JPH01119738A - Testing method of cemented carbide cutting tool by milling - Google Patents

Testing method of cemented carbide cutting tool by milling

Info

Publication number
JPH01119738A
JPH01119738A JP27807487A JP27807487A JPH01119738A JP H01119738 A JPH01119738 A JP H01119738A JP 27807487 A JP27807487 A JP 27807487A JP 27807487 A JP27807487 A JP 27807487A JP H01119738 A JPH01119738 A JP H01119738A
Authority
JP
Japan
Prior art keywords
cemented carbide
milling
cutting
cast iron
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27807487A
Other languages
Japanese (ja)
Inventor
Hidekazu Matsumoto
英一 松本
Toshio Nomura
俊雄 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP27807487A priority Critical patent/JPH01119738A/en
Publication of JPH01119738A publication Critical patent/JPH01119738A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to test a boundary damage of a throw away tip made of cemented carbide, by juxtaposing and combining an ordinary cast iron material and a cast iron material of which only the top surface part is made highly hard, and by using the material thus prepared as a material to be cut. CONSTITUTION:While JIS.FC 25 is used as an ordinary material 2, FC 25 of the same quality, of which a part from the surface to the depth of 2mm is made to be of prescribed hardness by induction hardening and tempering, is used as a hard-facing material 1. The respective widths of the ordinary material 2 and the hard-facing material 1 are adjusted by cutting or milling so that they are in a prescribed ratio (about 3:1) and the total thereof is 60mm. A material 6 obtained in this way is fixed by a machine vise 5, 5' and cut by a cutter having a plurality of edges 4. By this method, a boundary damage of a throw away tip made of cemented carbide can be tested.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、切削工具用超硬合金工具の切削特性を判定す
るための切削試験法に関するものであり、特にフライス
加工用工具の試験法を提供する。
Detailed Description of the Invention (a) Industrial Application Field The present invention relates to a cutting test method for determining the cutting characteristics of cemented carbide tools for cutting tools, and in particular to a test method for milling tools. I will provide a.

(ロ)従来技術の問題点 各種切削工具の切削特性を評価する方法としては従来は
試作工具によって実際の鋼、鋳鉄の鋼材(丸棒、角棒)
を切削条件を設定しその工具刃先の摩耗程度を測定、観
察することによって行われていた。また靭性を特に調べ
る場合は丸棒に溝を形成せしめたものを被削材として断
続切削を行っている。フライス切削においても本質的に
同じ方法によっていた。鋳鉄のフライス切削において、
超硬合金製スローアウェイチップの各種損傷、摩耗のう
ち境界損傷については格別の試験方法が無かった。
(b) Problems with conventional technology The conventional method for evaluating the cutting characteristics of various cutting tools was to use prototype tools to measure actual steel or cast iron steel materials (round bars, square bars).
This was done by setting cutting conditions and measuring and observing the degree of wear on the cutting edge of the tool. In addition, when particularly examining toughness, interrupted cutting is performed using a round bar with grooves formed as a workpiece. Essentially the same method was followed for milling. In milling cast iron,
Among the various types of damage and wear on cemented carbide indexable inserts, there was no specific test method for boundary damage.

第2図は、スローアウェイチップ刃先の損傷状態を模式
的に示すもので上の図が切刃4のすくい面のクレータ摩
耗(K7)を示し、下の図が逃げ面の損傷である。VB
が切刃平均摩耗量、VNが境界損傷を示す。フライス切
削においては、上述の境界損傷によって寿命に至ること
が多く、これは客先に使用する前に予めこれを生じせし
めて社内評価することができなかった。
FIG. 2 schematically shows the state of damage to the cutting edge of the indexable insert. The upper figure shows crater wear (K7) on the rake face of the cutting edge 4, and the lower figure shows damage to the flank face. VB
is the average wear amount of the cutting edge, and VN is the boundary damage. In milling, the above-mentioned boundary damage often leads to the end of service life, and it has not been possible to prevent this from occurring and evaluate it internally before using it at a customer's site.

