JPH01120800A - Synchrotron radiation generating device and its assembly - Google Patents

Synchrotron radiation generating device and its assembly

Info

Publication number
JPH01120800A
JPH01120800A JP27575587A JP27575587A JPH01120800A JP H01120800 A JPH01120800 A JP H01120800A JP 27575587 A JP27575587 A JP 27575587A JP 27575587 A JP27575587 A JP 27575587A JP H01120800 A JPH01120800 A JP H01120800A
Authority
JP
Japan
Prior art keywords
built
pump
pump chamber
deflection section
charged particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27575587A
Other languages
Japanese (ja)
Inventor
Takashi Ikeguchi
池口 隆
Manabu Matsumoto
学 松本
Shinjiro Ueda
上田 新次郎
Tadashi Sonobe
園部 正
Tatsu Murashita
達 村下
Satoshi Ido
井戸 敏
Kazuo Kuroishi
黒石 一夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Service Engineering Co Ltd
Hitachi Ltd
Nippon Telegraph and Telephone Corp
Original Assignee
Hitachi Service Engineering Co Ltd
Hitachi Ltd
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Service Engineering Co Ltd, Hitachi Ltd, Nippon Telegraph and Telephone Corp filed Critical Hitachi Service Engineering Co Ltd
Priority to JP27575587A priority Critical patent/JPH01120800A/en
Publication of JPH01120800A publication Critical patent/JPH01120800A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To make it possible to insert or take out an integrated pump without decomposition by extending one end of an integrated pump chamber on the inner circumferential side of a duct to the inside in the circumferential direction to be separated from a deflection beam duct. CONSTITUTION:An integrated pump chamber 3 partitioned by a conductive slit 7 is provided on the inner circumferential side of a deflection part beam duct 1, and a guide 12 on a circular arc is provided on the base of the integrated pump chamber, while the integrated pump 10 is fixed on the upper surface of an insulator 11. Further, the integrated pump chamber 3 is separated from a deflection part beam duct 1 at the end part for being extended toward the inner circumferential side so as to be connected to the circular integrated pump insertion port 2. The integrated pump 10 is linear, but the guide 12 on the underside in the integrated pump chamber and the guide on the underside of the insulator 11 are made circular. Thereby, insertion into the integrated pump chamber and conversely pulling out from the integrated pump chamber can be easily performed without decomposing an electromagnet or the like.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はシンクロトロン放射光発生装置(以下、SOR
装置という、)、及びその組立方法に係り。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a synchrotron radiation light generating device (hereinafter referred to as SOR).
), and its assembly method.

特に、工業用小形SOR装置において、組込ポンプの保
守性向上に好適な真空ダクト構造を改良したSOR装置
、及びその組立方法に関する。
In particular, the present invention relates to an SOR device with an improved vacuum duct structure suitable for improving the maintainability of a built-in pump in a small industrial SOR device, and a method for assembling the same.

〔従来の技術〕[Conventional technology]

従来、SOR装置用組込ポンプ室の構造については、ニ
ュークリア インストルメンツ アンドメソッド 17
7 (1980年)第111頁から第115頁(nuc
lear Instruments and Meth
ods177 (1980)ppH1〜115)におい
て論じられている。
Conventionally, regarding the structure of the built-in pump chamber for SOR equipment, Nuclear Instruments and Methods 17
7 (1980) pp. 111-115 (nuc
ear instruments and meth
ods177 (1980) ppH1-115).

すなわち、組込ポンプ室はその両端が偏向部ビームダク
トと同一フランジに接続しており、しかも、荷電粒子ビ
ーム偏向角の小さい偏向部ビームダクトには、SOR取
出しダクトが1個だけ設けられている。このため偏向部
ビームダクト両側のフランジで直線部ビームダクトと分
離し、組込ポンプが挿入されている偏向部ビームダクト
を、偏向部電磁石の磁極間隙から引出すことによって、
組込ポンプを外部に取出すことができる。
That is, both ends of the built-in pump chamber are connected to the same flange as the deflection section beam duct, and in addition, only one SOR extraction duct is provided in the deflection section beam duct with a small charged particle beam deflection angle. . For this purpose, the deflection section beam duct is separated from the straight section beam duct by flanges on both sides, and the deflection section beam duct, in which the built-in pump is inserted, is pulled out from the magnetic pole gap of the deflection section electromagnet.
The built-in pump can be taken out.

