JPH01119701A - Throttle sensor - Google Patents

Throttle sensor

Info

Publication number
JPH01119701A
JPH01119701A JP27745587A JP27745587A JPH01119701A JP H01119701 A JPH01119701 A JP H01119701A JP 27745587 A JP27745587 A JP 27745587A JP 27745587 A JP27745587 A JP 27745587A JP H01119701 A JPH01119701 A JP H01119701A
Authority
JP
Japan
Prior art keywords
magnetic field
magnet
throttle valve
throttle
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27745587A
Other languages
Japanese (ja)
Inventor
Masanori Kubota
久保田 正則
Sadayasu Ueno
上野 定寧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Automotive Systems Engineering Co Ltd
Original Assignee
Hitachi Automotive Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Automotive Engineering Co Ltd
Priority to JP27745587A priority Critical patent/JPH01119701A/en
Publication of JPH01119701A publication Critical patent/JPH01119701A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To detect the resolving power in a low opening region with high accuracy, by detecting the synthetic magnetic field by the rotary magnetic field of the first magnetic synchronous to the rotation of a throttle valve and that of a throttle valve stem and the bias magnetic field of the second magnet. CONSTITUTION:A throttle valve 2 is fixed to a throttle valve stem 3 and both of them are mounted on a throttle body 1 through a bearing 5 to rotate corresponding to the operation of an accelerator. The first magnet 6 is mounted on the yoke 16 fixed to one end of the stem 3 so that N- and S-poles are opposed to each other to form a magnetic circuit and the rotary magnetic field 7 thereof rotates along with the stem 3. The second magnet 8 and a magnetoelectric converter element 9 are integrally fixed to the base plate 11 fixed in the body 1 in a superposed state. Herein, the magnet 8 is deflected toward a rotary direction with respect to the magnetic field and fixed to the center of the N- and S-poles of the magnet 6. The synthetic magnetic field 17 formed by the magnetic field 7 and the bias magnetic field 18 of the magnet 8 changes corresponding to the deflection of the magnetic field 7 and this change is detected by the element 9. Sine wave output of one cycle is obtained from the element 9 by one rotation of a throttle.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、スロットルセンサに係り、特に自動車の内燃
機関の絞り弁の回転開度を、非接触で検出するのに好適
なスロットルセンサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a throttle sensor, and particularly to a throttle sensor suitable for non-contact detection of the rotational opening degree of a throttle valve in an internal combustion engine of an automobile.

〔従来の技術〕[Conventional technology]

従来のセンサは、特開昭56−107119号に記載の
ように、磁電変換素子からの出力電圧yは、磁界の方向
、すなわちスロットル回転開度に関してy=Acos2
θ十B という特性を示すようになっていた。このこと
は、スロットルが1回転(360”)するときに、2周
期の正弦波出力が得られることを表している。
In the conventional sensor, as described in JP-A-56-107119, the output voltage y from the magnetoelectric transducer is expressed as y=Acos2 with respect to the direction of the magnetic field, that is, the throttle rotation opening.
It began to exhibit the characteristic θ0B. This means that two cycles of sine wave output are obtained when the throttle rotates once (360'').

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術では、磁電変換素子からの出力は第6図に
あるように、スロットルが1回転するときに2周期の正
弦波であったために、スロットルセンサの検出範囲とし
て必要な回転開度であるO〜90°の範囲において、低
開度域での精度(分解能)が不足であり、もしも低開度
域での精度をあげようとすれば、高開度域において、正
弦波から得られる値が2つになってしまい、高開度域(
90°付近)の検出ができなくなるという開運があった
In the above conventional technology, as shown in Figure 6, the output from the magnetoelectric transducer is a sine wave with two cycles when the throttle rotates once, so the rotational opening is within the detection range of the throttle sensor. In the range of 0 to 90°, the accuracy (resolution) in the low opening range is insufficient, and if you want to improve the accuracy in the low opening range, the value obtained from the sine wave in the high opening range becomes two, and the high opening range (
It was a stroke of luck that detection of angles (near 90°) became impossible.

