JPH01118619A - Polyurethane based conjugate fiber - Google Patents

Polyurethane based conjugate fiber

Info

Publication number
JPH01118619A
JPH01118619A JP27133187A JP27133187A JPH01118619A JP H01118619 A JPH01118619 A JP H01118619A JP 27133187 A JP27133187 A JP 27133187A JP 27133187 A JP27133187 A JP 27133187A JP H01118619 A JPH01118619 A JP H01118619A
Authority
JP
Japan
Prior art keywords
polyurethane
polyurethane elastomer
composite
component
sheath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27133187A
Other languages
Japanese (ja)
Other versions
JPH0340125B2 (en
Inventor
Soichiro Tanaka
田中 創一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP27133187A priority Critical patent/JPH01118619A/en
Publication of JPH01118619A publication Critical patent/JPH01118619A/en
Publication of JPH0340125B2 publication Critical patent/JPH0340125B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a polyurethane based supple conjugate fiber, having high degree of crimpability and rich in stretchability, by arranging and joining a crosslinked polyurethane elastomer as a core and polyamide as a sheath in a fiber cross section. CONSTITUTION:The aimed conjugate fiber, obtained by preferably adding and melt blending a polyisocyanate as a crosslinking agent with a polyurethane elastomer, such as polyester based polyurethane or polycaprolactone based polyurethane, arranging and joining the crosslinked polyurethane elastomer as a core component to a polyamide, such as nylon, as a sheath component having an eccentric sheath-core type conjugate spinneret and suitable as a raw yarn for stockings. Furthermore, the above-mentioned polyurethane elastomer has a dissolution weight reduction ratio of <=80% for DMF.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自己捲縮性のポリウレタン系複合繊維に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a self-crimping polyurethane composite fiber.

(従来の技術) ポリアミドとポリウレタン弾性体とが単一フィラメント
の横断面内で偏心的に複合されたフィラメントは、優れ
た自己捲縮を有することが知られている。
(Prior Art) It is known that a filament in which a polyamide and a polyurethane elastomer are eccentrically composited within the cross section of a single filament has excellent self-crimping properties.

これらの複合フィラメントは、ポリアミド成分としてポ
リカプラミドをはじめ、融点140〜280℃のホモボ
リアミド並びにコポリアミドを使用し、一方ポリウレタ
ン弾性体としては、ポリオールとして、ポリアルキレン
オキシドグリコール、ポリテトラメチレングリコールな
どを用いるポリエーテル系ポリウレタン、二塩基酸とグ
リコールからなるポリエステル系ポリウレタン、あるい
はむ−カブロラクトンの開環重合により得られるポリカ
プロラクトン系ぼりウレタンを使用したものである(特
公昭47−18052号公報、特公昭49−48498
号公報、特公昭49−10288号公報、特公昭55−
86725号公報)。
These composite filaments use polycapramide, homobolyamide and copolyamide with a melting point of 140 to 280°C as the polyamide component, while the polyurethane elastomer uses polyalkylene oxide glycol, polytetramethylene glycol, etc. as the polyol. It uses ether polyurethane, polyester polyurethane made of dibasic acid and glycol, or polycaprolactone polyurethane obtained by ring-opening polymerization of cabrolactone. 48498
Publication No. 49-10288, Publication No. 10288, Special Publication No. 1988-
86725).

ところが、これらの重合体を複合紡糸したフィラメント
は、両成分の接着力が不十分な為、製糸加工工程、ある
いは製品着用中に屈曲や摩擦により両成分が剥離し、性
能が低下してしまう欠点が有る。
However, filaments made by composite spinning of these polymers have the disadvantage that the adhesion between the two components is insufficient, resulting in the two components peeling off due to bending or friction during the spinning process or when the product is worn, resulting in a decrease in performance. There is.