【発明が解決しようとする問題点〕[Problem that the invention attempts to solve]

SOR装置を小型化して工業用装置とする場合、製作コ
ストを低減するためには、SOR光を取出す偏向部を集
中して配置することになる。
When downsizing the SOR device to make it into an industrial device, in order to reduce manufacturing costs, the deflection portions for extracting the SOR light must be arranged in a concentrated manner.

たとえば、SOR装置を2ケ所の直線部と2ケ所の偏向
部で構成するとした場合、偏向部1ケ所で荷電粒子ビー
ム軌道を1800曲げることになり、1偏向部に複数本
のSOR取出しダクトを設ける必要がある。
For example, if an SOR device is configured with two straight parts and two deflection parts, one deflection part will bend the charged particle beam trajectory by 1800 degrees, and one deflection part will have multiple SOR extraction ducts. There is a need.

この場合、従来構造の偏向部ビームダクトでは、偏向部
ビームダクトにSOR取出しダクトが複数本接続される
ことになるため、偏向部電磁石の磁極間隙から、偏向部
ビームダクトを直接引き出すことはできないという問題
がある。その結果、組込ポンプを交換・点検するには、
偏向部電磁石、鉄心、電磁石冷却系統等を順次分解する
必要があった。
In this case, in the conventional structure of the deflection section beam duct, multiple SOR extraction ducts are connected to the deflection section beam duct, so the deflection section beam duct cannot be directly pulled out from the magnetic pole gap of the deflection section electromagnet. There's a problem. As a result, to replace or inspect the built-in pump,
It was necessary to sequentially disassemble the deflection section electromagnet, iron core, electromagnet cooling system, etc.

さらに、従来は1偏向部に1組の組込ポンプが配置され
ていたが、偏向部の偏向角が180°と大きくなった場
合には、偏向部ビームダクト端部のフランジから組込ポ
ンプを取り出せないので、偏向部ビームダクトそのもの
を分解しなければ組込ポンプを交換できないという問題
があった。
Furthermore, conventionally, one set of built-in pumps was arranged in one deflection section, but when the deflection angle of the deflection section becomes as large as 180°, the built-in pump can be installed from the flange at the end of the deflection section beam duct. Since it cannot be removed, there is a problem in that the built-in pump cannot be replaced without disassembling the deflection section beam duct itself.

本発明の目的は、組込みポンプの挿入、取出しが偏向部
ビームダクトや電磁石、鉄心、電磁石冷却系統を分解す
ることなく行え、偏肉部組込ポンプの保守性が向上する
シンクロトロン放射光発生装置を提供するにある。
An object of the present invention is to provide a synchrotron radiation generator in which the built-in pump can be inserted and removed without disassembling the deflection section beam duct, electromagnet, iron core, or electromagnet cooling system, and the maintainability of the built-in pump in the uneven thickness section is improved. is to provide.

〔問題点を解決するための手段〕[Means for solving problems]

前記目的は、偏向部ビームダクト内周側の組込ポンプ室
を従来のように偏向部ビームダクト端部のフランジに直
接接続するのではなく、組込ポンプ室と荷電粒子ビーム
偏向部との間をスリットにより仕切り、前記組込ポンプ
室の円周方向端部の少なくとも一側の端部を前記荷電粒
子ビーム偏向部の内周より内方に延在させたSOR装置
、及びこの延在した部分から組込ポンプ室に、複数組の
組込ポンプを絶縁体に固定し順次挿入すると共に、この
挿入過程で組込ポンプ間の電極を接続するSOR装置の
組立方法とすることにより達成される・ 〔作用〕 上記本発明によれば、偏向部ビームダクト内周側の組込
ポンプ室の少なくとも一端を円周方向内側に延長して偏
向ビームダクトと分離したことにより、偏向部ビームダ
クトや電磁石・鉄心・電磁石冷却系統を分解することな
く、組込ポンプを挿入または取出すことができる。その
結果1組込ポンプの保守性が向上する。
The purpose is to connect the built-in pump chamber on the inner peripheral side of the deflection section beam duct directly to the flange at the end of the deflection section beam duct, as in the conventional case, but to connect the built-in pump chamber and the charged particle beam deflection section between the built-in pump chamber and the charged particle beam deflection section. partitioned by a slit, and at least one end of the circumferential end of the built-in pump chamber extends inward from the inner periphery of the charged particle beam deflection section, and the extended portion This is achieved by an SOR device assembly method in which multiple sets of built-in pumps are fixed to an insulator and sequentially inserted into the built-in pump chamber, and electrodes between the built-in pumps are connected during this insertion process. [Function] According to the present invention, at least one end of the built-in pump chamber on the inner peripheral side of the deflection section beam duct is extended inward in the circumferential direction and separated from the deflection beam duct, so that the deflection section beam duct and the electromagnet/ The built-in pump can be inserted or removed without disassembling the core/electromagnetic cooling system. As a result, the maintainability of the single built-in pump is improved.

