JPH01118756A - Scattered x-ray camera - Google Patents

Scattered x-ray camera

Info

Publication number
JPH01118756A
JPH01118756A JP62275826A JP27582687A JPH01118756A JP H01118756 A JPH01118756 A JP H01118756A JP 62275826 A JP62275826 A JP 62275826A JP 27582687 A JP27582687 A JP 27582687A JP H01118756 A JPH01118756 A JP H01118756A
Authority
JP
Japan
Prior art keywords
rays
scattering
ray
scattered
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62275826A
Other languages
Japanese (ja)
Inventor
Kenichi Okajima
健一 岡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62275826A priority Critical patent/JPH01118756A/en
Publication of JPH01118756A publication Critical patent/JPH01118756A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Radiography Using Non-Light Waves (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

PURPOSE:To depict a subject as a high-contrast image by providing shielding bodies which are disposed near an X-ray detector and allow passage of only the scattering rays of specific angles as well as a mechanism which moves the X-ray source, the respective shielding body and the X-ray detector relatively to the subject. CONSTITUTION:The X-rays generated from an X-ray tube 11 are condensed by the shielding bodies 12, 13 to a pencil beam. The pencil beam X-ray is projected on the subject 14 and is partly absorbed in the subject 14 and is, in some cases, partly scattered by the same. The scattered components include the Thomson scattering having coherency and the Compton scattering having no coherency. The Compton scattering does not reflect the structure of materials. The Thomson scattering reflects the structure of materials and possesses the scattering peaks having the scattering angles specific to the respective materials; therefore, the shielding bodies 18, 19 made of lead which allows passage of only the scattering rays of the specific scattering angles to the X-ray detector 16 are disposed. The subject is thus depicted as the high-contrast image.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はX線撮影装置に係り、特に散乱X線を検出する
ことにより、従来コントラスト差が小さく識別が国運で
あった組織を、高コントラスト像として描出するに好適
な散乱X線撮影装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an X-ray imaging device, and in particular, by detecting scattered X-rays, it is possible to highly identify tissues with a small contrast difference and for which identification was conventionally difficult. The present invention relates to a scattering X-ray imaging device suitable for rendering a contrast image.

[従来の技術〕 従来の装置は、ラデイオロジイ第148巻、第1号(1
983)、第259頁から第264頁(Radioro
gy、 vol、148. Ncl(1983) 、 
pp259−264)に記載のように、X線源からのX
線を被写体に照射し、透過するX線を二次元又は−次元
センサで検出することにより画像情報を得ていた。被写
体での散乱X線は、画像上でのボケ要因となるため、グ
リッドやスリットで除去し。
[Prior art] The conventional device is described in Radiology Vol. 148, No. 1 (1
983), pp. 259 to 264 (Radioro
gy, vol, 148. Ncl (1983),
X-rays from an X-ray source, as described in
Image information was obtained by irradiating a subject with X-rays and detecting the transmitted X-rays with a two-dimensional or -dimensional sensor. Scattered X-rays from the subject cause blurring on the image, so they are removed using grids and slits.

非散乱成分のみを使って画像を得ていた。Images were obtained using only non-scattered components.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術では、被写体を透過するX線のみを検出す
るため、得られる画像のコントラスト(C)は、第4図
aのような被写体に対しては、組fil、2のX線吸収
係数差(Δμ)と対象物の大きさ(d)の積で与えられ
る。したがって、Δμ又はdのどちらか一方が小さくな
ると対象物の識別が困難となる。識別限界となるコント
ラストと対象物の大きさの関係は、コントラストデイテ
ールダイアグラム(Contrast Detail 
Diagran+ :CDD))  曲線で与えられ、
X線フィルム/増感紙をX線検出系とした場合第4図す
で与えられる。
In the above conventional technology, since only the X-rays that pass through the object are detected, the contrast (C) of the obtained image is as follows: (Δμ) and the size of the object (d). Therefore, if either Δμ or d becomes smaller, it becomes difficult to identify the object. The relationship between the contrast that serves as the discrimination limit and the size of the object is shown in a contrast detail diagram (Contrast Detail Diagram).
Diagran+ :CDD)) given by the curve,
When an X-ray film/intensifying screen is used as an X-ray detection system, the result is shown in Figure 4.