両成分の接着力を高め耐剥離性を改良した複合フィラメ
ントとしては、ポリカルボン酸ポリ炭酸エステル系ポリ
ウレタン、ポリ炭酸エステル系ウレタンとポリカプロラ
クトン系ウレタンとの混合物又はブロック共重合物、ポ
リ炭酸エステル系ウレタンとポリエーテル系ウレタンあ
るいはポリエステル系ウレタンとの混合物又はブロック
共重合物を芯成分とし、ポリカブラミドを鞘成分とする
偏心的芯鞘型複合フィラメントが知られている(特公昭
55−22569号公報、特公昭56−22570号公
報、特公昭57−84869号公報、特公昭57−84
870号公報)。これらの複合糸は、ポリカプラミドの
アマイド結合に強い親和力を有するポリ炭酸エステルを
ソフトセグメントの主成分にして、ポリカプラミドとポ
リウレタン成分の接着力を高めると同時に、ポリカプラ
ミドがポリウレタンを包み込む偏心的芯鞘構造にするこ
とにより、両成分の接着面積の拡大を計り、両成分の耐
剥離性を向上させている。
Composite filaments with increased adhesion of both components and improved peel resistance include polycarboxylic acid polycarbonate polyurethane, mixtures or block copolymers of polycarbonate urethane and polycaprolactone urethane, and polycarbonate urethane. Eccentric core-sheath type composite filaments are known in which the core component is a mixture or block copolymer of urethane and polyether urethane or polyester urethane, and the sheath component is polycabramide (Japanese Patent Publication No. 55-22569, Japanese Patent Publication No. 56-22570, Japanese Patent Publication No. 84869, Japanese Patent Publication No. 57-84
Publication No. 870). These composite yarns use polycarbonate ester, which has a strong affinity for the amide bonds of polycapramide, as the main component of the soft segment, increasing the adhesive strength between the polycapramide and polyurethane components, and at the same time creating an eccentric core-sheath structure in which the polycapramide wraps around the polyurethane. By doing so, the adhesive area of both components is expanded and the peeling resistance of both components is improved.

しかしながら、これらの複合糸は両成分の耐剥離性は改
良されているが、通常のサイドバイサイド型の複合糸に
比較して、捲縮発現力並びに捲縮の伸張回復性に劣る欠
点が有る。すなわち、これらの複合糸は、ポリウレタン
成分の収縮力が、ポリカプラミドのそれより大きいこと
により、ポリウレタン成分を内側とするスパイラル捲縮
を発現するが、断面形状が偏心芯鞘構造の為、ポリウレ
タン成分を包み込んでいるポリカブラ2ドの薄皮部分が
ポリウレタン成分の収縮力を阻害する為、捲縮性能が低
くなる。
However, although these composite yarns have improved peeling resistance of both components, they have the disadvantage that they are inferior in crimp development ability and stretch recovery properties of crimps compared to ordinary side-by-side type composite yarns. In other words, these composite yarns exhibit spiral crimp with the polyurethane component on the inside because the shrinkage force of the polyurethane component is greater than that of polycapramide, but because the cross-sectional shape has an eccentric core-sheath structure, the polyurethane component The thin skin of the encasing polycabra 2 impedes the shrinkage force of the polyurethane component, resulting in poor crimp performance.

(発明が解決しようとする問題点) 本発明の目的は、ポリアミドとポリウレタンからなる複
合繊維において、ポリウレタン弾性体に予め、ポリイソ
シアネート化合物などの架橋剤を添加、混合することに
より達成することができ、2成分の耐剥離性が優れてい
るのみならず、優れた捲縮性能を有する複合繊維を提供
することにある。
(Problems to be Solved by the Invention) The object of the present invention can be achieved by adding and mixing a crosslinking agent such as a polyisocyanate compound in advance to a polyurethane elastomer in a composite fiber made of polyamide and polyurethane. The object of the present invention is to provide a composite fiber having not only excellent peeling resistance of two components but also excellent crimp performance.

(問題点を解決するための手段) すなわち本発明は、繊維横断面において、架橋されたポ
リウレタン弾性体を芯にポリアミドを鞘にし、かつ偏心
的に配置接合してなる自己捲縮性のポリウレタン系複合
繊維である。
(Means for Solving the Problems) That is, the present invention provides a self-crimping polyurethane system in which a cross-linked polyurethane elastic core is used as a core, a polyamide is used as a sheath, and the fibers are eccentrically arranged and bonded in a cross-section. It is a composite fiber.

従来知られているポリウレタン−ポリアミド系複合繊維
の中で、サイドバイサイド型の場合、捲縮発現性は優れ
ているが、複合側成分の接着性が不十分であるため、製
糸加工工程あるいは製品着用中に屈曲及び摩耗により剥
t1や物性の低下をきたす欠点がある。
Among the conventionally known polyurethane-polyamide composite fibers, the side-by-side type has excellent crimp development, but the adhesion of the composite side component is insufficient, making it difficult to use during the spinning process or during product wearing. However, there is a drawback that bending and abrasion cause peeling t1 and deterioration of physical properties.