〔実施例〕〔Example〕

次に、本発明に係るSOR装置の実施例を説明する。 Next, an embodiment of the SOR device according to the present invention will be described.

第1図に工業用小型SOR装置の偏向部を示す。Figure 1 shows the deflection section of a small industrial SOR device.

第1図において、1は偏向部ビームダクトであり。In FIG. 1, reference numeral 1 denotes a beam duct of a deflection section.

一端から荷電粒子ビームが入射し、他端から荷電粒子ビ
ームが出る。偏向部ビームダクト1の両端は、断面形状
が同一の直線部ビームダクト4a。
A charged particle beam enters from one end and exits from the other end. Both ends of the deflection section beam duct 1 are straight section beam ducts 4a having the same cross-sectional shape.

4bに接続している。Connected to 4b.

偏向部ビームダクト1の外周側には、3本のSOR取出
しダクト5が接続され、内周側にはスリット7を介して
組込ポンプ室3が設けられている。
Three SOR extraction ducts 5 are connected to the outer circumferential side of the deflection section beam duct 1, and a built-in pump chamber 3 is provided through a slit 7 to the inner circumferential side.

組込ポンプ室3は、端部で偏向部ビームダクト1と分離
して内周側に延びており、円弧状の組込ポンプ挿入ポー
ト2に接続されている。
The built-in pump chamber 3 is separated from the deflection section beam duct 1 at its end, extends inward, and is connected to the arc-shaped built-in pump insertion port 2.

荷電粒子ビームの軌道6は、偏向部ビームダクト1内で
偏肉部電磁石(図示せず)により円軌道を描く、スリッ
ト7は荷電粒子ビームの軌道6が、スリット7と偏向部
ビームダクト1の外周壁との中間になるよう配置されて
いる。
The trajectory 6 of the charged particle beam draws a circular trajectory within the deflection section beam duct 1 by an uneven thickness section electromagnet (not shown). It is placed midway between the outer wall and the outer wall.

理解を深めるために偏向部ビームダクト1の断面形状を
第2図を用いて説明する。第2図に示す如く、偏向部ビ
ームダクト1の内周側には、導電性のスリット7で仕切
られた組込ポンプ室3が設けられている0組込ポンプ室
の底面には、円弧上のガイド12が設けてあり、このガ
イド12奪絶縁体兼組込ポンプ挿入ガイドがはさみ込ん
でいる。
For better understanding, the cross-sectional shape of the deflection section beam duct 1 will be explained using FIG. 2. As shown in FIG. 2, a built-in pump chamber 3 partitioned by a conductive slit 7 is provided on the inner peripheral side of the deflection section beam duct 1. A guide 12 is provided, and the guide 12 is sandwiched between the insulator and built-in pump insertion guide.

本実施例では絶縁体11はセラミックス製であり、その
上面には組込ポンプ1oが固定されている0組込ポンプ
10は、第2図に示したように下面、両側とも絶縁体1
1で囲まれていることになる。
In this embodiment, the insulator 11 is made of ceramics, and the built-in pump 10, on which the built-in pump 1o is fixed, has an insulator 1 on its bottom and both sides, as shown in FIG.
It will be surrounded by 1.

組込ポンプ室3内を第3図を用いて更に詳しく説明する
。第3図に示す如く、組込ポンプ室3の下面には、2本
の円弧状ガイド12が設けられ。
The inside of the built-in pump chamber 3 will be explained in more detail with reference to FIG. As shown in FIG. 3, two arcuate guides 12 are provided on the lower surface of the built-in pump chamber 3.

このガイド12上に絶縁体11が配置されている。、組
込ポンプ1oはその両端で絶縁体11に固定されており
1組込ポンプの電極間はリード線13で接続されている
An insulator 11 is arranged on this guide 12. The built-in pump 1o is fixed to an insulator 11 at both ends thereof, and the electrodes of one built-in pump are connected by a lead wire 13.