本発明の目的は、スロットルが1回転したとき(360
°)に、1周期の正弦波出力が得られるようにすること
で、低開度域における分解能を高精度に検出できるスロ
ットルセンサを提供することにある。
The purpose of the present invention is to achieve the following when the throttle rotates once (360
An object of the present invention is to provide a throttle sensor capable of detecting resolution in a low opening range with high accuracy by making it possible to obtain a sine wave output of one period at 10°.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、絞り弁軸の回転と同期して発生する回転磁
界と、第2の磁石が発生するバイアス磁界とで形成され
る合成磁界を磁電変換素子に供給することで達成される
The above object is achieved by supplying the magnetoelectric transducer with a composite magnetic field formed by a rotating magnetic field generated in synchronization with the rotation of the throttle valve shaft and a bias magnetic field generated by the second magnet.

〔作用〕[Effect]

本発明のスロットルセンサでは、磁電変換素子が、絞り
弁軸の回転と同期して発生する回転磁界と、第2の磁石
が発生するバイアス磁界とによって形成される合成磁界
を感知する。それによって、スロットルが1回転(36
0@)するときに、磁電変換素子から1周期の正弦波出
力を得ることができるので、スロットルの開度が0〜9
0″の範囲において、低開度域における精度(分解能)
は向上する。
In the throttle sensor of the present invention, the magnetoelectric conversion element senses a composite magnetic field formed by a rotating magnetic field generated in synchronization with rotation of the throttle valve shaft and a bias magnetic field generated by the second magnet. This causes the throttle to rotate one revolution (36
0@), one period of sine wave output can be obtained from the magnetoelectric transducer, so the throttle opening is 0 to 9.
Accuracy (resolution) in the low opening range in the 0″ range
will improve.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図〜第8図により説明す
る。第3図は本発明に係る全体断面図である。1はスロ
ットルボディであり、絞り弁2は固定用ネジ4により絞
り弁軸3に固定され1図示していないアクセルペダルの
操作に応じて回転する。そして、絞り弁2.絞り弁軸3
は、軸受5を通してスロットルボディ1に取付けられて
いる。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 8. FIG. 3 is an overall sectional view according to the present invention. Reference numeral 1 denotes a throttle body, and a throttle valve 2 is fixed to a throttle valve shaft 3 by a fixing screw 4, and rotates in response to operation of an accelerator pedal (not shown). And throttle valve 2. Throttle valve shaft 3
is attached to the throttle body 1 through a bearing 5.

16は磁性材からなるヨークであり、絞り弁軸3の一端
に圧入等で固定されである。6はヨーク16にN極、S
極が対向して取付けられた第1の磁石で、ヨーク16と
共に磁気回路を形成する。
A yoke 16 is made of a magnetic material and is fixed to one end of the throttle valve shaft 3 by press fitting or the like. 6 is the N pole and S pole on the yoke 16.
A first magnet whose poles are mounted opposite each other forms a magnetic circuit together with the yoke 16.

また、N極、S極の磁界である回転磁界7は、絞り弁2
.絞り弁軸3と一体となって回転する。
In addition, the rotating magnetic field 7, which is a magnetic field of N pole and S pole, is generated by the throttle valve 2.
.. It rotates together with the throttle valve shaft 3.

次に、前記回転磁界7の回転する部分を第1図。Next, FIG. 1 shows the rotating portion of the rotating magnetic field 7.

第2図及び第3図を用いて説明する。This will be explained using FIGS. 2 and 3.

スロットルボディ1内に、例えば、エポキシ系。Inside the throttle body 1, for example, epoxy type.

セラミック系の基板11が第1の取り付はネジ12によ
り着脱可能に固定されている。さらに。
A ceramic substrate 11 is removably fixed at the first attachment with screws 12 . moreover.