又、ポリウレタンを偏心とするキドニー型においては、
ポリアミドがポリウレタンを完全に包み込んでいるため
、両成分の剥離の問題はないものの、高収縮率ポリウレ
タンと低収縮率ボリア【ドの収縮′率差によって生じる
捲縮発現力が劣るという欠点がある。
In addition, in the kidney type with eccentric polyurethane,
Since the polyamide completely envelops the polyurethane, there is no problem with the two components peeling off, but there is a drawback that the crimp development force caused by the difference in shrinkage rate between the high shrinkage rate polyurethane and the low shrinkage rate boria is inferior.

本発明によれば、溶融紡糸時に、ポリイソシアネート化
合物を熱可塑性ポリウレタン弾性体に溶融混合し、ポリ
ウレタン部を芯に、ポリアミドを鞘に偏心的に配置接合
せしめることにより、ポリウレタン弾性体中及びポリア
ミドとポリウレタン弾性体の接合面に架橋構造を発生さ
せるので、捲縮発現性に優れ、複合側成分の接着性良好
な複合繊維を得ることができる。
According to the present invention, during melt spinning, a polyisocyanate compound is melt-mixed into a thermoplastic polyurethane elastomer, and the polyurethane portion is eccentrically arranged and bonded to the sheath with the polyurethane portion as the core, thereby forming a polyisocyanate compound in the polyurethane elastomer and the polyamide. Since a crosslinked structure is generated on the joint surface of the polyurethane elastic body, it is possible to obtain a composite fiber with excellent crimp development and good adhesion of the composite side component.

本発明に使用する架橋剤としては、ジイソシアネート化
合物あるいはポリイソシアネート化合物を例示すること
ができ、分子内に2個以上のイソシアネート基を有する
化合物であり、カルボン−イミド変性ポリイソシアネー
ト化合物、イソシアネート基がアルコキシ基やフェノキ
シ基でブロックされてアロハネート基を形成している化
合物で、分子量400以下のものが好ましい。
Examples of the crosslinking agent used in the present invention include diisocyanate compounds or polyisocyanate compounds, which are compounds having two or more isocyanate groups in the molecule, carbon-imide-modified polyisocyanate compounds, and isocyanate groups that are alkoxy A compound blocked with a group or a phenoxy group to form an allophanate group, and preferably has a molecular weight of 400 or less.

本発明方法の紡糸に好適な熱可塑性ポリウレタン弾性体
は、シ蓼アー硬度人の測定規格JI8  K2SO3に
従って測定した硬度が90〜100のポリウレタン弾性
体で、ポリエステル系ポリウレタン、ポリカプロラクト
ン系ポリウレタン、ポリカーボネート系ポリウレタンな
どが好ましい。硬度が90以下のポリウレタン弾性体は
、ポリカプラミドとの溶融粘度の均衡が取りにくく、安
定紡糸出来ないので、好ましくない。
The thermoplastic polyurethane elastomer suitable for spinning in the method of the present invention is a polyurethane elastomer having a hardness of 90 to 100 measured according to the Shear Hardness Human Measurement Standard JI8 K2SO3, such as polyester polyurethane, polycaprolactone polyurethane, or polycarbonate polyurethane. Polyurethane and the like are preferred. A polyurethane elastomer having a hardness of 90 or less is not preferred because it is difficult to balance the melt viscosity with polycapramide and stable spinning cannot be performed.

本発明で使用するボリア【ドとしてはポリカブラミド、
ナイロン66及びこれらを主成分とする共重合体を例示
することができるが、ポリカブラミドで98%硫酸IQ
QmJに試料IIを溶解し、25℃で測定した相対粘度
が2.0〜2.60の範囲のものが好ましい。相対粘度
が、2.0より小さいポリカブラ【ド重合体では複合紡
糸の際に糸切れが多発する。あるいは得られた複合フィ
ラメントは強伸度が低く、実用性がないなどの理由で好
ましくない。一方、相対粘度が2.60より大きいポリ
カブラミド重合体は、溶融粘度が高過ぎる為、ポリウレ
タン弾性体と安定して紡糸出来ず不適当である。特に、
相対粘度2.0〜2.60のカブラミドから成る複合フ
ィラメントは強伸度特性並びに耐摩耗性に1れており、
好ましい複合糸である。
The boria used in the present invention is polycabramide,
Examples include nylon 66 and copolymers containing these as main components, but polycabramide with 98% sulfuric acid IQ
It is preferable to have a relative viscosity in the range of 2.0 to 2.60 when sample II is dissolved in QmJ and measured at 25°C. Polycabra polymers with a relative viscosity of less than 2.0 frequently break during composite spinning. Alternatively, the obtained composite filament has low strength and elongation, which is not preferred because it is not practical. On the other hand, a polycabramide polymer having a relative viscosity of more than 2.60 is unsuitable because its melt viscosity is too high and cannot be stably spun with a polyurethane elastomer. especially,
Composite filaments made of Cabramid with a relative viscosity of 2.0 to 2.60 have excellent elongation properties and abrasion resistance.
A preferred composite yarn.