次に1本発明の動作にもいて説明する。Next, the operation of the present invention will be explained.

第1図において、荷電粒子ビームが直線部ビームダクト
4aから偏向部ビームダクト1に入射した場合、ビーム
ダクトの断面形状は異なるが、スリット7が偏向部ビー
ムダクト1内に設けられているので、電気的には断面形
状は同一と見なせる。
In FIG. 1, when the charged particle beam enters the deflection section beam duct 1 from the straight section beam duct 4a, although the cross-sectional shape of the beam duct is different, since the slit 7 is provided in the deflection section beam duct 1, Electrically, the cross-sectional shapes can be considered to be the same.

従って、荷電粒子ビームの軌道6は組込ポンプ室3の端
部を円周方向内側に円弧上に延ばしても不安定になるこ
とはない。
Therefore, the trajectory 6 of the charged particle beam will not become unstable even if the end of the built-in pump chamber 3 is extended inward in the circumferential direction on an arc.

組込ポンプ10としては、イオンポンプ’<r p)や
非蒸発型ゲッタポンプ(UEG)が用いられ、いずれも
電極を有しており、導電性のダクト壁から分離し絶縁す
る必要があるが、本実施では絶縁体11で組込ポンプ1
0を囲っであるので、短絡することはない。
As the built-in pump 10, an ion pump'<r p) or a non-evaporative getter pump (UEG) is used, both of which have electrodes and need to be separated and insulated from the conductive duct wall. In this implementation, the built-in pump 1 is
Since it is surrounded by 0, there will be no short circuit.

次に、組込ポンプ10の組立方法について説明する0組
込ポンプ室3の内周側の組込ポンプ挿入ボート2のフラ
ンジから、絶縁体11で囲まれている組込ポンプ10を
組込ポンプ室3の円弧状ガイド12にのせて内部に挿入
する0本実施例では組込ポンプ10は直線形状ではある
が、組込ポンプ室内下面のガイド12と絶縁体11下面
のガイドを円弧状にしであるので、組込ポンプ室への挿
入や逆に組込ポンプ室からの引出しを電磁石等を分解す
ることなく容易に行える。
Next, a method for assembling the built-in pump 10 will be explained. Next, from the flange of the built-in pump insertion boat 2 on the inner peripheral side of the built-in pump chamber 3, the built-in pump 10 surrounded by the insulator 11 is inserted into the built-in pump 10. In this embodiment, the built-in pump 10 has a linear shape, but the guide 12 on the lower surface of the built-in pump chamber and the guide on the lower surface of the insulator 11 can be made into an arc shape. Therefore, it can be easily inserted into the built-in pump chamber or withdrawn from the built-in pump chamber without disassembling the electromagnet or the like.

また、直線状の組込ポンプ10は複数組(本例では6組
)に分割されているので、偏向角が180゜にもおよぶ
偏向部ビームダクト1の内周部全域に挿込することがで
き、系内の圧力を超高真空に保てる。
In addition, since the linear built-in pump 10 is divided into a plurality of groups (six groups in this example), it can be inserted into the entire inner circumference of the deflection section beam duct 1 whose deflection angle is as high as 180 degrees. The pressure inside the system can be maintained at an ultra-high vacuum.

複数組に分割されている組込ポンプ1oの端部はリード
線13で接続されており、リード線13の端部は組込ポ
ンプ挿入ポート2の電流導入端子8から外部に取出す。
The ends of the built-in pump 1o, which are divided into a plurality of groups, are connected by lead wires 13, and the ends of the lead wires 13 are taken out from the current introduction terminal 8 of the built-in pump insertion port 2.

また、組込ポンプ10を分解する場合は、偏向部ビーム
ダクト1内周側に円弧状に組込ポンプ室3が延びている
ので、先に説明した組込ポンプ挿入ボート2の電流導入
端子8をはずし、リード線13を引張ることにより、電
磁石を分解することなく外部に取出すことができる。
In addition, when disassembling the built-in pump 10, since the built-in pump chamber 3 extends in an arc shape to the inner peripheral side of the deflection section beam duct 1, the current introduction terminal 8 of the built-in pump insertion boat 2 described earlier By removing the electromagnet and pulling the lead wire 13, the electromagnet can be taken out without disassembling it.

