N, and F, each of which is an element in each group. There may be cases where two or more types of elements are contained at the same time.

更に、上記RがY、XがBa%ZがCu5DがOであッ
テ、γが1.0、Xが1.4〜2.1S22.4〜3.
2、δが 5.0から9.0、0.5〉α〉0.0であ
るような緩衝材が特に好ましい。
Further, R is Y, X is Ba%, Z is Cu5D, O is γ, γ is 1.0, and X is 1.4 to 2.1S22.4 to 3.
2. A buffer material in which δ is 5.0 to 9.0 and 0.5>α>0.0 is particularly preferred.

以下本発明を具体的に説明する。The present invention will be specifically explained below.

まず超伝導体である化合物(R,X5ZSD。First, a compound that is a superconductor (R, X5ZSD.

A)においてRがy、xがBa5ZがCu、Dが0であ
るような場合には以下のようにして作ることができる。
In A), when R is y, x is Ba5Z is Cu, and D is 0, it can be produced as follows.

原料としてY2O3、CuO1BaCOaの微粉末(粒
径10μm以下)を重量化2.73.7.71.9.5
6テ良く混合し、約950”Cの炉中、空気雰囲気下で
10時間にわたり仮焼した。室温まで徐冷し、粒径約3
0μm以下の微粉末に粉砕した後充分に混合をおこなっ
た。
As raw materials, Y2O3, CuO1BaCOa fine powder (particle size 10 μm or less) is weighed 2.73.7.71.9.5
The mixture was well mixed and calcined for 10 hours in an air atmosphere in a furnace at about 950"C. Slowly cooled to room temperature and the particle size was about 3.
After pulverizing into a fine powder of 0 μm or less, the mixture was thoroughly mixed.

諸用途のために所望の形状とするためには、この微粉末
を任意の金型でもって約30kgr相当の圧力で加圧成
形をおこなった後、上記と同じ雰囲気・温度・時間でも
って焼成をおこなう。
In order to form the desired shape for various uses, this fine powder is pressure-molded using an arbitrary mold at a pressure equivalent to about 30 kgr, and then fired in the same atmosphere, temperature, and time as above. Let's do it.

これらプロセス等に関する初期の断片的記述は、以下の
文献にも見られる。
Early fragmentary descriptions of these processes can also be found in the following literature:

■ C3旧chcl and B、Rabcau、Re
v、Chimle旧nera121.407(+984
)。
■ C3 old chcl and B, Rabcau, Re
v, Chimle old nera121.407 (+984
).

■  J、G、l3erdnorz  and  K、
A、Muller、Z、Phys。
■ J, G, l3erdnorz and K,
A, Muller, Z, Phys.

B  64.+89(1988)。B 64. +89 (1988).

■ X、に、Wu、J、R,^5hburn、C,N、
Torng、P、Il、IIor。
■ X, Ni, Wu, J, R, ^5hburn, C, N,
Torng, P, Il, IIor.

1?、L、Meng、L、Gao、Z、J、IIuan
g、Y、Q、Wang  andC0讐、Chu、Ph
ys、Rev、Lett、58.9011(1987)
1? , L., Meng, L., Gao, Z., and J., IIuan.
g, Y, Q, Wang andC0en, Chu, Ph
ys, Rev. Lett, 58.9011 (1987)
.

別の製法としては該化合物を仮焼前あるいは仮焼後の状
態にある粉体について、アルコールや水溶性ポリマーな
どのいわゆるバインダー中に分散させ、任意の形状に成
型後、前述のような条件で焼成することによっても得ら
れる。
Another manufacturing method is to disperse the compound in a powder state before or after calcination in a so-called binder such as alcohol or a water-soluble polymer, mold it into an arbitrary shape, and then process it under the conditions described above. It can also be obtained by firing.