本発明においては、熱可塑性ブリウレタン弾性体と架橋
剤、例えばポリイソシアネート化合物とを、溶融混合し
、それとは別に溶融したポリアミドを複合紡糸方法にて
偏心芯鞘型に配置接合させる。尚、ポリウレタン弾性体
にポリイソシアネート化合物を混合する方法としては、
固体状のポリウレタン弾性体に混合後、押出機に供給し
て混練する方法あるいは、溶融状態のポリウレタン弾性
体に添加する方法などがある。
In the present invention, a thermoplastic polyurethane elastomer and a crosslinking agent, such as a polyisocyanate compound, are melt-mixed, and separately, molten polyamide is arranged and bonded in an eccentric core-sheath type using a composite spinning method. In addition, as a method of mixing a polyisocyanate compound into a polyurethane elastomer,
There are methods such as mixing it into a solid polyurethane elastomer and then feeding it into an extruder and kneading it, or adding it to a molten polyurethane elastomer.

熱可塑性ポリウレタンに対する架橋剤、例えばポリイソ
シアネート化合物の混合量は、混合物中のイソシアネー
ト基量で、熱可塑性ポリウレタン弾性体に対し、0.8
〜8.0mm号が好ましく、0.5〜1.0重量にがさ
らに好ましい。0.8重量%より少ない場合は、架橋添
加剤の効果が充分ではなく、他方、3.0重量9σ以上
では、ぼりウレタン弾性体の溶融粘度が低下し、紡糸が
不安定になる。
The amount of crosslinking agent, such as a polyisocyanate compound, mixed with the thermoplastic polyurethane is 0.8 based on the amount of isocyanate groups in the mixture, based on the thermoplastic polyurethane elastomer.
~8.0 mm is preferable, and 0.5~1.0 weight is more preferable. If it is less than 0.8% by weight, the effect of the crosslinking additive will not be sufficient. On the other hand, if it is 3.0% by weight or more, the melt viscosity of the urethane elastomer will decrease and spinning will become unstable.

本発明では、溶融複合紡糸して捲取った未延伸糸を室温
で24時間以上二一ジングした後、延伸するのが望まし
い。このエージング時間中に、ポリウレタン弾性体に混
合したポリイソシアネート化合物が°、ポリウレタン弾
性体中のウレタン結合と反応して架橋構造を形成する。
In the present invention, it is desirable that the undrawn yarn obtained by melt-spinning and winding is subjected to stretching at room temperature for 24 hours or more, and then drawn. During this aging time, the polyisocyanate compound mixed in the polyurethane elastomer reacts with the urethane bonds in the polyurethane elastomer to form a crosslinked structure.

複合、amを形成するポリウレタン弾性体のポリイソシ
アネート化合物による架橋反応の進行状況は、溶剤に対
する溶解性で捉えることが出来、架橋反応の進行と共に
溶剤に対する溶解性が減少してくる。本発明では、ポリ
ウレタン弾性体成分のジメチルホルムアミド(以後DM
Fと略す)に対する溶解減少率が80重量に息下にする
のが好ましく、40〜80Tx量%がより好ましい。こ
れにより、耐剥離性に優れ、弛緩熱処理後の捲縮性に優
れた複合繊維が得られ、本発明の目的が最もよく達成さ
れるからである。尚、架橋反応は、未延伸糸状態で進行
させるのが望ましく、延伸後における架橋反応の(大幅
な)進行は、ポリウレタン成分の収縮力が低下して捲縮
性能が向上に不利となる。
The progress of the crosslinking reaction of the polyurethane elastomer forming the composite am by the polyisocyanate compound can be understood by the solubility in the solvent, and as the crosslinking reaction progresses, the solubility in the solvent decreases. In the present invention, dimethylformamide (hereinafter DM) as a polyurethane elastomer component is used.
It is preferable that the dissolution reduction rate relative to F (abbreviated as F) is 80% by weight, and more preferably 40 to 80% by weight of Tx. This is because a composite fiber having excellent peeling resistance and excellent crimpability after relaxation heat treatment can thereby be obtained, and the object of the present invention can be best achieved. Note that it is desirable that the crosslinking reaction proceed in the undrawn state of the yarn, and if the crosslinking reaction proceeds (significantly) after drawing, the shrinkage force of the polyurethane component will decrease, which will be disadvantageous to improving the crimp performance.