本実施例では、直線形状の組込ポンプ10を用いた場合
について説明したが1円弧状の組込ポンブを利用すれば
、組込ポンプの挿入、取出しが更に容易になる。
In this embodiment, a case has been described in which a linear built-in pump 10 is used, but if a one-arc shaped built-in pump is used, insertion and removal of the built-in pump becomes easier.

また、本例では組込ポンプ室3の端部2ケ所に電流導入
端子を設けているが、1ケ所の端部から2本の電流導入
端子8を取出し、他端に別置の真′空ポンプ10を取付
けることも可能である。この場合はスリット7で偏向部
ビームダクト1と仕切られている組込ポンプ室3の専用
粗引や、組込ポンプ故障時の排気に有効である。
In addition, in this example, current introduction terminals are provided at two ends of the built-in pump chamber 3, but two current introduction terminals 8 are taken out from one end, and a separate vacuum is connected to the other end. It is also possible to install a pump 10. In this case, it is effective for dedicated rough evacuation of the built-in pump chamber 3, which is partitioned from the deflection section beam duct 1 by the slit 7, and for exhausting air when the built-in pump fails.

〔発明の効果〕〔Effect of the invention〕

以上説明した、本発明のシンクロトロン放射光発生装置
、及びその組立方法によれば、偏肉部電磁石や鉄心等を
分解することなく、偏肉部組込ポンプを挿入し、取出す
ことができるので、組込ポンプの保守性が向上する効果
がある。
According to the synchrotron radiation generator and its assembly method of the present invention as described above, the pump built into the uneven thickness part can be inserted and taken out without disassembling the uneven thickness part electromagnet, iron core, etc. This has the effect of improving the maintainability of the built-in pump.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のシンクロトロン放射光発生装置の一実
施例を示す平面図、第2図は第1図のA−A断面図、第
3図は第1図の部分拡大図である。 1・・・偏向部ビームダクト、3・・・組込ポンプ室、
6・・・荷電粒子ビーム軌道、7・・・スリット、8・
・・電流導入端子、10・・・組込ポンプ、11・・・
絶縁体、萎2I27
FIG. 1 is a plan view showing an embodiment of the synchrotron radiation generating device of the present invention, FIG. 2 is a sectional view taken along line AA in FIG. 1, and FIG. 3 is a partially enlarged view of FIG. 1. 1... Deflection section beam duct, 3... Built-in pump chamber,
6... Charged particle beam trajectory, 7... Slit, 8...
...Current introduction terminal, 10...Built-in pump, 11...
Insulator, wil 2I27

Claims (1)