第2図の如く基板11上に、第2の磁石8.磁電変換素
子9を1重ねて一体的に固着している。ここで、第2の
磁石は例えば45@の角度を持って前記回転磁界7に対
して回転方向側に偏位し、前記第1の磁石のN極とS極
の中心に固定されている。前記磁電変換素子9は、感知
する磁界の方向により抵抗値が変化するように平面状に
形成されている。また、スロットルボディ内に外部から
の磁性体粉、a埃等の侵入を防止する意味で、ふた14
をスロットルボディ1に第2の取り付はネジ15によっ
て固定している。また、基板11に固着された回路部1
0は、磁電変換素子9の電源部及び出力電圧を増幅する
増幅部等を構成するもので、ハイブリッドICからなる
。19はハーネスで、電源、アース、信号出力用(図示
略)である。
As shown in FIG. 2, a second magnet 8. The magnetoelectric conversion elements 9 are stacked one on top of the other and are fixed integrally. Here, the second magnet is offset in the rotational direction with respect to the rotating magnetic field 7 at an angle of, for example, 45@, and is fixed at the center of the N and S poles of the first magnet. The magnetoelectric transducer 9 is formed in a planar shape so that its resistance value changes depending on the direction of the magnetic field to be sensed. In addition, the lid 14 is designed to prevent magnetic powder, a-dust, etc. from entering the throttle body from the outside.
The second attachment is fixed to the throttle body 1 with a screw 15. Further, the circuit section 1 fixed to the substrate 11
Reference numeral 0 constitutes a power supply section of the magnetoelectric conversion element 9, an amplification section for amplifying the output voltage, etc., and is composed of a hybrid IC. 19 is a harness for power supply, grounding, and signal output (not shown).

また13は、ハーネス19を支持するグロメットである
Further, 13 is a grommet that supports the harness 19.

さらに、第1の磁石6の回転磁界7と、第2の磁石8の
バイアス磁界18により、合成磁界17が形成される。
Furthermore, a composite magnetic field 17 is formed by the rotating magnetic field 7 of the first magnet 6 and the bias magnetic field 18 of the second magnet 8.

そして、合成磁界17は回転磁界7の偏位に応じて変化
する。
Then, the composite magnetic field 17 changes according to the deviation of the rotating magnetic field 7.

よって、磁電変換素子9が感知する合成磁界17の回転
方向は、絞り弁2.絞り弁軸3の回転に従って変化する
ことになる。
Therefore, the rotational direction of the composite magnetic field 17 sensed by the magnetoelectric transducer 9 is determined by the throttle valve 2. It changes as the throttle valve shaft 3 rotates.

ところで、磁電変換素子9は、磁界方向と電流方向のな
す角度によって抵抗値が異方的に変化す蒸着させた三端
子構造をもち、この素子の抵抗値は素子のパターン面に
対して平行な磁界の強さ及び向きによって変化するもの
である。
By the way, the magnetoelectric conversion element 9 has a deposited three-terminal structure in which the resistance value changes anisotropically depending on the angle formed between the magnetic field direction and the current direction, and the resistance value of this element is parallel to the pattern surface of the element. It changes depending on the strength and direction of the magnetic field.

次に、第4図〜第6図を用いて、それぞれ磁電変換素子
9の素子の作動原理、その等価回路、磁界の回転方向に
対する磁電変換素子9の出力波形を説明する。第4図に
示すように、第1の磁電変換素子R^、第2の磁電変換
素子Rnを互いに直交させて配置させると共に、直交し
た共通端すを出力端とし、それぞれの他端を電源Vcに
接続している。このように構成した三端子素(a+bt
C)に回転磁界7が第1の磁電変換素子R^、第2の磁
電変換素子Raに加わった場合、b点の出力電圧Voは
下記(1)式であられされる。
Next, the operating principle of the magnetoelectric transducer 9, its equivalent circuit, and the output waveform of the magnetoelectric transducer 9 with respect to the rotational direction of the magnetic field will be explained using FIGS. 4 to 6, respectively. As shown in FIG. 4, the first magnetoelectric transducer R^ and the second magnetoelectric transducer Rn are arranged orthogonally to each other, and the orthogonal common end is used as an output end, and the other end is connected to the power source Vc. is connected to. The three-terminal element (a+bt
When the rotating magnetic field 7 is applied to the first magnetoelectric transducer R^ and the second magnetoelectric transducer Ra in C), the output voltage Vo at point b is expressed by the following equation (1).

