JPH01118823A - Organic nonlinear optical element - Google Patents

Organic nonlinear optical element

Info

Publication number
JPH01118823A
JPH01118823A JP62275768A JP27576887A JPH01118823A JP H01118823 A JPH01118823 A JP H01118823A JP 62275768 A JP62275768 A JP 62275768A JP 27576887 A JP27576887 A JP 27576887A JP H01118823 A JPH01118823 A JP H01118823A
Authority
JP
Japan
Prior art keywords
nonlinear optical
fluorenone
medium
nonlinear
thermal stability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62275768A
Other languages
Japanese (ja)
Inventor
Yuzo Ito
雄三 伊藤
Hiroshi Terao
寺尾 弘
Yoshiyo Ono
大野 佳代
Sukekazu Araya
介和 荒谷
Masato Isogai
正人 磯貝
Atsushi Tsunoda
敦 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62275768A priority Critical patent/JPH01118823A/en
Priority to EP88118238A priority patent/EP0315140B1/en
Priority to DE3854341T priority patent/DE3854341T2/en
Publication of JPH01118823A publication Critical patent/JPH01118823A/en
Priority to US07/711,414 priority patent/US5176854A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/361Organic materials
    • G02F1/3613Organic materials containing Sulfur
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/45Compounds containing nitro groups bound to a carbon skeleton the carbon skeleton being further substituted by at least one doubly—bound oxygen atom, not being part of a —CHO group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C225/00Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones
    • C07C225/22Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/23Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton
    • C07C323/31Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton having the sulfur atom of at least one of the thio groups bound to a carbon atom of a six-membered aromatic ring of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/587Unsaturated compounds containing a keto groups being part of a ring
    • C07C49/657Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings
    • C07C49/665Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings a keto group being part of a condensed ring system
    • C07C49/675Unsaturated compounds containing a keto groups being part of a ring containing six-membered aromatic rings a keto group being part of a condensed ring system having three rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/80Ketones containing a keto group bound to a six-membered aromatic ring containing halogen
    • C07C49/813Ketones containing a keto group bound to a six-membered aromatic ring containing halogen polycyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/82Ketones containing a keto group bound to a six-membered aromatic ring containing hydroxy groups
    • C07C49/83Ketones containing a keto group bound to a six-membered aromatic ring containing hydroxy groups polycyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/84Ketones containing a keto group bound to a six-membered aromatic ring containing ether groups, groups, groups, or groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • C07D311/80Dibenzopyrans; Hydrogenated dibenzopyrans
    • C07D311/82Xanthenes
    • C07D311/84Xanthenes with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 9
    • C07D311/86Oxygen atoms, e.g. xanthones
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/361Organic materials
    • G02F1/3611Organic materials containing Nitrogen
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/361Organic materials
    • G02F1/3611Organic materials containing Nitrogen
    • G02F1/3612Heterocycles having N as heteroatom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes

Abstract

PURPOSE:To improve nonlinear optical performance and to improve thermal stability by forming a nonlinear optical medium of fluorenone and the deriv. thereof. CONSTITUTION:The nonlinear medium is formed of the fluorenone and the deriv. thereof which have a large nonlinear optical constant, are thermally stable, i.e., have a high m.p. and are not thermally broken up to a high temp. The important requirement for said medium to exhibit the large nonlinear optical constant is that a pi electron conjugation system exists in the skeleton thereof and that the medium has an electron-donating group and electron- withdrawing group as a substituent. Such a molecular structure which has large cohesive energy at the time of forming crystals and has a small entropy increase at the time of fusionis selected in order to have the thermal stability, e.g., high m.p. These act effectively on each other with the fluorenone and the deriv. thereof. The nonlinear optical performance and thermal stability are thereby improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、非線形光学効果を利用した光変調素子に係り
、特に、第二、第三高調波発生、光混合光パラメトリツ
ク発振、光スィッチ、光双安定素子等の非線形光学素子
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical modulation device that utilizes nonlinear optical effects, and in particular, to second and third harmonic generation, optical mixing optical parametric oscillation, and optical switching. , relates to nonlinear optical elements such as optical bistable elements.