この境界損傷の生成原因としては一般に次の2つが考え
られる。
There are generally two possible causes of this boundary damage:

■被削材の一部分が高硬度であり、超硬合金切削工具の
切刃がその高硬度の部分を切削する時に切刃の一部分が
欠損する。この際通常、高硬度の原因はチル化や加工硬
化によるものが殆んどであるため被削材の表面部のみが
高硬度であることが多く従って切刃の境界部にのみ欠損
を生ずる(欠損説)。
■A part of the workpiece material has high hardness, and when the cutting blade of the cemented carbide cutting tool cuts that hard part, a part of the cutting blade breaks off. In this case, the cause of high hardness is usually due to chilling or work hardening, so it is often the case that only the surface of the workpiece material is high hardness, and therefore defects occur only at the boundary of the cutting edge ( Deficit theory).

■境界部は切刃のその他の部分に比べると空気と常に接
触しているため酸化摩耗が進行しやすい(酸化段)。、
ここで従来の単純な被削材による切削試験では境界損傷
が生じないことから上記酸化段は鋳鉄フライス切削には
適用できないことになり、欠損説によって境界損傷が生
じると考えてよい。
■Compared to other parts of the cutting edge, the boundary area is in constant contact with air, so oxidation wear progresses more easily (oxidation stage). ,
Here, since boundary damage does not occur in conventional cutting tests using simple work materials, the above-mentioned oxidation stage cannot be applied to cast iron milling, and it can be considered that boundary damage occurs due to the defect theory.

従って高硬度の被削材を使用すれば良いが上記の理由に
より表面部のみ高硬度の被削材でないといけない。
Therefore, a work material with high hardness may be used, but for the above-mentioned reason, only the surface portion must be a work material with high hardness.

(ハ)問題点を解決するための手段 上記の開通点を解決するために、被削材として、上部表
面部のみ高硬度に調質した鋳鉄材と表面、内部とも低硬
度の通常の鋳鉄材を並置、複合したものを利用する。
(c) Means to solve the problem In order to solve the above-mentioned opening point, the work materials are cast iron that has been tempered to have high hardness only on the upper surface, and normal cast iron that has low hardness both on the surface and inside. Use the juxtaposition and combination of .

第1図は、本発明の方法を示す概念図であり、被削材6
は、表面硬化材1と通常材2とを合せてこれをマシンバ
イス5.5′で固定し、これを複数の切刃4を有するカ
ッター3にて切削するのである。
FIG. 1 is a conceptual diagram showing the method of the present invention.
In this method, the hardened surface material 1 and the ordinary material 2 are combined and fixed in a machine vise 5.5', and then cut with a cutter 3 having a plurality of cutting blades 4.

第3図は、第1図の被削材6のA−A断面図であり、7
が表面硬化部であり8が非熱処理部である。カッターが
1回転することにより、第1図被削材の斜線部を切削す
る。この際必ず表面硬化材も一部切削するごとになり、
何回転かするうちに、高硬度の部分に当る切刃の一部分
、すなわち境界部にのみ欠損を生ずる。
FIG. 3 is a sectional view taken along the line AA of the workpiece 6 in FIG.
8 is a surface hardened portion and 8 is a non-heat treated portion. By one rotation of the cutter, the shaded area of the workpiece in FIG. 1 is cut. At this time, it is necessary to cut a part of the hardened surface material.
After several rotations, only a portion of the cutting edge that corresponds to the hard part, that is, a boundary portion, is damaged.

この際、表面硬化材のみを被削材として切削しても切刃
に境界損傷を生じさせることは可能であるが、その際境
界部のみ損傷が激しく、境界部以外との損傷程度の差が
、客先での損傷状況に比べて大きい。そのため、客先で
の損傷状況に極力近くするためには表面硬化材と通常材
との比が1:3の割合にするのが適当である。
At this time, it is possible to cause boundary damage to the cutting edge even if only the hardened surface material is used as the work material, but in this case, only the boundary area is severely damaged, and there is a difference in the degree of damage from other areas. , which is large compared to the damage situation at the customer's site. Therefore, in order to approximate the damage situation at the customer's site as closely as possible, it is appropriate to set the ratio of surface hardening material to normal material at a ratio of 1:3.