R^+Ra 但し、 R^==Rxsin”θ+Rycos”θ      
 ・(2)Ra=Rxcos”θ+Ry sin”θ 
      −(3)であり、θは電流工と回転磁界7
のなす角度。
R^+Ra However, R^==Rxsin"θ+Rycos"θ
・(2) Ra=Rxcos”θ+Ry sin”θ
-(3), and θ is the electric current and the rotating magnetic field 7
angle formed by

Rxは電流工と回転磁界7が直交したときの抵抗値、R
yl!電流工と回転磁界7が平行したときの抵抗値であ
る。
Rx is the resistance value when the electric current wire and the rotating magnetic field 7 are orthogonal to each other, R
yl! This is the resistance value when the electric current wire and the rotating magnetic field 7 are parallel.

さらに、(2)式、(3)式を(1)式へ代入して簡単
にすると、下記(4)式または(5)式であられせる。
Furthermore, by substituting equations (2) and (3) into equation (1) to simplify it, the following equation (4) or (5) can be obtained.

Vo”A−Bcos2θvc       ・・・(5
)ここで、係数Aは電源電圧Vcに、係数Bは素子の材
料に依存するものである。また、(4)式、(5)式は
第6図に示すように、電流Iと回転磁界7のなす角度θ
、すなわち絞り弁2.絞り弁軸3の回転開度と、出力電
圧Voの特性であられせる。以上のことから、スロット
ルが1回転(360’)するときに、出力は2周期の正
弦波になることがわかる。
Vo"A-Bcos2θvc...(5
) Here, the coefficient A depends on the power supply voltage Vc, and the coefficient B depends on the material of the element. In addition, as shown in FIG.
, that is, the throttle valve 2. It is controlled by the rotational opening degree of the throttle valve shaft 3 and the characteristics of the output voltage Vo. From the above, it can be seen that when the throttle makes one revolution (360'), the output becomes a two-cycle sine wave.

第7図は回転磁界7とバイアス磁界18とによる合成磁
界17を、第8図は合成磁界17による磁電変換素子9
の出力波形を示す。第7図によれば、回転磁界7のなす
角度θ=O″′に対して、本実施例ではθ=45”の位
置にバイアス磁界18を加えている。磁電変換素子9の
感知する磁界は回転磁界7とバイアス磁界18とからな
る合成磁界17である。回転磁界を、Hr、バイアス磁
界をHbとすると、合成磁界Hjは、(6)式であられ
される。
FIG. 7 shows the composite magnetic field 17 created by the rotating magnetic field 7 and the bias magnetic field 18, and FIG. 8 shows the magnetoelectric conversion element 9 created by the composite magnetic field 17.
The output waveform of is shown. According to FIG. 7, with respect to the angle θ=O″′ formed by the rotating magnetic field 7, in this embodiment, the bias magnetic field 18 is applied at a position of θ=45″. The magnetic field sensed by the magnetoelectric transducer 9 is a composite magnetic field 17 consisting of the rotating magnetic field 7 and the bias magnetic field 18. Assuming that the rotating magnetic field is Hr and the bias magnetic field is Hb, the composite magnetic field Hj is given by equation (6).