〔従来の技術〕[Conventional technology]

非線形光学素子は、電磁場による二次、三次の非線形分
極を利用し、高調波発生、光混合、光パラメトリツク発
振、光スィッチ等の素子として使われる。又、将来実現
すると予想される光コンピュータの基本素子となり得る
光双安定素子としても注目を浴びている。
Nonlinear optical elements utilize second- and third-order nonlinear polarization caused by electromagnetic fields and are used for harmonic generation, optical mixing, optical parametric oscillation, optical switches, etc. Furthermore, it is attracting attention as an optical bistable element that can become a basic element of optical computers that are expected to be realized in the future.

従来、非線形光学用素子材料としては、ニオブ酸リチウ
ム(LiNbO3)、リン酸二水素カリウム(KDP)
、砒化ガリウム(GaAs)などの無機材料及び半導体
材料が主に検討されてきた。
Conventionally, lithium niobate (LiNbO3) and potassium dihydrogen phosphate (KDP) have been used as nonlinear optical element materials.
, inorganic materials such as gallium arsenide (GaAs), and semiconductor materials have mainly been considered.

近年、それらの材料に比べ、非線形光学性能に優れ(士
ないし百倍)、又、光双安定を利用した光IC等で重要
となる光応答速度が非常に速い有機系の非線形光学材料
があいついで発見され、基礎から応用にわたった広範囲
研究が盛んになってきた。それらの有機材料には、尿素
、2−メチルー4−ニトロアニリン(MNA)(特開昭
55−500960号公報)、N−(4−二トロフェニ
ル)−L−プロリノール(NPP)(特開昭59−21
1665号公報)などがあげられる。
In recent years, an increasing number of organic nonlinear optical materials have been developed that have superior nonlinear optical performance (up to 100 times better) than those materials, and have extremely fast optical response speeds, which are important for optical ICs that utilize optical bistable technology. Since its discovery, wide-ranging research ranging from basics to applications has become active. These organic materials include urea, 2-methyl-4-nitroaniline (MNA) (JP-A-55-500960), N-(4-nitrophenyl)-L-prolinol (NPP) (JP-A-55-500960), Showa 59-21
Publication No. 1665).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

先にあげた従来の非線形光学材料は、非線形光学定数が
大きく基本的性能の面で優れている。しかし、その反面
、大きな質的に優れた単結晶を作成することが困難であ
る点、結晶の安定性、耐性等が悪い点、透明性が無い等
の問題点があった。
The conventional nonlinear optical materials listed above have large nonlinear optical constants and are excellent in basic performance. However, on the other hand, there are problems such as difficulty in producing large and qualitatively superior single crystals, poor crystal stability and durability, and lack of transparency.

これらの問題点のうち、熱的安定性は、実用上の観点か
らは、特に改善されなければならない点である。一般に
、有機非線形光学材料の優れたものは、無機のそれに比
し、光損傷しきい値(瞬間的な光射性)は、かなり大き
い。しかし、有機材料は、長時間光にさらされた場合の
耐性は、それ程大きいとは言えない。なぜなら、光エネ
ルギが熱に変換され、一般に有機材料は熱的安定性が悪
いためである。従って、有機非線形光学材料の実用上の
安定性、耐性を考える場合、熱的安定性は非常に重要な
ポイントとなる。この観点から、有機非線形光学材料の
融点は高い程(200℃以上が)望ましい。残念ながら
、大きな非線形性能をもつ有機材料で、かつ、この点を
満足した非線形光学材料は未だ見出されていない。特に
、高出力の光処理を考える場合、この点は非常に重要な
改善すべき点となる。
Among these problems, thermal stability is one that must be particularly improved from a practical standpoint. In general, superior organic nonlinear optical materials have a significantly higher optical damage threshold (instantaneous light emitting property) than inorganic materials. However, organic materials cannot be said to be very resistant to long-term exposure to light. This is because light energy is converted into heat, and organic materials generally have poor thermal stability. Therefore, when considering the practical stability and durability of organic nonlinear optical materials, thermal stability is a very important point. From this point of view, the higher the melting point of the organic nonlinear optical material (200° C. or higher), the more desirable it is. Unfortunately, a nonlinear optical material that has a large nonlinear performance and satisfies this requirement has not yet been found. Especially when considering high-power optical processing, this point is a very important point to be improved.