(コーエン他;メディカルフィジックス第8巻。(Cohen et al.; Medical Physics Vol. 8.

3号、pp358−367) ここで、5II1mの対象物を考えるとコントラスト差
で約1.5%が識別限界となり、吸収係数差では約0.
03 ”/Cal が限界となる。第1表に種々の材料
のX線吸収係数差を示すが、これより、上記条件下では
筋肉と脂肪相識の識別が困難であることがわかる。
(No. 3, pp. 358-367) Here, considering an object of 5II 1 m, the discrimination limit is about 1.5% for the contrast difference, and about 0.0% for the absorption coefficient difference.
The limit is 03''/Cal. Table 1 shows the differences in the X-ray absorption coefficients of various materials, and it can be seen from this that it is difficult to distinguish between muscle and fat under the above conditions.

本発明の目的は、散乱X線を使うことにより、従来コン
トラスト差が低くて識別が困難であった組織を高コント
ラストで描出することにより、病変を早期の段階で発見
できるX線診断装置を提供することにある。
The purpose of the present invention is to provide an X-ray diagnostic device that can detect lesions at an early stage by using scattered X-rays to visualize tissues with high contrast, which were conventionally difficult to identify due to low contrast differences. It's about doing.

第1表 各種物質のX線吸収係数 〔作用〕 水、筋肉、脂肪、骨、鍵、脳白質、脳灰白質。Table 1: X-ray absorption coefficients of various substances [Effect] Water, muscle, fat, bone, keys, brain white matter, brain gray matter.

水、アクリル、ポリカーボネイト、ポリスチレン。Water, acrylic, polycarbonate, polystyrene.

ポリエチレン及びナイロンからのコヒーレント散乱X線
の散乱微分断面積(パーディング他;ジャーナル・オブ
・オプティカル・ソサイアデイ・オブ・アメリカ、第4
巻、5号、933−944゜1987年)を第5図a 
= fに示す、コヒーレントな散乱X線は各物質の構造
を反映し、持定の散乱角において最大の散乱確率を持つ
。なお、図中横軸XはX線の波数ベクトルの変化で、次
式で与えられる。
Differential scattering cross section of coherently scattered X-rays from polyethylene and nylon (Purding et al.; Journal of Optical Society of America, Vol. 4
Volume, No. 5, 933-944゜1987) is shown in Figure 5a.
The coherent scattered X-rays shown as = f reflect the structure of each substance and have a maximum scattering probability at a certain scattering angle. Note that the horizontal axis X in the figure represents the change in the wave number vector of X-rays, which is given by the following equation.

X=−sin(θ/2)  。X=-sin(θ/2).

λ だだし、θは散乱角で先はX線の波長を意味する。これ
より、小角散乱の場合はXは散乱角に近似的に比例する
ことがわかる。ここで、散乱角を脂肪のピーク位置に合
せると散乱確率は脂肪と筋肉で約2:1となりコントラ
ストは透過X線の場合と異なり、対象物の大きさに依存
せず、2:1のコントラスト差が得られる。
λ However, θ is the scattering angle and the first means the wavelength of the X-ray. From this, it can be seen that in the case of small-angle scattering, X is approximately proportional to the scattering angle. Here, when the scattering angle is adjusted to the peak position of fat, the scattering probability is approximately 2:1 between fat and muscle, and unlike the case of transmitted X-rays, the contrast does not depend on the size of the object, and the contrast is 2:1. You get the difference.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図を用いて説明する。第
1図aは全体構成を示す。X線管11から発生したX線
は遮蔽体12,13によりペンシルビームとなる。遮蔽
体12.13は部分的にX線を通過させる構造を持ち、
詳細は後述する。さらに、その素材は、X線を完全に遮
蔽しなければならないため、一般に鉛、タングステン、
ウラン。
An embodiment of the present invention will be described below with reference to FIG. FIG. 1a shows the overall configuration. X-rays generated from the X-ray tube 11 are turned into a pencil beam by the shields 12 and 13. The shielding body 12.13 has a structure that partially allows X-rays to pass through,
Details will be described later. In addition, the material must completely shield X-rays, so it is typically lead, tungsten,
uranium.