本発明に於いて、ポリウレタン成分のDMHに対する溶
解減少率とは、複合繊維約10.9を採取し重量を測定
した後、浴比1:50の割合いで、80℃のDMFに複
合糸を撹拌しながら1時間浸漬してポリウレタン成分を
溶解させた後、十分に水洗風乾して、重量を測定し、下
記式にて算出した値をいう。
In the present invention, the dissolution reduction rate of a polyurethane component in DMH is defined as the rate of decrease in dissolution of a polyurethane component in DMH by sampling approximately 10.9 composite fibers, measuring their weight, and then stirring the composite fibers in DMF at 80°C at a bath ratio of 1:50. After soaking for 1 hour to dissolve the polyurethane component, the sample was thoroughly washed with water and air-dried, the weight was measured, and the value was calculated using the following formula.

Wo:DMF処理処理役合糸の重量 Wl:DMF処理後   l α : 複合糸中のポリウレタン成分の!(l比率DM
Fは、ポリウレタン弾性体に対する良溶媒で、はとんど
全ての熱可塑性ポリウレタン弾性体は溶解してしまう。
Wo: Weight of DMF-treated yarn Wl: After DMF treatment l α: Weight of polyurethane component in composite yarn! (l ratio DM
F is a good solvent for polyurethane elastomers, and almost all thermoplastic polyurethane elastomers are dissolved therein.

ところが、本発明においては、ポリウレタン弾性体成分
は架橋構造になっている為、DMFに対する溶解性が減
少している。DMFに対する溶解減少率はポリウレタン
弾性体中の架橋密度の尺度となり、架橋密度が高い程、
溶解減少率は増大する。
However, in the present invention, since the polyurethane elastomer component has a crosslinked structure, its solubility in DMF is reduced. The dissolution reduction rate in DMF is a measure of the crosslink density in the polyurethane elastomer, and the higher the crosslink density, the more
The dissolution reduction rate increases.

(発明の効果) 本発明の捲縮を有するポリウレタン系複合繊維は、ポリ
ウレタン弾性体に架橋剤を添加することにより、従来の
キドニー型に比べ高い捲縮性能を有し、ボリアミドとぼ
りウレタンの接着性と繊維の耐yQ1粍性が大きく改警
されている。また本発明の繊維は、高度な捲縮性を持ち
、しなやかで伸縮性に富み、ストッキング用原糸として
最適である。
(Effect of the invention) The crimped polyurethane composite fiber of the present invention has higher crimping performance than the conventional kidney type by adding a crosslinking agent to the polyurethane elastomer, and the polyurethane conjugate fiber has a higher crimp performance than the conventional kidney type The durability and yQ1 corrosion resistance of fibers have been greatly improved. Furthermore, the fibers of the present invention have a high degree of crimpability, are flexible and highly elastic, and are optimal as yarn for stockings.

(実施例) 以下に、実施例を用いて更に詳細な説明を行う。(Example) A more detailed explanation will be given below using examples.

捲縮特性の項目中、収縮率、伸張率及び耐摩耗性は次の
ように測定した。
Among the items of crimp properties, shrinkage rate, elongation rate, and abrasion resistance were measured as follows.

未延伸糸を延伸〜弛緩熱処理した後、糸を太さ約100
0デニール、長さ約5 Q CmOカセ状にし、ioy
/ciの荷重をかけ、この長さを原長10とする。次に
IIの荷重をかけ、沸騰水中で10分間捲縮発現処理を
行ない、−昼夜放置後、1jiの荷重をつけたまま長さ
(l!t)を測定する。収縮率は、下記(2)式に従い
算出される。
After the undrawn yarn is subjected to stretching and relaxation heat treatment, the yarn is reduced to a thickness of approximately 100 mm.
0 denier, length approximately 5 Q CmO skein shape, ioy
A load of /ci is applied and this length is set as the original length 10. Next, a load of II is applied, a crimping treatment is performed in boiling water for 10 minutes, and after being left for day and night, the length (l!t) is measured with a load of 1ji applied. The shrinkage rate is calculated according to the following formula (2).