〔問題点を解決するための手段〕[Means for solving problems]

ここで与えられた課題は、大きな非線形光学性能をもち
、かつ、熱的に安定な非線形光学素子を開発することで
ある。この目的は、非線形媒質として、大きな非線形光
学定数をもち、かつ、熱的に安定な、すなわち、融点が
高く高温まで熱破壊を起こさない有機非線形光学材料を
用いることにより達成される。この様な有機非線形光学
材料とは、フルオレノン及びその誘導体、フルオレノン
及びその誘導体を側鎖及び主鎖に含んだ高分子、及び、
組成物としてフルオレノン及びその誘導体を含む高分子
である。より具体的に、フルオレノン誘導体とは、2−
ニトロ−9−フルオレノン−4−フルオレンカルボキシ
レート −6−アミツー−9−フルオレノン リ 等である。
The challenge here is to develop a thermally stable nonlinear optical element with high nonlinear optical performance. This objective is achieved by using as a nonlinear medium an organic nonlinear optical material that has a large nonlinear optical constant and is thermally stable, that is, has a high melting point and does not cause thermal breakdown even at high temperatures. Such organic nonlinear optical materials include fluorenone and its derivatives, polymers containing fluorenone and its derivatives in the side chain and main chain, and
It is a polymer containing fluorenone and its derivatives as a composition. More specifically, fluorenone derivatives are 2-
Nitro-9-fluorenone-4-fluorenecarboxylate-6-amino-9-fluorenone and the like.

フルオレノン及びその誘導体を主鎖及び側鎖の化学構造
中に含む高分子とは、上記にあげた様なフルオレノン及
びその誘導体が、高分子の七ツマ−1例えば、アクリル
酸、メタクリル酸、スチレンなどと、エステル結合、ア
ミド結合、又は、炭素炭素結合によって結合し、重合し
たものである。
Polymers containing fluorenone and its derivatives in the chemical structure of the main chain and side chains are those in which the above-mentioned fluorenone and its derivatives are polymers such as acrylic acid, methacrylic acid, styrene, etc. and are bonded together through ester bonds, amide bonds, or carbon-carbon bonds and polymerized.

フルオレノン、及び、その誘導体を組成物として含む高
分子とは、上記の様なフルオレノン及びその誘導体を、
アクリル酸、メチルアクリレート、エチルアクリレート
、ブチルアクリレート、イソブチルアクリレート、メタ
クリル酸、メチルメタクリレート、エチルメタクリレー
ト、m−ブチルメタクリレート、イソブチルメタクリレ
ート、トリエチルプロパンメタクリレート、m−へキシ
ルメタクリレート、シクロへキシルメタクリレート、フ
ェニルメタクリレート、ベンジルメタクリレート、エチ
レングリコールジメタクリレート、グリシジルメタクリ
レート、ペンタフルオロブチルメタクリルート、スチレ
ン、クロロスチレン、2゜5−ジクロロスチレン、メト
キシスチレン等に混合し重合させたものである。
A polymer containing fluorenone and its derivatives as a composition refers to the above-mentioned fluorenone and its derivatives,
Acrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate, isobutyl acrylate, methacrylic acid, methyl methacrylate, ethyl methacrylate, m-butyl methacrylate, isobutyl methacrylate, triethylpropane methacrylate, m-hexyl methacrylate, cyclohexyl methacrylate, phenyl methacrylate, It is mixed with benzyl methacrylate, ethylene glycol dimethacrylate, glycidyl methacrylate, pentafluorobutyl methacrylate, styrene, chlorostyrene, 2°5-dichlorostyrene, methoxystyrene, etc. and polymerized.

又、必要に応じて、重合後ポーリング処理を行うことに
より、フルオレン及びその誘導体を配向させることがで
き、高分子非線形光学材料の非線形性能を向上させるこ
とができる。
Further, if necessary, by performing a poling treatment after polymerization, fluorene and its derivatives can be oriented, and the nonlinear performance of the polymeric nonlinear optical material can be improved.

〔作用〕[Effect]

一般に、非線形光学定数(特に二次)の大きい有機材料
は、まず、必要条件として、その構成分子が大きな非線
形光学定数を持つ必要がある。次にそれらの分子が、そ
の非線形状をマクロな物性として有効に反映する様に凝
集する(結晶化する)ことが必要である。
Generally, organic materials with large nonlinear optical constants (especially quadratic) require that their constituent molecules have large nonlinear optical constants. Next, it is necessary for these molecules to aggregate (crystallize) so that their nonlinear shape is effectively reflected as macroscopic physical properties.