又、高硬度材の巾aと通常材の巾すとの比b/aは20
以下がよく、これ以上だと、境界摩耗と逃げ面摩耗の差
がほとんどなくなり有意な境界損傷が発生しないので不
適である。
Also, the ratio b/a of the width a of high hardness material to the width of normal material is 20
The following is preferable; anything greater than this is unsuitable because the difference between boundary wear and flank wear becomes almost negligible and no significant boundary damage occurs.

又、高硬度材の表面硬さは、ロックウェル硬度で、35
〜50が適当である。HRc35未満では表面硬化材を
単独で被削材としても有意な境界損傷が発生しないため
であり、一方HRc50を越えると表面硬化材の製作段
階において、割れ等の欠損が生じ、被削材として安定な
特性のものを得るのが困難である。上記表面硬化材の製
作方法としては、種々の方法で可能であるが、種々検討
したところでは現状では高周波焼入れしたのち填戻しを
施す方法が、所定の硬度および硬化層深さが最も安定し
て得られることがわかった。
In addition, the surface hardness of the high-hardness material is 35 on the Rockwell hardness scale.
~50 is appropriate. This is because if the HRc is less than 35, no significant boundary damage will occur even if the hardened surface material is used alone as a workpiece material, whereas if the hardened surface material exceeds 50, defects such as cracks will occur during the manufacturing stage of the hardened surface material, making it unstable as a workpiece material. It is difficult to obtain one with such characteristics. Various methods can be used to produce the above-mentioned hardened surface material, but after various studies, the method of induction hardening and then backfilling is currently the most stable method for achieving a given hardness and hardened layer depth. I found out that I can get it.

次に実施例にもとづいて説明する。Next, an explanation will be given based on an example.

実施例1 JIS、Fe12を「通常材」とし、同材質のFe12
を高周波焼入れ、焼戻しして表面から2mmの深さまで
を所定の硬度としたものを「表面硬化材」とした。この
「通常材」および「表面硬化材」の巾の比が所定の比で
、かつその合計中が601となるようにそれぞれの材料
の巾を切断もしくはフライス加工によって調整した。
Example 1 JIS, Fe12 is a "normal material", and Fe12 of the same material
A "hardened surface material" was obtained by induction hardening and tempering to obtain a predetermined hardness from the surface to a depth of 2 mm. The width of each material was adjusted by cutting or milling so that the ratio of the widths of the "regular material" and the "hardened surface material" was a predetermined ratio and the total was 601.

以上のようにして得られた被削材を用いての条件でフラ
イス試験を行った。このとき、試験した工具は、JIS
、に15クラスの超硬合金と、KIOクラスの表面被覆
超硬合金の2材種である。
A milling test was conducted under the conditions using the work material obtained as described above. At this time, the tested tool was JIS
There are two types of materials: 15 class cemented carbide and KIO class surface coated cemented carbide.

試験の結果を第1表に示す。The test results are shown in Table 1.

m1表 ただし、VBは切刃平均摩耗量 VNは、境界損傷■実
施例2 F C2530x 25X 300 HRc20以下の
角材を高周波焼入れ、焼戻しして、表面から2mmの深
さまでの硬度をHRc40とした。次いで、30X 3
00の面と、その裏面をフライス切削により、2.5m
mずつ除去することにより、第3図に示すような断面硬
度を持つ高硬度材を作成した。この高硬度材を1本、お
よびHRc20以下の通常のF C2525x 25x
 300を3本第1図のようにフライス盤上でバイスで
はさんだ。これを、超硬合金製スローアウェイチップS
 P U N 120308を取りつけたカッターで切
削した。切削条件は、切削速度281m/ min、切
り込み3.5mm、送り 0.089mm /刃でスロ
ーアウェイチップは1枚のみ使用した。その結果、硬質
物質を被覆した超硬合金、被覆していない超硬合金(J
 I 5K10種)とも、境界部にそれぞれ1.2mm
、 1.3mmの境界損傷、またそれ以外の切れ刃には
それぞれ0.10mm。
m1 table, where VB is the average wear amount of the cutting edge and VN is the boundary damage ■Example 2 F C2530x 25X 300 A square piece of HRc20 or less was induction hardened and tempered to have a hardness of HRc40 from the surface to a depth of 2mm. Then 30X 3
2.5m by milling the 00 side and the back side.
A high hardness material having a cross-sectional hardness as shown in FIG. 3 was created by removing m increments. One piece of this high hardness material and a normal FC2525x 25x with HRc20 or less
Three pieces of 300 were placed in a vise on a milling machine as shown in Figure 1. This is the cemented carbide indexable tip S.
It was cut with a cutter equipped with PUN 120308. The cutting conditions were a cutting speed of 281 m/min, depth of cut of 3.5 mm, feed of 0.089 mm/tooth, and only one indexable insert was used. As a result, cemented carbide coated with hard material and cemented carbide without coating (J
I 5K10 types) 1.2mm each at the boundary
, 1.3mm boundary damage, and 0.10mm each on other cutting edges.