収縮率(8−Clo−jl)/VOX100    (
2)伸張率は、同様にカセ状にした試料に250mJの
荷重をつけ、沸騰水中で10分間処理し、−昼夜放置後
、原長(lりを測定し、さらに1(1/dの荷重をかけ
、その長さC1s’)を測定することにより下記(3)
式から算出される。
Shrinkage rate (8-Clo-jl)/VOX100 (
2) The elongation rate was determined by applying a load of 250 mJ to a similarly shaped sample, treating it in boiling water for 10 minutes, and then measuring the original length (1/d) after leaving it for day and night. By multiplying and measuring the length C1s'), the following (3)
Calculated from the formula.

伸張率(%)−(/a−lx’)/l!1 x 100
   (3)耐摩耗性は、延伸〜弛緩熱処理後の繊維を
丸編みし、ある荷重にて連続的に摩耗を繰り返し、その
後の編物表面の2成分の剥離を顕微鏡にて観察して評価
した。○・・・剥離なし、△・・・剥離わずかに有り、
×・・・剥離有り。
Stretching rate (%)-(/a-lx')/l! 1 x 100
(3) Abrasion resistance was evaluated by circular knitting the fibers after the stretching and relaxation heat treatment, repeating continuous abrasion under a certain load, and observing the peeling of the two components on the surface of the knitted fabric using a microscope. ○: No peeling, △: Slight peeling,
×: Peeling.

実施例1 硬度95の熱可塑性ポリエステル系4リウレタン弾性体
ペレフト100部にポリイソシアネート化合物(この化
合物中には、イソシアネート基が10重ffi%含まれ
ている。)10部をペレット状で混合後、285℃で溶
融混合し、次いで公知の偏心芯鞘型複合紡糸口金を用い
て、ポリウレタン弾性体が芯成分、相対粘度2.85の
6ナイロンが鞘成分になる様、接合比率(体積)1:1
で複合紡糸した。なお、ポリウレタン弾性体に対するイ
ソシアネート基の添加量は1重量9ぎであった。捲取っ
た未延伸糸を、直ちに25℃、65%RHに温調された
部屋に持ち込み、捲取完了から、8゜12.24.86
.48.72時間後に、未延伸糸のDMFに対する溶解
減少率を測定するとともに、延伸〜弛緩熱処理を実施し
た。
Example 1 After mixing 100 parts of a thermoplastic polyester-based 4-urethane elastomer pellet with a hardness of 95 with 10 parts of a polyisocyanate compound (this compound contains 10% by weight of isocyanate groups) in the form of pellets, They were melted and mixed at 285°C, and then using a known eccentric core-sheath type composite spinneret, the polyurethane elastomer was used as a core component and nylon 6 with a relative viscosity of 2.85 was used as a sheath component, in a joining ratio (volume) of 1: 1
Composite spinning was performed. The amount of isocyanate groups added to the polyurethane elastomer was 9 mm per weight. Immediately bring the wound undrawn yarn to a temperature-controlled room at 25°C and 65% RH, and after winding is completed, 8° 12.24.86
.. After 48.72 hours, the dissolution reduction rate of the undrawn yarn in DMF was measured, and a stretching-relaxation heat treatment was performed.

表1から、未延伸糸におけるポリウレタン成分のDMF
に対する溶#減少率は未延伸糸エージング時間とともに
低下し、またDMF溶解減少率の低下とともに複合糸の
捲縮性能、耐剥離性が向上することがわかる。未延伸糸
エージング時間が24時間以上で延伸した繊維は、捲縮
性能、耐剥離性共に良好であり、DMF溶解性は80重
量%以下となる。
From Table 1, DMF of the polyurethane component in the undrawn yarn
It can be seen that the rate of decrease in melt number relative to the undrawn yarn decreases with aging time of the undrawn yarn, and that the crimp performance and peeling resistance of the composite yarn improve as the rate of decrease in DMF dissolution decreases. Fibers drawn with an undrawn yarn aging time of 24 hours or more have good crimp performance and peeling resistance, and have a DMF solubility of 80% by weight or less.