【特許請求の範囲】 1、荷電粒子ビーム偏向部の内周側に設けられた組込ポ
ンプ室に組込ポンプが配置されたシンクロトロン放射光
発生装置において、 前記組込ポンプ室と荷電粒子ビーム偏向部との間をスリ
ットにより仕切り、前記組込ポンプ室の円周方向端部の
少なくとも一側の端部を前記荷電粒子ビーム偏向部の内
周より内方に延在させたことを特徴とするシンクロトロ
ン放射光発生装置。 2、特許請求の範囲第1項記載の装置において、前記組
込ポンプ室の内側底面に円弧状のガイドを設けたことを
特徴とするシンクロトロン放射光発生装置。 3、特許請求の範囲第1項、または第2項記載の装置に
おいて、前記組込ポンプは円弧状であることを特徴とす
るシンクロトロン放射光発生装置。 4、特許請求の範囲第1項、第2項、または第3項記載
の装置において、前記組込ポンプは複数組の真空ポンプ
で構成されていることを特徴とするシンクロトロン放射
光発生装置。 5、特許請求の範囲第1項、第2項、第3項、または第
4項記載の装置において、前記組込ポンプ室の一側端部
に組込ポンプ用電源端子を設け、他側端部に組込ポンプ
を設けたことを特徴とするシンクロトロン放射光発生装
置。 6、特許請求の範囲第1項、第2項、第3項、第4項、
または第5項記載の装置において、前記組込ポンプ室は
荷電粒子ビーム偏向部の内周形状に沿つて円弧状に形成
されていることを特徴とするシンクロトロン放射光発生
装置。 7、荷電粒子ビーム偏向部の内周側に設けられ、この荷
電粒子ビーム偏向部とスリットにより仕切られている組
込ポンプ室の円周方向端部の少なくとも一側の端部を前
記荷電粒子ビーム偏向部の内周より内方に延在させ、こ
の延在した部分から組込ポンプ室に、複数組の組込ポン
プを絶縁体に固定し順次挿入すると共に、この挿入過程
で組込ポンプ間の電極を接続することを特徴とするシン
クロトロン放射光発生装置の組立方法。
[Scope of Claims] 1. In a synchrotron radiation light generating device in which a built-in pump is disposed in a built-in pump chamber provided on the inner peripheral side of a charged particle beam deflection section, the built-in pump chamber and the charged particle beam A slit partitions the charged particle beam from the deflection section, and at least one end of the circumferential end of the built-in pump chamber extends inward from the inner periphery of the charged particle beam deflection section. Synchrotron synchrotron radiation generator. 2. A synchrotron radiation generating device according to claim 1, characterized in that an arc-shaped guide is provided on the inner bottom surface of the built-in pump chamber. 3. A synchrotron radiation generating device according to claim 1 or 2, wherein the built-in pump has an arc shape. 4. A synchrotron radiation light generating device according to claim 1, 2, or 3, wherein the built-in pump is composed of a plurality of vacuum pumps. 5. The device according to claim 1, 2, 3, or 4, wherein a power supply terminal for the built-in pump is provided at one end of the built-in pump chamber, and the power terminal for the built-in pump is provided at one end of the built-in pump chamber; A synchrotron synchrotron radiation generator characterized by having a built-in pump in its section. 6.Claims 1, 2, 3, 4,
Alternatively, in the apparatus according to claim 5, the built-in pump chamber is formed in an arc shape along the inner peripheral shape of the charged particle beam deflection section. 7. At least one end of the circumferential end of the built-in pump chamber, which is provided on the inner peripheral side of the charged particle beam deflection section and is partitioned from the charged particle beam deflection section by a slit, is connected to the charged particle beam. It extends inward from the inner periphery of the deflection part, and from this extended part, multiple sets of built-in pumps are fixed to an insulator and inserted into the built-in pump chamber one after another, and during this insertion process, the built-in pumps are A method for assembling a synchrotron radiation light generating device, the method comprising: connecting electrodes of the synchrotron radiation generator.
JP27575587A 1987-11-02 1987-11-02 Synchrotron radiation generating device and its assembly Pending JPH01120800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27575587A JPH01120800A (en) 1987-11-02 1987-11-02 Synchrotron radiation generating device and its assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27575587A JPH01120800A (en) 1987-11-02 1987-11-02 Synchrotron radiation generating device and its assembly

Publications (1)

Publication Number Publication Date
JPH01120800A true JPH01120800A (en) 1989-05-12

Family

ID=17559941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27575587A Pending JPH01120800A (en) 1987-11-02 1987-11-02 Synchrotron radiation generating device and its assembly

Country Status (1)

Country Link
JP (1) JPH01120800A (en)

Similar Documents

Publication Publication Date Title
ATE90811T1 (en) HIGH FREQUENCY ION SOURCE.
KR19990028399A (en) Low Inductance Large Area Coils for Inductively Coupled Plasma Sources
JPS6280950A (en) Ion source
JPH02242600A (en) Apparatus for generating synchrotron radiant light
KR100488348B1 (en) Plasma process chamber and system
JPH07502862A (en) ion beam gun
TW202224505A (en) Linear accelerator assembly and ion implanter
JPH0384839A (en) Multistage acceleration method charged particle beam accelerating device
JPH01120800A (en) Synchrotron radiation generating device and its assembly
JP3945601B2 (en) Isochronous cyclotron
KR102667066B1 (en) Busbar assembly and motor having the same
JPS6134832A (en) Large aperture ion source
JP7321536B2 (en) Small motor-driven insulated electrostatic particle accelerator
JPS6250941B2 (en)
US11456085B2 (en) Cyclotron facility for producing radioisotopes
CN214588730U (en) Layered filament cathode structure and layered filament type Hall ion source
JPS62229700A (en) Radio frequency acceleration cavity
EP0238669A1 (en) Electron linear accelerator
JPH06283299A (en) Ion accelerator
JPS61225737A (en) Ion source electrode
JP2949654B2 (en) Electron storage ring
JP2019145404A (en) Particle accelerator
JP2801096B2 (en) Ion source
JP3104368B2 (en) Ion removal device and ion removal method
JPH09129152A (en) High-frequency ion source