まず、分子として大きな非線形光学定数を示すためには
、その骨格にπ電子共役系が存在し、さらに置換基とし
て、電子供与基及び電子吸引性基をもつことが重要であ
る。しかし、これは一般論であり、π共役系をもつ骨格
として具体的にどの様な骨格が適当であるか、又、置換
基として何が適当かを選定するのは非常に難しい。そこ
で、我我は、分子構造より、分子軌道法を用いて分子の
非線形光学定数を予測し、dc−8HG法による実測を
もあわせて、分子設計を行った。
First, in order for the molecule to exhibit a large nonlinear optical constant, it is important that the molecule has a π-electron conjugated system in its skeleton, and that it also has an electron-donating group and an electron-withdrawing group as substituents. However, this is a general theory, and it is very difficult to specifically select what kind of skeleton is suitable as a skeleton having a π-conjugated system and what is suitable as a substituent. Therefore, we designed the molecule by predicting the nonlinear optical constants of the molecule based on the molecular structure using the molecular orbital method, and also using actual measurements using the dc-8HG method.

又、第二の凝集構造に関しても、エネルギ計等の手法を
用い解析予測しつつ、上記の目的に適した分子構造の選
定を行った。
Regarding the second agglomerated structure, a molecular structure suitable for the above purpose was selected while analyzing and predicting it using methods such as an energy meter.

又、有機非線形光学材料が熱的に安定、すなわち、高融
点を示すためには、結晶形成時の凝集エネルギが大きく
、かつ、融解時のエネメロピ増加が小さいような分子構
造を選定すればよい。
In addition, in order for the organic nonlinear optical material to be thermally stable, that is, to exhibit a high melting point, a molecular structure that has a large cohesive energy during crystal formation and a small increase in energy efficiency during melting may be selected.

フルオレノン及びその誘導体では、上述の諸点が有効に
作用しあい、極めて大きな非線形性を示し、かつ、高温
まで熱的に安定である。
Fluorenone and its derivatives exhibit extremely large nonlinearity due to the effective interaction of the above points and are thermally stable up to high temperatures.

〔実施例〕〔Example〕

本発明の内容を以下実施例に基づいて詳細に説明する。 The content of the present invention will be explained in detail below based on examples.

〈実施例1〉 フルオレノン及びその誘導体の分子構造を分子力学的手
法により最適化し、半経験的分子軌道法CNDO/S3
−CIを用いて、最大励起波長λmax 、及び、分子
の二次非線形分板率βの値を算出した。
<Example 1> The molecular structure of fluorenone and its derivatives was optimized by molecular mechanical techniques, and semi-empirical molecular orbital method CNDO/S3
-CI was used to calculate the maximum excitation wavelength λmax and the second-order nonlinear splitting ratio β of the molecule.

次に、各試料のβの値をda−8HG法により実測した
。具体的には、試料をエタノールに溶解させ、5kV、
2IIsのパルス電圧を印加し、それに同期してピーク
パワー100MW、 10IllsのパルスYAGレー
ザ光(波長1.06  μm)を試料に照射し、波長5
30mmの波長変換光を光電子増倍管により測定した。
Next, the value of β of each sample was actually measured using the da-8HG method. Specifically, the sample was dissolved in ethanol, 5kV,
A pulse voltage of 2IIs was applied, and in synchronization with this, the sample was irradiated with pulsed YAG laser light (wavelength 1.06 μm) with a peak power of 100MW and 10Ills.
The wavelength-converted light of 30 mm was measured using a photomultiplier tube.

同様の方法により測定したニトロベンゼン純液体の出力
光をリファレンスとしてβの値を見積った。β及びλm
axの計算値及び、βの実測値を表1に示した。なお、
比較のためMNAの値も同時に表1に示した。
The value of β was estimated using the output light of a pure nitrobenzene liquid measured by a similar method as a reference. β and λm
Table 1 shows the calculated value of ax and the measured value of β. In addition,
For comparison, the MNA values are also shown in Table 1.

次に粉末法により、結晶の非線形光学定数を測定した。Next, the nonlinear optical constants of the crystal were measured using the powder method.

まず、試料を乳針ですりつぶし、粒径を100μm程度
にそろえた後、上述のQ−スナツチYAGレーザ光を照
射し、波長530m5の波長変換光を集光レンズで集め
、各種フィルタで53On++a以外の光をカットし強
度洞室を行った。
First, the sample is ground with a milk needle to make the particle size about 100 μm, and then the above-mentioned Q-Snatchi YAG laser beam is irradiated, the wavelength-converted light with a wavelength of 530 m5 is collected with a condensing lens, and various filters are used to I cut the light and performed an intensity sinus chamber.