(以下余白) 実施例2 硬度95の熱可塑性ポリエステル系ポリウレタン弾性体
ペレット100部にポリイソシアネート化合物(この化
合物中には、イソシアネート基が10重量%含まれてい
る。)を、θ部、1部、8部、5部、10部、20部、
80部と変更し、ペレット状で混合後、285℃で溶融
混合し、次いで公知の偏心芯鞘型複合紡糸口金を用いて
、ポリウレタン弾性体が芯成分、相対粘度2.85の6
ナイロンが鞘成分になる様、接合比率1:1で複合紡糸
した。捲取つた未延伸糸を直ちに25℃。
(Leaving space below) Example 2 1 part of a polyisocyanate compound (this compound contains 10% by weight of isocyanate groups) was added to 100 parts of thermoplastic polyester-based polyurethane elastomer pellets with a hardness of 95 at θ parts. , 8 parts, 5 parts, 10 parts, 20 parts,
80 parts, mixed in the form of pellets, melt-mixed at 285°C, and then using a known eccentric core-sheath type composite spinneret, a polyurethane elastomer was used as the core component, and the relative viscosity was 2.85.
Composite spinning was performed at a bonding ratio of 1:1 so that nylon became the sheath component. Immediately heat the undrawn yarn to 25°C.

65%RHに温調された部屋に持ち込み、48時間後に
延伸〜熱処理を実施した。
The film was brought into a room whose temperature was controlled to 65% RH, and stretching and heat treatment were performed after 48 hours.

表2かられかるように、ポリイソシアネート化合物をイ
ソシアネート基でQ、8重ffiに以上添加したものは
、優れた捲縮性能、。耐剥離性を示す。添加量が3.0
重ffiにになると、ポリイソシアネート化合物添加に
よる粘度低下のため、紡糸がやや困難となる。
As can be seen from Table 2, those containing a polyisocyanate compound with an isocyanate group of Q, 8-fold ffi or more had excellent crimp performance. Shows peeling resistance. Addition amount is 3.0
When the ffi becomes heavy, spinning becomes somewhat difficult due to a decrease in viscosity due to the addition of a polyisocyanate compound.

ポリイソシアネート化合物の添加量は、イワシアネート
基で0.8〜8.0重量%が好ましく、紡糸も安定して
おり、得られた複合糸は、優れた捲縮性能と耐剥離性を
有する。
The amount of the polyisocyanate compound added is preferably 0.8 to 8.0% by weight based on sardine groups, the spinning is stable, and the obtained composite yarn has excellent crimp performance and peeling resistance.

表2Table 2

Claims (3)

【特許請求の範囲】[Claims] (1)繊維横断面において、架橋されたポリウレタン弾
性体を芯にポリアミドを鞘にし、かつ偏心的に配置接合
してなる自己捲縮性のポリウレタン系複合繊維。
(1) A self-crimping polyurethane composite fiber made of a cross-linked polyurethane elastic core and a polyamide sheath, which are eccentrically arranged and bonded in the fiber cross section.
(2)架橋がポリイソシアネート化合物による特許請求
の範囲第1項記載の繊維。
(2) The fiber according to claim 1, wherein the crosslinking is performed using a polyisocyanate compound.
(3)架橋されたポリウレタン弾性体のDMFに対する
溶解減少率が80重量%以下である特許請求の範囲第1
項記載の繊維。
(3) Claim 1, wherein the cross-linked polyurethane elastomer has a dissolution reduction rate of 80% by weight or less in DMF.
Fibers as described in Section.
JP27133187A 1987-10-27 1987-10-27 Polyurethane based conjugate fiber Granted JPH01118619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27133187A JPH01118619A (en) 1987-10-27 1987-10-27 Polyurethane based conjugate fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27133187A JPH01118619A (en) 1987-10-27 1987-10-27 Polyurethane based conjugate fiber

Publications (2)

Publication Number Publication Date
JPH01118619A true JPH01118619A (en) 1989-05-11
JPH0340125B2 JPH0340125B2 (en) 1991-06-18

Family

ID=17498562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27133187A Granted JPH01118619A (en) 1987-10-27 1987-10-27 Polyurethane based conjugate fiber

Country Status (1)

Country Link
JP (1) JPH01118619A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0349313A2 (en) * 1988-06-30 1990-01-03 Toray Industries, Inc. Polyurethane polyamide self-crimping conjugate fiber
WO1991005088A1 (en) * 1989-10-03 1991-04-18 Kanebo, Ltd. Composite elastic yarn and process for preparing the same
JP2698475B2 (en) * 1989-10-03 1998-01-19 鐘紡株式会社 Composite elastic yarn and method for producing the same
WO2000018995A2 (en) * 1998-09-30 2000-04-06 Kimberly-Clark Worldwide, Inc. Crimped polymeric fibers and nonwoven webs made therefrom with improved resiliency