などの重金属が使用される0本実施例では経済性を考慮
して鉛を使用する。次に、ペンシルビームX線は被写体
14に照射され、その一部は被写体で吸収され、また、
一部は散乱される場合もある。
In this embodiment, lead is used in consideration of economic efficiency. Next, the pencil beam X-rays are irradiated onto the subject 14, some of which are absorbed by the subject, and
Some may be scattered.

残りの成分は被写体と相互作用しないため、そのまま進
む。
The remaining components do not interact with the subject and therefore proceed as is.

ここで、散乱成分は干渉性のあるトムソン散乱と干渉性
のないコンプトン散乱があり、コンプトン散乱は、物質
の構造を反映しない、一方トムソン散乱は物質の構造を
反映し、ビーム進行方向に各物質特有の散乱角を持った
散乱ピークを持つので、持定の散乱角の散乱線のみをX
線検出器16に通過させる鉛の遮蔽体18.19を配置
する。
Here, the scattered components include coherent Thomson scattering and non-coherent Compton scattering. Compton scattering does not reflect the structure of the material, while Thomson scattering reflects the material structure, and each material in the beam traveling direction Since the scattering peak has a specific scattering angle, only the scattered rays at a fixed scattering angle can be
A lead shield 18,19 is placed through which the ray detector 16 passes.

なお、上述したように、鉛以外の重金属材料の使用も可
能である6 また、本実施例の場合、遮蔽板18.19で散乱角を規
定したが、ペンシルビームを使用するため、X線検出器
開口で散乱角を規定することも可能である。そのため、
遮蔽板18.19は、必ずしも必要ではない。
As mentioned above, it is also possible to use heavy metal materials other than lead.6 In addition, in the case of this example, the scattering angle was defined by the shielding plates 18 and 19, but since a pencil beam is used, the X-ray detection It is also possible to define the scattering angle by the vessel opening. Therefore,
The shielding plates 18,19 are not absolutely necessary.

次に二次元画像を得る方法について述べる。制御装置1
7でX線ペンシルビームを図面垂直方向に走査し、かつ
被写体14が乗る台15を矢印方向に走査することによ
り二次元画像情報を逐次情報として得る。
Next, a method for obtaining two-dimensional images will be described. Control device 1
7, the X-ray pencil beam is scanned in the direction perpendicular to the drawing, and the table 15 on which the subject 14 is placed is scanned in the direction of the arrow, thereby obtaining two-dimensional image information as sequential information.

次にペンシルビームを作るX線遮蔽体12゜13の構造
の1例を図面を用いて説明する。第1図すはX線遮蔽体
をX線が入射する方向から見た図である。12は、鉛板
2枚からなるスリットである。13は円形鉛板の1部を
X線が通過するようにしたもので、制御回路17により
一方向に回転する構造となる。二つのX線遮蔽板12.
13スリツトの共通部分のみX線が通過し、ペンシルビ
ームが得られる。さらに円形遮蔽板13を回転すること
により、X線ビームの走査が行なわれる。
Next, an example of the structure of the X-ray shields 12 and 13 that create the pencil beam will be explained with reference to the drawings. FIG. 1 is a view of the X-ray shield viewed from the direction in which X-rays are incident. 12 is a slit made of two lead plates. Reference numeral 13 designates a part of a circular lead plate through which X-rays pass, and is configured to be rotated in one direction by a control circuit 17. Two X-ray shielding plates 12.
X-rays pass only through the common portion of the 13 slits, resulting in a pencil beam. Further, by rotating the circular shielding plate 13, scanning of the X-ray beam is performed.

なお、スリット幅が画像の空間分解能を規定するため、
狭いほど良い、しかし、狭くするとX線ビーム強度が低
下するため、計測時間が長くなったり、大容量のX線管
球が必要となり、実用的と言えなくなる0本実施例では
、その妥協点として0 、5〜2 m、好ましくは1.
0mとした。
In addition, since the slit width defines the spatial resolution of the image,
The narrower it is, the better.However, as the narrower it becomes narrower, the X-ray beam intensity decreases, which increases measurement time and requires a large-capacity X-ray tube, making it impractical.In this example, as a compromise, 0.5-2 m, preferably 1.
It was set to 0m.