表2に測定結果を対尿素比として示した。Table 2 shows the measurement results as a ratio to urea.

次に熱的安定性を見るため、TG(熱重量測定)DSC
測定を行った。融点に関しては、表2に、又、TG−D
SC測定に関しては、代表例として、表    2 2−ニトロ−9−フルオレノンの結果を第2図に示した
。これをみると、2−ニトロ−9−フルオレノンは融点
223℃まで熱的に非常に安定であり、熱分解等を起こ
さないことがわかる。
Next, to check the thermal stability, TG (thermogravimetry) DSC
Measurements were taken. Regarding the melting point, see Table 2, and TG-D
Regarding the SC measurement, the results for 2-nitro-9-fluorenone in Table 2 are shown in FIG. 2 as a representative example. This shows that 2-nitro-9-fluorenone is very thermally stable up to its melting point of 223°C and does not undergo thermal decomposition.

〈実施例2〉 第二高調波発生を利用した波長変換素子の概略図を第2
図に示した。非線形光学媒体は、フルオレノン及びその
誘導体を用い、基板上に波相エピタキシャル成長法で薄
膜状の単結晶を成長させ、素子を作成した。位相整合が
とれる物質の場合、バルク単結晶をそのまま素子化する
ことが可能である。この場合の単結晶は、60℃の飽和
エタノール溶液を恒温槽中で毎分0.03 ℃の割合で
徐冷す乞ことにより得ら゛れる。
<Example 2> A schematic diagram of a wavelength conversion element using second harmonic generation is shown in the second example.
Shown in the figure. The nonlinear optical medium used fluorenone and its derivatives, and a thin film-like single crystal was grown on a substrate by a wave phase epitaxial growth method to create an element. In the case of a substance that can achieve phase matching, it is possible to turn a bulk single crystal into a device as it is. In this case, the single crystal is obtained by slowly cooling a saturated ethanol solution at 60° C. in a constant temperature bath at a rate of 0.03° C. per minute.

素子にピークパワーを100kW、100PsのYAG
レーザ光(波長1.06 μm)を入射させ、波長53
0maの第二高調波を光電子増倍管により測定した。変
換効率は、尿素と比較して、2−ニトロ−9−フルオレ
ノンの場合、二十倍であった。
YAG element with peak power of 100kW and 100Ps
Laser light (wavelength 1.06 μm) is incident, and the wavelength is 53 μm.
The second harmonic at 0 ma was measured using a photomultiplier tube. The conversion efficiency was twenty times higher for 2-nitro-9-fluorenone compared to urea.

〈実施例3〉 組成物として、フルオレン及びその誘導体を含む高分子
の作成例をあげる。2−ニトロ−9−フルオレノンLo
gをメチルメタクリレート50gに溶解させ、重合開始
剤としてラウロイルパーオキシドを0.02重量パーセ
ンサ加えた後、60℃で四十へ時間重合させた。得られ
た重合生成物をポーリング処理し、分子を配向させた。
<Example 3> An example of preparing a polymer containing fluorene and its derivatives will be given as a composition. 2-nitro-9-fluorenone Lo
g was dissolved in 50 g of methyl methacrylate, 0.02 weight percent of lauroyl peroxide was added as a polymerization initiator, and the mixture was polymerized at 60° C. for 40 hours. The obtained polymerization product was subjected to a poling treatment to orient the molecules.

これを用いて素子を作成し、実施例2と同様の操作でY
AGレーザ光の第二高調波への変換効率を求めたところ
、尿素の十五倍であった。
An element was created using this, and Y
When the conversion efficiency of AG laser light to the second harmonic was determined, it was found to be 15 times that of urea.

本発明の素子は1本非線形光学材料の本質的な特性を利
用したものであるので、実施例であげた第二高調波を利
用した波長変換素子のみならず。
Since the element of the present invention utilizes the essential characteristics of a single nonlinear optical material, it is applicable not only to the wavelength conversion element using the second harmonic as mentioned in the embodiment.

