JPH01117649A - Multi field reversible phase permanent magnet rotary machine - Google Patents

Multi field reversible phase permanent magnet rotary machine

Info

Publication number
JPH01117649A
JPH01117649A JP27286887A JP27286887A JPH01117649A JP H01117649 A JPH01117649 A JP H01117649A JP 27286887 A JP27286887 A JP 27286887A JP 27286887 A JP27286887 A JP 27286887A JP H01117649 A JPH01117649 A JP H01117649A
Authority
JP
Japan
Prior art keywords
magnetic
pole
magnetic field
permanent magnet
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27286887A
Other languages
Japanese (ja)
Inventor
Kanichiro Sugano
菅野 寛一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP27286887A priority Critical patent/JPH01117649A/en
Publication of JPH01117649A publication Critical patent/JPH01117649A/en
Pending legal-status Critical Current

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PURPOSE:To obtain a permanent magnet rotary machine, by blocking magnetism having opposite polarity from that of a magnetizing pole through repelling magnetism of an intermediate counter-field magnet. CONSTITUTION:A counter-field permanent magnet 56 is mounted between a rotor magnetizing pole 35 and S, N poles 36, 37 of a rotor magnetic disc. The permanent magnet 56 functions as a repelling field for blocking magnetism. The rotor magnetizing pole 35 constitutes a rotary field pattern magnetizing pole through the magnetism of a rotor permanent magnet 40. Magnetism receiving/feeding position varies as the rotor rotates and the magnetizing pole is converted into a magnetic polarity corresponding to rotary pattern so as to constitute a rotary field having rotary field phase. S and N polarity supply poles 29, 30 are interlocked to slide each other so as to enable field control of forward rotation, reverse rotation and stopping position thus providing respective field rotary operation.

Description

【発明の詳細な説明】 〔発明の利用技術分野〕 この発明は、多磁界相可逆永久磁石回転機に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of Application of the Invention] The present invention relates to a multi-magnetic field phase reversible permanent magnet rotating machine.

〔従来技術と発明が解決しようとする問題点〕従来、永
久磁石回転機は、回転磁界に於ける磁極性の転換方法に
幾多の苦心がなされ、未だに、解決が見られなかった。
[Prior Art and Problems to be Solved by the Invention] Conventionally, in permanent magnet rotating machines, many efforts have been made to find a method for changing the magnetic polarity in a rotating magnetic field, and no solution has yet been found.