次に、X線検出器16の構造の一例を第1図Cを用いて
説明する。遮蔽体18.19で被写体からの散乱X線の
散乱角を規定する。散乱X線はX線の強度情報を光強度
に変換するシンチレータ20.22.で検出する。さら
に、非散乱線も同様にシンチレータ21で検出し、従来
の非散乱線画像も得られる。使用するシンチレータ20
゜21.22は、一般にTQ又はNa付活のN a I
 。
Next, an example of the structure of the X-ray detector 16 will be explained using FIG. 1C. The shielding bodies 18 and 19 define the scattering angle of scattered X-rays from the subject. Scattered X-rays are collected by a scintillator 20.22 that converts X-ray intensity information into light intensity. Detect with. Furthermore, non-scattered radiation is similarly detected by the scintillator 21, and a conventional non-scattered radiation image can also be obtained. Scintillator used 20
゜21.22 is generally TQ or Na-activated Na I
.

CsI等のアルカリハライド系蛍光体、BaFC1!:
Eu”+などの希土類元素付活アルカリ土類金属フルオ
ロハライド蛍光体、CaWOa、GdzOzS(Pr、
Ce、F)などの無機シンチレータが使用される0本実
施例では、X線に対する阻止能と発光効率を考慮し、G
dzOzS(P r、Cs、F)を使用する。
Alkali halide phosphor such as CsI, BaFC1! :
Rare earth element-activated alkaline earth metal fluorohalide phosphors such as Eu”+, CaWOa, GdzOzS (Pr,
In this example, an inorganic scintillator such as Ce, F), etc. is used.
Use dzOzS(P r, Cs, F).

X線がシンチレータ20,21.22に入射することに
より発生する蛍光は透光性の高いライトガイド23,2
4.25で光検出器26,27゜28で光電変換される
。散乱X線情報は2系統得られるため加算回路28で加
算される。散乱線及び非散乱線の情報は、以後従来の情
報収集装置及び画像処理装置で処理され、散乱線画像、
非散乱線画像の二面像を得る。本構成におけるライトガ
イド23,24.25はオプティカルファイバや導光性
シート材の熱加工により得られる。ここでは、光伝達効
率の高いアクリルシートを使用した。
Fluorescence generated when X-rays enter the scintillators 20, 21, 22 is absorbed by the highly translucent light guides 23, 2.
At 4.25, the light is photoelectrically converted by the photodetectors 26, 27 and 28. Since two systems of scattered X-ray information are obtained, they are added by an adding circuit 28. The information on scattered radiation and non-scattered radiation is then processed by a conventional information collection device and image processing device to create a scattered radiation image,
Obtain a dihedral image of the non-scattered radiation image. The light guides 23, 24, and 25 in this configuration are obtained by thermal processing of optical fibers or light-guiding sheet materials. Here, an acrylic sheet with high light transmission efficiency was used.

さらに、光検出器26,27.28は、光電子増倍管、
フォトダイオードなどから選択される。ここでは、大口
径でかつ増幅作用のある光電子増倍管を使用する。X線
検出器16の別の例を第1図dに示す。シンチレータ2
0,21.22からの蛍光は非晶質光導電材料からなる
長尺の光検出器29.30.31で検出され電気信号に
変換される。散乱線情報を与える光検出器29.31の
出力は加算回路28で加算され単一の散乱線情報とする
Furthermore, the photodetectors 26, 27, 28 include photomultiplier tubes,
Selected from photodiodes, etc. Here, a photomultiplier tube with a large diameter and an amplifying effect is used. Another example of the X-ray detector 16 is shown in FIG. 1d. scintillator 2
The fluorescence from 0, 21, 22 is detected by a long photodetector 29, 30, 31 made of an amorphous photoconductive material and converted into an electrical signal. The outputs of the photodetectors 29 and 31 that provide scattered radiation information are added together in an adding circuit 28 to form a single piece of scattered radiation information.