0、15mmの逃げ面摩耗を生じた。Flank wear of 0.15 mm occurred.

実施例3 実施例2と同材質、同サイズの角材を同様の方法でHR
c30としたものを作成した。そして、同様の工具、切
削条件で切削した所、硬質物質被覆超硬合金には、境界
部に0.5mmの境界損傷、それ以外の切れ刃には0.
11mmの逃げ面摩耗を生じた。
Example 3 A square piece of the same material and size as in Example 2 was subjected to HR in the same manner.
I created one with c30. When cutting with the same tool and cutting conditions, the hard material-coated cemented carbide had 0.5 mm of boundary damage at the boundary, and 0.5 mm at the other cutting edges.
Flank wear of 11 mm occurred.

また、超硬合金KIOには、境界部に0.6mmの境界
損傷、それ以外の切れ刃には0.1釦mの逃げ面摩耗を
生じた。
Further, the cemented carbide KIO had boundary damage of 0.6 mm at the boundary and flank wear of 0.1 button m on the other cutting edges.

実施例4 実施例1と同様に5 x 25x 300の高硬度材を
作成し、これを1本と、5 X 25X 300の通常
のFe12を19本バイスではさんで実施例1と同様の
工具、切削条件で切削した。その結果、硬質物質被覆超
硬合金には、境界部に0.2mmの境界損傷それ以外の
切れ刃には0.09mmの逃げ面摩耗を生じた。
Example 4 A high hardness material of 5 x 25 x 300 was created in the same manner as in Example 1, and one of this and 19 normal Fe12 of 5 x 25 x 300 were sandwiched between a vise and the same tool as in Example 1, Cutting was performed under cutting conditions. As a result, the hard material-coated cemented carbide had boundary damage of 0.2 mm at the boundary and flank wear of 0.09 mm on the other cutting edges.

また、超硬合金KIOには境界部に0.3mmの境界損
傷、それ以外の切れ刃には0.14mmの逃げ面摩耗を
生じた。
In addition, 0.3 mm of boundary damage occurred at the boundary of the cemented carbide KIO, and 0.14 mm of flank wear occurred on the other cutting edges.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の試験法′を示す概念図、第2図はス
ローアウェイチップの損傷、摩耗の形態を示す模式図、
第3図は本発明の試験に使用する被削材の断面図を示す
。 〔参照番号〕         〔参照符号〕■=表面
硬化材       vS:切刃部後退寸法2:通常材
         ■c:切刃先端摩耗量3:カッター
        ■、:切刃平均摩耗量4:切刃   
       ■、max:切刃最大摩耗量5.5’:
バイス      ■H:境界損傷世6:被削材   
      KT :クレーター深さ7二表面硬化部 8:非熱処理部
FIG. 1 is a conceptual diagram showing the test method of the present invention; FIG. 2 is a schematic diagram showing the forms of damage and wear on the indexable tip;
FIG. 3 shows a cross-sectional view of the work material used in the test of the present invention. [Reference number] [Reference code] ■=Surface hardened material vS: Cutting edge retraction dimension 2: Normal material ■c: Cutting edge tip wear amount 3: Cutter ■,: Cutting edge average wear amount 4: Cutting edge
■, max: Maximum cutting edge wear amount 5.5':
Vise ■H: Boundary damage 6: Work material
KT : Crater depth 7 2 Surface hardened part 8 : Non-heat treated part

Claims (3)