またの方法としては例えばスクリーン印刷法のような湿
式法、スパッタリング法、分子線エピタキシャル法、プ
ラズマ溶射法などによることもできる。これらの方法に
おいては基板の種類・性状を選択することによっていわ
ゆるエピタキシー効果により、生成物の性能を高めるこ
とも可能になる。また生成物は上述の焼成条件のもと、
さらに熱処理をほどこすことによって特性を改善できる
Alternatively, a wet method such as a screen printing method, a sputtering method, a molecular beam epitaxial method, a plasma spraying method, etc. can also be used. In these methods, by selecting the type and properties of the substrate, it is possible to improve the performance of the product due to the so-called epitaxy effect. In addition, the product was produced under the above-mentioned calcination conditions.
Further, the properties can be improved by applying heat treatment.

以上は超電導体が化合物(Y、Ba、Cu、0)である
場合を述べたが超伝導体のTcなど諸特性を改浮するこ
とを目的として、他種の元素を付加する場合がある。Y
で代表されるRとしてはSc、、Laなどのランタン族
の元素、Baで代表されるXとしてはS「、Caなど■
族の元素、ZとしてはCuの他遷移金属元素、DはOの
他■族カルコゲン元素、AとしてはB1C5N5Fの元
素を各々のグループで単数あるいは複数の元素を任意の
瓜だけ付加す本ものである。これらは原料物質の段階で
混合されても良いし、焼成中あるいは焼成後、拡散や打
込みなどの方法によっても達成される。
The case where the superconductor is a compound (Y, Ba, Cu, 0) has been described above, but other types of elements may be added for the purpose of improving various properties such as Tc of the superconductor. Y
R, represented by Sc, is a lanthanum group element such as La, and X, represented by Ba, is S, Ca, etc.
Group elements, Z is Cu and other transition metal elements, D is O and group II chalcogen elements, and A is B1C5N5F elements. be. These may be mixed at the raw material stage, or may be achieved by methods such as diffusion or implantation during or after firing.

以上のようにして作製された超伝導性酸化物はバルクあ
るいは薄膜の状態で緩衝材として設置したい個所に置く
ことができる。例えば対極として磁力あるいはソレノイ
ドを有するような広義の移動体があって、それに対峙す
るように置かれるところの障壁・移動限界を定めるスト
ッパー等の対向面であっても良い。
The superconducting oxide produced as described above can be placed in the form of a bulk or thin film at a desired location as a buffer material. For example, there may be a moving body in a broad sense such as a magnetic force or a solenoid as a counter pole, and an opposing surface such as a barrier or a stopper that defines a limit of movement may be placed to face it.

以下、実施例によって本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例1 障壁面50X 50 (■)の全面にわたり上記化合物
を厚さ 2■に作製した。障壁を液体窒素でもって77
Kに冷却し、超伝導体の温度をTc以下の85にとした
Example 1 The above compound was prepared to a thickness of 2 mm over the entire barrier surface of 50×50 (■). Using liquid nitrogen as a barrier77
The temperature of the superconductor was brought to 85°C, which is below Tc.

一方質量150grの台車の先端に直径30m5、厚さ
 5eeのNEOMAX磁石をはり付けた。磁石の側を
先頭に障壁へ向けて3G (sm/ 5ee)の速度で
台車を移動させた時、台車は1■の距離まで障壁に近づ
いたものの衝突することはなかった。
On the other hand, a NEOMAX magnet with a diameter of 30 m5 and a thickness of 5 ee was attached to the tip of a cart with a mass of 150 gr. When the cart was moved at a speed of 3G (sm/5ee) toward the barrier with the magnet side in the lead, the cart approached the barrier by a distance of 1cm, but did not collide.

また同種の実験はソレノイドを設置した台車についても
おこなうことができた。この場合はさらにソレノイドの
励磁電流値を台車の重量に応じて加減し、しかも、別に
測定した壁から距離をその電流値にフィードバックする
ことによって任意の距離を保つことができた。
Similar experiments could also be conducted on a trolley equipped with a solenoid. In this case, it was possible to maintain an arbitrary distance by adjusting the excitation current value of the solenoid according to the weight of the trolley and feeding back the separately measured distance from the wall to the current value.