IH門+=fi丁璽τ石17F  ・・・(6)本実施
例では、1Hrl=lHblとする。回転磁界7が回転
するのに伴い、合成磁界17も回転磁界と同じ方向に回
転する。本実施例の場合には、時計回りに、例えば、回
転磁界7が偏位0(Q位置)の時、合成磁界17は45
@/2となり、H位置となる。同様に、回転磁界7がP
位it Q位置の時、合成磁界17はそれぞれJ位置、
に位置と変化していく、さらに、第8図は′合成磁界1
7に対する磁電変換素子9の出力波形Voの変位を示し
ている。ここでは、スロットルが1回°転(360°)
するときに、1周期の正弦波出力が得られることを特徴
としている。前述したとおり、回転磁界7は絞り弁2.
絞り弁軸3と同期して回転する。実際には、絞り弁2.
絞り弁軸3の回転幅は、約0〜90°であるために、絞
り弁2の0°位置をQ位置にとれば、θ=0〜90°の
範囲ではθ−Q間のリニア出力Voが絞り弁2の回転開
度に対応する。また、00位置をP位置にとれば、P−
R間の曲線出力V。が絞り弁2の回転開度に対応する。
IH gate +=fi ding τ stone 17F (6) In this embodiment, 1Hrl=lHbl. As the rotating magnetic field 7 rotates, the composite magnetic field 17 also rotates in the same direction as the rotating magnetic field. In the case of this embodiment, in the clockwise direction, for example, when the rotating magnetic field 7 has a deviation of 0 (Q position), the combined magnetic field 17 is 45
@/2 and becomes the H position. Similarly, the rotating magnetic field 7 is P
When it is at the Q position, the composite magnetic field 17 is at the J position and
Furthermore, Figure 8 shows the 'synthetic magnetic field 1
7 shows the displacement of the output waveform Vo of the magnetoelectric transducer 9 with respect to 7. Here, the throttle rotates once (360°)
It is characterized in that a sine wave output of one period can be obtained when As mentioned above, the rotating magnetic field 7 is generated by the throttle valve 2.
It rotates in synchronization with the throttle valve shaft 3. Actually, throttle valve 2.
Since the rotation range of the throttle valve shaft 3 is approximately 0 to 90 degrees, if the 0 degree position of the throttle valve 2 is set to the Q position, the linear output Vo between θ and Q in the range of θ = 0 to 90 degrees corresponds to the rotational opening degree of the throttle valve 2. Also, if the 00 position is set to the P position, P-
Curve output V between R. corresponds to the rotational opening degree of the throttle valve 2.

なお、本実施例では回転する絞り弁軸3側に第1の磁石
6を配置したが、逆に、磁電変換素子9及び第2の磁石
8を絞り弁軸3側に配置してもよい。
In this embodiment, the first magnet 6 is arranged on the rotating throttle valve shaft 3 side, but conversely, the magnetoelectric conversion element 9 and the second magnet 8 may be arranged on the throttle valve shaft 3 side.

本発明の一実施例によれば、絞り弁2、及び絞り弁軸3
の回転と同期して発生する回転磁界7と、バイアス磁界
18とによって形成される合成磁界17を利用すること
で、スロットルが1回転(360°)するときに、1周
期の正弦波出力を得ることができる。すなわち1回転量
度が、0〜90@の範囲では、開度に対してリニア出力
、または曲線出力が得られることになるので、どちらの
特性を利用しても、低開度域における精度(分解能)を
向上させることができるという効果がある。さらに、検
出部が非接触でスロットルボディ埋込み式のため、出力
信号の瞬断がなく高得命で信頼性に優れているという効
果もある。
According to an embodiment of the invention, the throttle valve 2 and the throttle valve shaft 3
By using the composite magnetic field 17 formed by the rotating magnetic field 7 generated in synchronization with the rotation of the motor and the bias magnetic field 18, one cycle of sine wave output is obtained when the throttle rotates once (360°). be able to. In other words, in the range of 0 to 90 degrees per rotation, a linear output or a curved output is obtained with respect to the opening, so no matter which characteristic is used, the accuracy (resolution ). Furthermore, since the detection part is non-contact and embedded in the throttle body, there is no momentary interruption of the output signal, resulting in high accuracy and excellent reliability.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、磁界の方向または磁界の強さによって
抵抗値の変化する磁電変換素子は、絞り弁及び絞り弁軸
の回転と同期した第1の磁石の回転磁界と、新たに設置
する第2の磁石のバイアス磁界とによって形成される合
成磁界を感知して、絞り弁軸が1回転(360°)する
ときに、1周期の正弦波出力を発生する。
According to the present invention, the magnetoelectric transducer whose resistance value changes depending on the direction of the magnetic field or the strength of the magnetic field is connected to the rotating magnetic field of the first magnet synchronized with the rotation of the throttle valve and the throttle valve shaft, and the newly installed magnetoelectric transducer. By sensing the composite magnetic field formed by the bias magnetic field of the second magnet and the bias magnetic field of the second magnet, one period of a sine wave output is generated when the throttle valve shaft makes one rotation (360 degrees).