次に、本発明の他の実施例の全体構成を第2図aに示す
、X線管11から発生したX線は遮蔽体201によりフ
ァン・ビームとなる。ファンビームX線は被写体14と
相互作用し一部は吸収され一部は散乱される。散乱線、
非散乱線は各々−次元ラインセンサーから成る。X線検
出器202で検出される。さらに散乱角をより厳密に規
定するためにスリット状の遮蔽体18.19をX繰出器
202近傍に配置しても良い。二次元画像は、ファンビ
ームX線を被写体14に対し体軸方向に走査することに
より得られる。すなわち、被写体14が乗る台15をフ
ァンビームに対して垂直方向に制御回路17で移動する
ことにより得られる。
Next, the overall configuration of another embodiment of the present invention is shown in FIG. The fan beam X-rays interact with the object 14, and some are absorbed and some are scattered. scattered rays,
The unscattered lines each consist of a -dimensional line sensor. It is detected by the X-ray detector 202. Furthermore, slit-shaped shields 18 and 19 may be placed near the X feeder 202 in order to more precisely define the scattering angle. The two-dimensional image is obtained by scanning the subject 14 with fan beam X-rays in the body axis direction. That is, it is obtained by moving the platform 15 on which the subject 14 is placed in a direction perpendicular to the fan beam using the control circuit 17.

また、X線管11に対する負荷を軽減するため、制御回
路17により、パルスX線を発生する。
Further, in order to reduce the load on the X-ray tube 11, the control circuit 17 generates pulsed X-rays.

x1!検出器202の一例を第2図すを用いて説明する
。散乱線及び非散乱線は一次元のアレイセンサー203
,204,205で検出される。X方向でm番目のX線
センサー(203−m、204−m、205−m)はそ
れぞれ位置情報を持ち、このうち203−mと205−
mは散乱X線を検出し、204− mは非散乱X線を検
出する。
x1! An example of the detector 202 will be explained using FIG. 2. Scattered radiation and non-scattered radiation are detected by a one-dimensional array sensor 203.
, 204, 205. The m-th X-ray sensors (203-m, 204-m, 205-m) in the X direction each have position information, and among these, 203-m and 205-m
m detects scattered X-rays and 204-m detects unscattered X-rays.

203−mと205−mは、同一位置での散乱線情報を
持つので、加算回路206−mで加算を行い、場所mで
の散乱線情報Ismを得る。各センサ位置での散乱情報
(Is)と非散乱線情報(Ip)は、以後従来の情報収
集装置及び画像処理装置で処理され、散乱線画像、非散
乱線画像の二画像を得る。ここで、各X線センサーは、
シンチレータを光検出器を組み合せたものや、SitH
gIz+Cd T e 、 G a A sなどの半導
体からなる半導体検出器が使用できる。
Since 203-m and 205-m have scattered ray information at the same position, addition circuit 206-m performs addition to obtain scattered ray information Ism at location m. The scattered information (Is) and non-scattered radiation information (Ip) at each sensor position are then processed by a conventional information collection device and image processing device to obtain two images: a scattered radiation image and a non-scattered radiation image. Here, each X-ray sensor is
A scintillator combined with a photodetector, a SitH
A semiconductor detector made of a semiconductor such as gIz+CdTe, GaAs, etc. can be used.

次に本発明の別の実施例の全体構成を第3図aに示す。Next, the overall configuration of another embodiment of the present invention is shown in FIG. 3a.

Xm管11から発生したX線は遮蔽体301によって複
数のファンビームになる。各ファンビームxiは被写体
14と相互作用し、一部は吸収され、一部は散乱される
。散乱線、非散乱線は各々実時間計が可能で二次元のX
線検出器302で検出される。さ己に散乱角を規定する
ため、X線検出器302の近傍にスリット状遮蔽体30
3〜314を配置する。二次元の画像は被写体14の乗
っている台15をファンビームX線に対して垂直方向に
制御回路17で走査することにより得られる。ここで、
実時間計測が可能な二次元X線センサー302としては
X線イメージインテンシファイアを使用する。
X-rays generated from the Xm tube 11 are converted into a plurality of fan beams by the shield 301. Each fan beam xi interacts with the object 14, with some being absorbed and some being scattered. Scattered radiation and non-scattered radiation can each be measured in real time, and two-dimensional X
It is detected by the line detector 302. A slit-shaped shield 30 is placed near the X-ray detector 302 in order to define the scattering angle by itself.
3 to 314 are placed. A two-dimensional image is obtained by scanning a table 15 on which a subject 14 is placed by a control circuit 17 in a direction perpendicular to the fan beam X-rays. here,
An X-ray image intensifier is used as the two-dimensional X-ray sensor 302 capable of real-time measurement.