【特許請求の範囲】[Claims] (1)上部表面のみを高硬度に調質した鋳鉄材と表面、
内部とも低硬度の通常の鋳鉄材を並置したものを被削材
として切削することを特徴とする超硬合金切削工具のフ
ライス切削試験法。
(1) Cast iron material and surface with high hardness tempered only on the upper surface,
This is a milling test method for cemented carbide cutting tools, which is characterized by cutting ordinary cast iron materials with low hardness inside as work materials.
(2)特許請求の範囲第(1)項記載の試験法において
、該被削材の高硬度鋳鉄材の表面部の硬度がロックウェ
ル硬度(HRc)35〜50であることを特徴とする超
硬合金切削工具のフライス切削試験法。
(2) In the test method described in claim (1), the hardness of the surface portion of the high-hardness cast iron material of the work material is 35 to 50 on the Rockwell hardness (HRc). Milling test method for hard metal cutting tools.
(3)特許請求の範囲第(1)項記載の試験法において
、高硬度鋳鉄材の巾aと通常鋳鉄材の巾bの比率b/a
が20以下であることを特徴とする超硬合金切削工具の
フライス切削試験法。
(3) In the test method described in claim (1), the ratio b/a of the width a of the high hardness cast iron material and the width b of the normal cast iron material
A milling test method for a cemented carbide cutting tool, characterized in that: is 20 or less.
JP27807487A 1987-11-02 1987-11-02 Testing method of cemented carbide cutting tool by milling Pending JPH01119738A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27807487A JPH01119738A (en) 1987-11-02 1987-11-02 Testing method of cemented carbide cutting tool by milling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27807487A JPH01119738A (en) 1987-11-02 1987-11-02 Testing method of cemented carbide cutting tool by milling

Publications (1)

Publication Number Publication Date
JPH01119738A true JPH01119738A (en) 1989-05-11

Family

ID=17592285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27807487A Pending JPH01119738A (en) 1987-11-02 1987-11-02 Testing method of cemented carbide cutting tool by milling

Country Status (1)

Country Link
JP (1) JPH01119738A (en)

Similar Documents

Publication Publication Date Title
Elbestawi et al. High-speed milling of dies and molds in their hardened state
JP2505398B2 (en) Saw tooth and method for manufacturing the same
Tso et al. Study on PCD machining
El-Bestawi et al. Performance of whisker-reinforced ceramic tools in milling nickel-based superalloy
US4539875A (en) High-speed metal cutting method and self-sharpening tool constructions and arrangements implementing same
BR0313042A2 (en) notched cutting edge tool and method of manufacture
Richetti et al. Influence of the number of inserts for tool life evaluation in face milling of steels
JP2002505626A5 (en)
GB2365372A (en) Improvements in laser cut saw blades
US2730793A (en) Broaching tool
Axinte et al. Some considerations on tool wear and workpiece surface quality of holes finished by reaming or milling in a nickel base superalloy
US1908887A (en) Method of making composite reamers
JPH01119738A (en) Testing method of cemented carbide cutting tool by milling
Sarwar et al. Performance of titanium nitride-coated carbide-tipped circular saws when cutting stainless steel and mild steel
RU2686989C1 (en) Saw disc with cutting plates
JP2007307911A (en) Saw tooth with hard layer
Adesta et al. Comparative investigation on tool wear during end milling of AISI H13 steel with different tool path strategies
Čep et al. Testing ceramics inserts at irregular interrupted cut on material 14MoV6
RU2740584C1 (en) Method of improving surface cleanliness of treated metal articles
US3837240A (en) Cutting tool for the continuous machining of metals and the method of making same
US1106536A (en) File.
JPH11300688A (en) Cutting blade
RU2449860C1 (en) Method of program control of ultimate state of composite multi-blade tool cutting edges
RU2509633C1 (en) METHOD OF DETERMINING ROUGHNESS PARAMETER Ra AT NC MILLING MACHINE IN SEMI-FINISHING AND FINISHING OF CARBON STRUCTURAL AND LOW-ALLOY STEELS BY COMPOSITE MULTI-BLADE CARBIDE TOOL AT END MILLING
RU2237548C2 (en) Method for determining specific life of blade type cutting tool