よって、絞り弁の回転開度が0〜90’の範囲では、開
度の大きさに対して、リニア出力、または曲線出力が得
られるので、どちらの特性を利用しても、低開度域にお
ける精度(分解能)は向上する。
Therefore, in the range of rotational opening of the throttle valve from 0 to 90', a linear output or a curved output can be obtained depending on the opening degree, so no matter which characteristic is used, it is possible to obtain a linear output or a curved output in the low opening degree range. The accuracy (resolution) in is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を表す第3図の要部の拡大図、第2図は
第1図の側面図、第3図はスロットルボディの断面図、
第4図は磁電変換素子の動作原理図、第5図は第4図の
等価回路図、第6図は磁界の回転方向に対する磁電変換
素子の出力波形図、第7図は回転磁界とバイアス磁界と
で形成される合成磁界の作図、第8図は合成磁界に対す
る磁電変換素子の出力波形図である。 1・・・スロットルボディ、2・・・絞り弁、3・・・
絞り弁軸、6・・・第1の磁石、7・・・回転磁界、8
・・・第2の磁石、9・・・磁電変換素子、17・・・
合成磁界、18・・・バイアス磁界。
FIG. 1 is an enlarged view of the main part of FIG. 3 representing the present invention, FIG. 2 is a side view of FIG. 1, and FIG. 3 is a sectional view of the throttle body.
Figure 4 is a diagram of the operating principle of the magnetoelectric conversion element, Figure 5 is an equivalent circuit diagram of Figure 4, Figure 6 is an output waveform diagram of the magnetoelectric conversion element with respect to the rotating direction of the magnetic field, and Figure 7 is the rotating magnetic field and bias magnetic field. Figure 8 is a diagram of the output waveform of the magnetoelectric transducer for the composite magnetic field. 1... Throttle body, 2... Throttle valve, 3...
Throttle valve shaft, 6... First magnet, 7... Rotating magnetic field, 8
...Second magnet, 9...Magnetoelectric conversion element, 17...
Composite magnetic field, 18...bias magnetic field.

Claims (1)

【特許請求の範囲】 1、内燃機関の絞り弁軸の一端に固定された、第1の磁
石によつて発生される磁界を感知する磁電変換素子によ
り、前記絞り弁軸に固定された絞り弁の回転開度を非接
触で検出するスロットルセンサにおいて、前記第1の磁
石が発生する回転磁界に対して回転方向側に偏位し、か
つ中心が第1の磁石の中心と一致させた、バイアス磁界
を発生させるための第2の磁石を設け、前記磁電変換素
子の供給信号を、前記回転磁界と前記バイアス磁界とか
ら形成される合成磁界から得られるようにしたことを特
徴とするスロットルセンサ。 2、前記磁電変換素子は、磁界の方向によつて出力信号
が変化する強磁性体磁気抵抗素子からなることを特徴と
する特許請求の範囲第1項記載のスロットルセンサ。 3、前記磁電変換素子は、磁界の強さによつて出力信号
が変化する強磁性体磁気抵抗素子からなることを特徴と
する特許請求の範囲第1項記載のスロットルセンサ。 4、前記磁電変換素子は、前記絞り弁軸が1回転すると
きに、実質的に1周期の正弦波となる出力信号を発生す
ることを特徴とする特許請求の範囲第1項記載のスロッ
トルセンサ。 5、前記磁電変換素子は、前記第2の磁石と一体的に構
成され、前記スロットルボディ内に着脱可能に固定され
ていることを特徴とする特許請求の範囲第1項記載のス
ロットルセンサ。
[Scope of Claims] 1. A throttle valve fixed to one end of the throttle valve shaft of an internal combustion engine by a magnetoelectric conversion element that senses a magnetic field generated by a first magnet fixed to one end of the throttle valve shaft. In a throttle sensor that non-contact detects the degree of rotational opening of the first magnet, the bias is biased toward the rotational direction with respect to the rotating magnetic field generated by the first magnet, and whose center is aligned with the center of the first magnet. A throttle sensor characterized in that a second magnet for generating a magnetic field is provided, and a signal supplied to the magnetoelectric conversion element is obtained from a composite magnetic field formed from the rotating magnetic field and the bias magnetic field. 2. The throttle sensor according to claim 1, wherein the magnetoelectric conversion element is a ferromagnetic magnetoresistive element whose output signal changes depending on the direction of the magnetic field. 3. The throttle sensor according to claim 1, wherein the magnetoelectric conversion element is a ferromagnetic magnetoresistive element whose output signal changes depending on the strength of the magnetic field. 4. The throttle sensor according to claim 1, wherein the magnetoelectric conversion element generates an output signal that is substantially a sine wave of one cycle when the throttle valve shaft rotates once. . 5. The throttle sensor according to claim 1, wherein the magnetoelectric conversion element is integrally formed with the second magnet and is removably fixed within the throttle body.
JP27745587A 1987-11-04 1987-11-04 Throttle sensor Pending JPH01119701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27745587A JPH01119701A (en) 1987-11-04 1987-11-04 Throttle sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27745587A JPH01119701A (en) 1987-11-04 1987-11-04 Throttle sensor