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225873A (en) * 1975-08-25 1977-02-26 Mitsubishi Plastics Ind Method of fixing metal boss on polyamid resin moldings
JPS5226873A (en) * 1975-08-25 1977-02-28 Sharp Corp Voice announcing clock
JPS5522570A (en) * 1978-08-08 1980-02-18 Tokyu Car Corp Flap door automatic closer
JPS5527175A (en) * 1978-06-23 1980-02-27 Dow Chemical Co Phenylpropylamine benzoic acid derivative
JPS61132624A (en) * 1984-11-28 1986-06-20 Toray Ind Inc Conjugated fiber of high conductivity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5225873A (en) * 1975-08-25 1977-02-26 Mitsubishi Plastics Ind Method of fixing metal boss on polyamid resin moldings
JPS5226873A (en) * 1975-08-25 1977-02-28 Sharp Corp Voice announcing clock
JPS5527175A (en) * 1978-06-23 1980-02-27 Dow Chemical Co Phenylpropylamine benzoic acid derivative
JPS5522570A (en) * 1978-08-08 1980-02-18 Tokyu Car Corp Flap door automatic closer
JPS61132624A (en) * 1984-11-28 1986-06-20 Toray Ind Inc Conjugated fiber of high conductivity

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0349313A2 (en) * 1988-06-30 1990-01-03 Toray Industries, Inc. Polyurethane polyamide self-crimping conjugate fiber
WO1991005088A1 (en) * 1989-10-03 1991-04-18 Kanebo, Ltd. Composite elastic yarn and process for preparing the same
JP2698475B2 (en) * 1989-10-03 1998-01-19 鐘紡株式会社 Composite elastic yarn and method for producing the same
WO2000018995A2 (en) * 1998-09-30 2000-04-06 Kimberly-Clark Worldwide, Inc. Crimped polymeric fibers and nonwoven webs made therefrom with improved resiliency
WO2000018995A3 (en) * 1998-09-30 2000-05-25 Kimberly Clark Co Crimped polymeric fibers and nonwoven webs made therefrom with improved resiliency
US6528439B1 (en) 1998-09-30 2003-03-04 Kimberly-Clark Worldwide, Inc. Crimped polymeric fibers and nonwoven webs made therefrom with improved resiliency

Also Published As

Publication number Publication date
JPH0340125B2 (en) 1991-06-18

Similar Documents

Publication Publication Date Title
EP0446377B1 (en) Composite elastic yarn and process for preparing the same
US5352518A (en) Composite elastic filament with rough surface, production thereof, and textile structure comprising the same
WO2003008681A1 (en) Elastic, heat and moisture resistant bicomponent and biconstituent fibers
AU2002320481A1 (en) Elastic, heat and moisture resistant bicomponent and biconstituent fibers
EP0397121B1 (en) Elastic polyurethane fiber
JP2018024973A (en) High-strength cloth consisting of fixed-compressibility elastic fiber of thin gauge
EP0496888B1 (en) Composite elastic filament, production thereof, and fibrous structure comprising the same
US5164262A (en) Polyurethane polyamide self-crimping conjugate fiber
JPH01118619A (en) Polyurethane based conjugate fiber
JPH0791693B2 (en) Polycapramide-polyurethane elastic composite filament and method for producing the same
JPS62268818A (en) Production of conjugate fiber
JPH04316646A (en) New elastic fabric
JPS61132627A (en) Production of conjugated fiber
JP2786514B2 (en) Composite yarn and stockings
JP3305915B2 (en) Method for producing polyurethane / polyamide composite elastic fiber
JPS6221820A (en) Polyurethane based multicomponent fiber
JP3133610B2 (en) Method for producing PU / PA concentric composite elastic fiber
JP2503105B2 (en) Elastic fiber
KR930005105B1 (en) Method for preparation of elastic fiber having a high shrink grading
JPH02264024A (en) Latently bulky acrylic mixed yarn
JPH0280616A (en) Polyurethane-polycapramide based conjugate fiber
JPH06330459A (en) Composite elastic yarn having rib and production of the composite yarn
JPH11323661A (en) Polyester filament and its production
JPH0138887B2 (en)
JPH0931752A (en) Incompatible polyurethane multi-component fiber