広く非線形光学素子として動作させることができる。It can be widely operated as a nonlinear optical element.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、熱的に安定であり、非線形光学性能が
優れた材料を使用した、効率的に動作する非線形光学素
子が得られる。
According to the present invention, it is possible to obtain an efficiently operating nonlinear optical element using a material that is thermally stable and has excellent nonlinear optical performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の有機非線形光学素子の説明
図、第2図は本発明中の非線形光学媒体の一例である2
−ニトロ−9−フルオレノンのTO−DSC曲線である
。 1・・・レーザ光、3・・・薄膜状の有機非線形光学媒
体。
FIG. 1 is an explanatory diagram of an organic nonlinear optical element according to an embodiment of the present invention, and FIG. 2 is an example of a nonlinear optical medium according to the present invention.
- TO-DSC curve of nitro-9-fluorenone. 1... Laser light, 3... Thin film organic nonlinear optical medium.

Claims (1)

【特許請求の範囲】 1、非線形光学効果を利用して光変調を行う非線形光学
素子に於いて、 非線形光学媒質が、フルオレノン及びその誘導体よりな
ることを特徴とする有機非線形光学素子。 2、特許請求の範囲第1項において、 前記非線形光学媒質が、フルオレノン及びその誘導体を
側鎖及び主鎖に含んだ高分子よりなることを特徴とする
有機非線形光学素子。 3、特許請求の範囲第1項において、 前記非線形光学媒質が、組成物としてフルオレノン及び
その誘導体を含む高分子よりなることを特徴とする有機
非線形光学素子。
[Claims] 1. An organic nonlinear optical element that performs optical modulation using a nonlinear optical effect, characterized in that the nonlinear optical medium is made of fluorenone and its derivatives. 2. The organic nonlinear optical element according to claim 1, wherein the nonlinear optical medium is made of a polymer containing fluorenone and its derivatives in the side chain and main chain. 3. The organic nonlinear optical element according to claim 1, wherein the nonlinear optical medium is made of a polymer containing fluorenone and its derivatives as a composition.
JP62275768A 1987-11-02 1987-11-02 Organic nonlinear optical element Pending JPH01118823A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62275768A JPH01118823A (en) 1987-11-02 1987-11-02 Organic nonlinear optical element
EP88118238A EP0315140B1 (en) 1987-11-02 1988-11-02 Non-linear optical device
DE3854341T DE3854341T2 (en) 1987-11-02 1988-11-02 Nonlinear optical substance.
US07/711,414 US5176854A (en) 1987-11-02 1991-06-05 Non-linear optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62275768A JPH01118823A (en) 1987-11-02 1987-11-02 Organic nonlinear optical element

Publications (1)

Publication Number Publication Date
JPH01118823A true JPH01118823A (en) 1989-05-11

Family

ID=17560122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62275768A Pending JPH01118823A (en) 1987-11-02 1987-11-02 Organic nonlinear optical element

Country Status (1)

Country Link
JP (1) JPH01118823A (en)

Similar Documents

Publication Publication Date Title
Karna et al. Nonlinear optical materials: theory and modeling
Khoo et al. Self‐focusing of a low power cw laser beam via optically induced birefringence in a nematic liquid‐crystal film
US5176854A (en) Non-linear optical device
JPH01118823A (en) Organic nonlinear optical element
Hashimoto et al. Structures and non-linear optical properties of polar carotenoid analogues
JPH02126241A (en) Nonlinear optical element
JPH022535A (en) Organic nonlinear optical element
JPH02105116A (en) Nonlinear optical element
JPH01102530A (en) Organic nonlinear optical element
JPH01134436A (en) Nonlinear optical element
JPH01224733A (en) Nonlinear optical element
JPH01102529A (en) Organic nonlinear optical element
JPH01200337A (en) Nonlinear optical element
EP0315140B1 (en) Non-linear optical device
JPH06118462A (en) Organic nonlinear optical material
JPH04258928A (en) Organic nonlinear optical material
JPH01246530A (en) Organic nonlinear optical element
JPH07225402A (en) Organic nonlinear optical material and optical functional element using the same
JPH05303126A (en) Organic nonlinear optical material and nonlinear optical element using the material
JPH04345140A (en) Nonlinear optical material and optical function element formed by using this material
JPH06347846A (en) Organic nonlinear optical material and optical functional element using that
JPH0432822A (en) Nonlinear optical material containing aromatic ring
JPH0469624A (en) Nonlinear optical material
JPH0337631A (en) Nonlinear optical material
JPH06345713A (en) Molecular crystal