得られる画像は第3図すのように非散乱線情報の左右に
散乱線の情報が得られる。散乱成分を加算することによ
り、ある走査位置での散乱線情報と非散乱線情報の相方
が得られる。さらに走査は少くともファンビームX線の
間だけ行えば良い。
The resulting image has scattered radiation information on the left and right sides of non-scattered radiation information, as shown in Figure 3. By adding the scattered components, a combination of scattered radiation information and non-scattered radiation information at a certain scanning position can be obtained. Furthermore, scanning only needs to be performed at least during fan beam X-rays.

また、X線管球11に対する負荷を軽減するため、制御
回路17によりパルスX線を発生する。
Further, in order to reduce the load on the X-ray tube 11, the control circuit 17 generates pulsed X-rays.

本発明では、X線源としてX線管球を用いたが他の光源
、例えばSOR(シンクロトロン オービタル ラジェ
ーション: 5yncrotron 0rbitalR
adiation )光や放射性同位元素の使用も可能
である。
In the present invention, an X-ray tube is used as the X-ray source, but other light sources may be used, such as SOR (synchrotron orbital radiation).
(a) It is also possible to use light or radioactive isotopes.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、散乱X線を検出することにより、従来
コントラスト差が小さく識別が困難であった組織を高コ
ントラスト像として描出できる。
According to the present invention, by detecting scattered X-rays, tissues that have conventionally been difficult to identify due to a small contrast difference can be visualized as a high-contrast image.

さらに、従来方式の画像も同時に撮ることが可能である
ため、散乱線画像の低S/Nという欠点を補うことが可
能となる。
Furthermore, since conventional images can also be taken at the same time, it is possible to compensate for the drawback of low S/N of scattered radiation images.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは本発明の一実施例の概略側断面図、第1図す
は本実施例のペンシルビームX線を作るX線遮蔽体を示
す平面図、第1図Cは本実施例でのX線検出器の構造を
示す斜視図、第1図dは本実施例での別のX線検出器の
構造を示す斜視図、第2図aは本発明の別の実施例の概
略側断面図、第2図すは本実施例のX線検出器の構造を
示す斜視図、第3図aは本発明の別の実施例の概略側断
面図、第3図すは非散乱線と散乱線の存在位置を示す説
明図、第4図aは対象物のコントラスト評価のための組
織のモデル図、第4図すはCOD曲線図、第5図a ”
 fは各材料のコヒーレントX線に対する散乱微分断面
積を示す図である。 11・・・X線管、12,13,201,301・・・
X百 1 図 (71L) CC) (f) 第 2 図 (α) (しシ ネ3図 (t2.ン (b) 4L置 竿 4 図 (a、) Tす喝pグ勿d!イ盃 (憑4フシ)
Fig. 1a is a schematic side sectional view of one embodiment of the present invention, Fig. 1 is a plan view showing an X-ray shield for producing pencil beam X-rays of this embodiment, and Fig. 1C is a schematic side sectional view of an embodiment of the present invention. FIG. 1d is a perspective view showing the structure of another X-ray detector in this embodiment, and FIG. 2a is a schematic side view of another embodiment of the present invention. 2 is a perspective view showing the structure of the X-ray detector of this embodiment, FIG. 3a is a schematic side sectional view of another embodiment of the present invention, and FIG. An explanatory diagram showing the location of scattered rays, Figure 4a is a tissue model diagram for evaluating the contrast of an object, Figure 4 is a COD curve diagram, and Figure 5a is
f is a diagram showing the differential scattering cross section of each material for coherent X-rays. 11...X-ray tube, 12, 13, 201, 301...
X100 1 Figure (71L) CC) (f) Figure 2 (α) (Shishine 3 Figure (t2.n (b) 4L rod 4 Figure (a,) Possessed 4 fushi)