本発明はまたキャリッジへ応用できる。その場合を第2
図に示す。さらに上述の台車あるいは移動体のfff 
mにかかわらず、第3図に示した車両のようなより大き
な移動体にも適用できることはいうまでもない。
The invention can also be applied to carriages. In that case, the second
As shown in the figure. Furthermore, fff of the above-mentioned trolley or moving body
Regardless of m, it goes without saying that the invention can also be applied to larger moving bodies such as the vehicle shown in FIG.

[効 果] 以上説明したように本発明によって緩衝部分の構造が簡
単化されると共に緩衝の範囲も大型、大面積、長尺の場
合にも容易に適用でき、設置面の形状・面積などに制限
されず汎用が可能である。
[Effects] As explained above, the present invention simplifies the structure of the buffer part, and the range of buffering can be easily applied to large-sized, large-area, and long-length cases, and the shape and area of the installation surface can be adjusted. It is not limited and can be used for general purposes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明図、 第2図および第3図は本発明の詳細な説明図である。 ■・・・緩衝材、2・・・磁力またはソレノイド、3・
・・移動体、4・・・駆動軸。
FIG. 1 is a detailed explanatory diagram of the present invention, and FIGS. 2 and 3 are detailed explanatory diagrams of the present invention. ■...Buffer material, 2...Magnetic force or solenoid, 3.
... Moving body, 4... Drive shaft.

Claims (1)

【特許請求の範囲】[Claims]  超電導性酸化物で構成することを特徴とする緩衝材。A buffer material characterized by being composed of superconducting oxide.
JP62278222A 1987-11-05 1987-11-05 Buffer material Pending JPH01120877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62278222A JPH01120877A (en) 1987-11-05 1987-11-05 Buffer material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62278222A JPH01120877A (en) 1987-11-05 1987-11-05 Buffer material

Publications (1)

Publication Number Publication Date
JPH01120877A true JPH01120877A (en) 1989-05-12

Family

ID=17594314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62278222A Pending JPH01120877A (en) 1987-11-05 1987-11-05 Buffer material

Country Status (1)

Country Link
JP (1) JPH01120877A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102582544A (en) * 2012-02-24 2012-07-18 刘陈英 Method for preventing means of transportation from colliding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102582544A (en) * 2012-02-24 2012-07-18 刘陈英 Method for preventing means of transportation from colliding

Similar Documents

Publication Publication Date Title
KR101624245B1 (en) Rare Earth Permanent Magnet and Method Thereof
US10186374B2 (en) Manufacturing Nd—Fe—B magnets using hot pressing with reduced dysprosium or terbium
CN1265401C (en) High performance iron-rare earth-boron-refractory-cobalt nanocomposites
WO1988009312A1 (en) Superconductors and methods of making same
US20210134497A1 (en) Fine grain structures for tough rare earth permanent magnets
US20130271249A1 (en) Magnetic body
CN1057630C (en) Magnetically anisotropic spherical powder
JP5643355B2 (en) Manufacturing method of NdFeB sintered magnet
US5508253A (en) REBa2 Cu3 O7-y type oxide superconductive material having high critical current density and process for preparation thereof
Rieger et al. Nd–Fe–B permanent magnets (thick films) produced by a vacuum-plasma-spraying process
CN104043834A (en) Manufacture of ND-Fe-B magnet with reduced Dy or Tb by employing hot pressing
JPH0558626A (en) Oxide superconductor and its production
US20140085022A1 (en) Synthesis of Magnetic Composites
US5395820A (en) Oxide superconductor and process for producing the same
Yoshikawa et al. Radially oriented high energy product Nd-Fe-B ring magnets
JPH01120877A (en) Buffer material
JP2546989B2 (en) Permanent magnet with excellent oxidation resistance
US4484995A (en) Thermally controlled sputtering of high anisotropy magnetic material
JPH06219736A (en) Superconductor
JP2001114576A (en) Joined body and oxide superconductor used therein
Villas-Boas et al. Coercivity and magnetic viscosity in Nd80Fe15B5
JP3283691B2 (en) High damping oxide superconducting material and method of manufacturing the same
JP2636258B2 (en) Manufacturing method of superconducting material
JP2001217109A (en) Magnet composition and bonded magnet using the same
KR0174385B1 (en) Process for preparing the higg temperature superconductor having anisotropy