Publications (1)

Publication Number Publication Date
JPH01119701A true JPH01119701A (en) 1989-05-11

Family

ID=17583822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27745587A Pending JPH01119701A (en) 1987-11-04 1987-11-04 Throttle sensor

Country Status (1)

Country Link
JP (1) JPH01119701A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466813A (en) * 1990-07-06 1992-03-03 Mitsubishi Electric Corp Angle detecting sensor
JPH05157506A (en) * 1991-12-04 1993-06-22 Nippondenso Co Ltd Throttle position sensor
US5544000A (en) * 1992-05-22 1996-08-06 Nippondenso Co., Ltd. Electric control apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0466813A (en) * 1990-07-06 1992-03-03 Mitsubishi Electric Corp Angle detecting sensor
JPH05157506A (en) * 1991-12-04 1993-06-22 Nippondenso Co Ltd Throttle position sensor
US5544000A (en) * 1992-05-22 1996-08-06 Nippondenso Co., Ltd. Electric control apparatus

Similar Documents

Publication Publication Date Title
US6489761B1 (en) Magnetic arrangement for an analog angle encoder
US5982171A (en) Sensing device for detecting the angular displacement and relative position of a member of magnetic material
US20020021124A1 (en) Sensor for the detection of the direction of a magnetic field
US6614223B2 (en) Analog angle encoder having a single piece magnet assembly surrounding an air gap
KR20000029475A (en) Non-contact system for detecting an angle of rotation
US6020736A (en) Magnetoresistive type position sensor having bias magnetic and magnet resistance elements in bias magnetic field thereof
JPH03233317A (en) Rotation angle sensor
WO2004013641A1 (en) Phase stability of non-sinusoidal signals utilizing two differential halls
US6486656B1 (en) Magnetoresistive die and position sensor
JP2001526382A (en) Measuring device for non-contact detection of rotation angle
JPH01119701A (en) Throttle sensor
US6954063B2 (en) Motion detecting device using magnetoresistive unit
JP2002530637A (en) Measuring device for non-contact detection of rotation angle
CN110260890A (en) System for determining at least one rotation parameter of rotating member
JP3298173B2 (en) Throttle opening detector
JPS6176911A (en) Magnetic encoder
JP2613059B2 (en) Magnetic sensor
JPH0219720B2 (en)
US20120038349A1 (en) Triple Hall Effect Sensor Absolute Angular Encoder
JP2001082914A (en) Angle detector
JPH05280920A (en) Magnetic encoder for detecting traveling position of traveling body
JPH052925B2 (en)
KR100384441B1 (en) Apparatus for detecting the differential range in an accelerator and clutch pedal for use in a car
JPH0298627A (en) Magnetic rotary encoder
JPH0430756B2 (en)