Claims (1)

【特許請求の範囲】[Claims] 1、X線を発生するX線源、該X線の一部を除去する遮
蔽体、該遮蔽体の間隙を通してX線を透過させた後、被
験体に照射した時発生するコヒーレント散乱X線と被験
体と相互作用をせずに透過して来るX線のそれぞれを検
出するX線検出器、かつ/または、該X線検出器の近傍
に配置され持定の角度の散乱線のみを通過する遮蔽体、
及び該X線源、各遮蔽体、X線検出器を被験体に対し、
相対的に移動する機構を設けたことを特徴とする散乱X
線撮影装置。
1. An X-ray source that generates X-rays, a shield that removes a portion of the X-rays, and coherent scattered X-rays that are generated when the X-rays are transmitted through gaps in the shield and then irradiated to the subject. An X-ray detector that detects each of the transmitted X-rays without interacting with the subject, and/or an X-ray detector that is placed near the X-ray detector and allows only scattered rays at a predetermined angle to pass through. shield,
and the X-ray source, each shield, and the X-ray detector to the subject,
Scattering X characterized by having a mechanism for relative movement
Ray imaging device.
JP62275826A 1987-11-02 1987-11-02 Scattered x-ray camera Pending JPH01118756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62275826A JPH01118756A (en) 1987-11-02 1987-11-02 Scattered x-ray camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62275826A JPH01118756A (en) 1987-11-02 1987-11-02 Scattered x-ray camera

Publications (1)

Publication Number Publication Date
JPH01118756A true JPH01118756A (en) 1989-05-11

Family

ID=17560966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62275826A Pending JPH01118756A (en) 1987-11-02 1987-11-02 Scattered x-ray camera

Country Status (1)

Country Link
JP (1) JPH01118756A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008544256A (en) * 2005-06-16 2008-12-04 トゥー‐シックス・インコーポレイテッド Energy discrimination scattering imaging system
CN105702312A (en) * 2015-11-06 2016-06-22 同方威视技术股份有限公司 Beam guide device and radiation checking device comprising the beam guide device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008544256A (en) * 2005-06-16 2008-12-04 トゥー‐シックス・インコーポレイテッド Energy discrimination scattering imaging system
CN105702312A (en) * 2015-11-06 2016-06-22 同方威视技术股份有限公司 Beam guide device and radiation checking device comprising the beam guide device

Similar Documents

Publication Publication Date Title
US5150394A (en) Dual-energy system for quantitative radiographic imaging
US7869569B2 (en) System for quantitative radiographic imaging
US5825032A (en) Radiographic apparatus and image processing method
US5181234A (en) X-ray backscatter detection system
CN108351425B (en) Apparatus and method for simultaneous X-ray imaging and gamma photon imaging with stacked detectors
US3790785A (en) Radiographic imaging
JPS59145983A (en) Detector for energy discriminating radiation and its method
JP2000510729A (en) System for quantitative radiation imaging
JPH01500968A (en) Tomographic image forming method and device
GB2066016A (en) Radiography apparatus
JPS59131151A (en) Roentgen ray pickup device and method in which radiating scattering is compensated
JPH06237927A (en) Radiographic device
CA2083064C (en) X-ray backscatter detection system
EP0556901B1 (en) Apparatus for detecting high energy radiation
JPH01118756A (en) Scattered x-ray camera
JP3880033B2 (en) Radiographic inspection of objects with crystal lattices.
JPS60249040A (en) Radiation picture photographing device
JPS5910870A (en) Method for inspecting radioactive isotopic element
JPS602241A (en) Computer tomographic apparatus
WO2023141209A1 (en) X-ray imaging with energy sensitivity
EP0041084A1 (en) Radiation scanning method and apparatus
JPH087389B2 (en) Method for energy subtraction of X-ray image and laminate used in the method
JPH06285057A (en) X-ray transmission image photographing device
CA1131805A (en) Radiography apparatus
JPS59222783A (en) Radiation detecting apparatus