発表された中には、開放磁気回路で、磁極性の片側を利
用する等、問題点の多い方法が採られていたり、これで
も、回転するのか等、疑問があるものがあった。磁気の
性質を安易に理解したとしても、電気理論に慣らされた
対処方法に問題が秘められ、実験の域を脱していなかっ
たのである。磁気理論は、電気理論に置換して推論出来
るが、磁気理論の基本原理は、電気理論と一線を画すも
のがあり、運用を誤るならば、磁気回転機として、その
指針を完遂出来なくなる。磁気技術に関しては、納得さ
せる為に、電気理論に置換した手段であり、独自にある
磁気基本原理は、物理理論と共に、併合尊重しながら、
磁気関係技術を運用する事が大切と言える。磁気理論は
、完遂された理論として扱われているが、未解決の分野
もあって、運用面で更に混乱をさせており、実用化に大
きく妨げとしているのが現状の様である。科学の進歩過
程にある、あらゆる技術分野に於いても、同様な問題点
を抱え、各担当技術者はこれらに向けて鋭意努力を続け
ているのである。最近、急浮上して来た超伝導技術は、
従来概念を全く変える物質究明を強いられる方法が執ら
れ、原理を根本から見直す情況にあり、原点から改めて
出発し直すなど、新たな理論追及のため、世界中の技術
者が競って研究している程である。磁気理論も、未解決
の部分が多くあり、最近技術では、磁極性のモノボール
に関する研究が盛んに行なわれ、単磁極性理論の存在を
証明する研究が進められている。磁気理論分野に関して
は、未だに確たる理論は確立していないまま、我々は実
用化に取り組む他ないのである。磁石の組成、理論は、
暗中模・索的にあり、試作的に数えきれない種類の磁石
が、作られている事でも明白てあらう。磁気理論を電気
的に推論している為に、偏りの理論に終始する結果と考
えるのである。固定概念に拠る技術開発は禁物であり、
自由発想で考案を為す技術者にとって、磁気理論も、逆
手に利用する事で、新たなヒントも生まれる。永久磁石
を用いた回転エネルギー源は、石油消耗の燃焼機関と違
い、純粋なりリーン動力源で、大気汚染が無く、遅々と
改善の進まない環境悪化で、我々を苦しめながら、便利
に活用されている自動車機関を駆逐する事が出来る。限
りある石油資源を、末永く利用する為にも、永久磁石に
よる回転エネルギー源は、緊急に必要なものと言える。
Among the presentations, there were some that adopted methods with many problems, such as using one side of the magnetic polarity in an open magnetic circuit, and others that raised questions, such as whether they would still rotate. Even if the properties of magnetism were easily understood, there were hidden problems in the methods used to deal with it based on electrical theory, and it remained beyond the realm of experimentation. Magnetic theory can be inferred by replacing it with electrical theory, but the basic principles of magnetic theory are distinct from electrical theory, and if used incorrectly, the magnetic rotating machine will not be able to fulfill its guidelines. Regarding magnetic technology, in order to convince people, it is a means of substituting electric theory, and the unique basic principles of magnetism are integrated and respected with physical theory.
It can be said that it is important to use magnetic technology. Magnetism theory is treated as a completed theory, but there are still unresolved areas, which further confuses operational aspects and currently appears to be a major hindrance to practical application. Similar problems are encountered in all technical fields in the process of scientific progress, and the engineers in charge continue to make earnest efforts to solve them. Superconducting technology, which has recently emerged rapidly,
Technologists from all over the world are competing in research to pursue new theories, such as methods that force researchers to investigate materials that completely change conventional concepts and fundamentally reconsider principles. There are so many. There are many unresolved aspects of magnetic theory, and in recent years, research on magnetically polarized monoballs has been actively conducted, and research is underway to prove the existence of monomagnetic polarity theory. In the field of magnetic theory, no solid theory has yet been established, and we have no choice but to work toward practical application. The composition and theory of magnets are
This is clearly evidenced by the fact that countless types of magnets have been produced in the dark and as prototypes. Since magnetic theory is inferred electrically, it is thought that the result is based on the theory of bias. Technological development based on fixed concepts is prohibited,
For engineers who come up with ideas through free thinking, magnetic theory can also be used to their advantage to generate new hints. Unlike oil-consuming combustion engines, rotary energy sources using permanent magnets are pure and lean power sources, and they do not pollute the air, making us suffer from environmental deterioration that is slow to improve. It is possible to eliminate the automobile engine that is in use. In order to utilize limited petroleum resources for a long time, it can be said that a rotational energy source using permanent magnets is urgently needed.

日進月歩と言われても、最近急浮上の超伝導技術による
エネルギーに全面依存するには、常温伝導の研究が未完
であり、相当の期間を費やす為に、緊急時に望む事は、
当分無理てあらう。実現性の確実を求めるならば、永久
磁石エネルギーは、我々の身近くに存在する、この上無
い安全と、大きな特徴を生かせる考案、発明は、多くの
期待に充分答える事が出来るものである。永久磁石回転
機搭載の自動車は、従来のガソリン機関より、優れた幾
多の特徴や、利点を持ち、この価値は数段上回るものに
なる。小形構造であっても、消耗エネルギーの電力、限
りある石油資源を全く必要としない永久磁石エネルギー
源は、公害問題の多い自動車機関にとって代わる最大の
技量を発揮出来る。従来、不可能とされ、永久磁石回転
機の回転方法にあった諸問題点を、磁気技術の基礎理論
を是正確立する事により、−層の技術進歩を速められる
。早急な実現化をと、各界から、多くの強い要望にも答
えられる。実用化に移行する永久磁石回転機応用面の波
及効果は、各方面に渉り、計り知れない進歩の約束が出
来る。本発明による、永久磁石回転機は、同様構想にあ
る各技術担当者の参考にも、一つの方法、構成に拠る、
多磁界相可逆永久磁石回転機を提供せんとするものであ
る。
Although it is said that progress is being made rapidly, the research on room temperature conduction is still incomplete and will take a considerable amount of time to rely entirely on the energy generated by the rapidly emerging superconducting technology.
I won't be able to do it for the time being. If we are looking for certainty of feasibility, permanent magnet energy exists all around us, and ideas and inventions that can take advantage of the supreme safety and great features can fully meet many expectations. Vehicles equipped with permanent magnet rotating machines have many superior features and advantages over conventional gasoline engines, making them much more valuable. Even though it has a small structure, a permanent magnet energy source that does not require any consumable electricity or limited petroleum resources can demonstrate its greatest potential as an alternative to automobile engines, which have many pollution problems. By correcting and establishing the basic theory of magnetic technology, it is possible to accelerate technological progress in the negative layer by correcting and establishing the basic theory of magnetic technology, which was previously thought to be impossible. We have responded to many strong requests from all walks of life to make this a reality as soon as possible. The ripple effects of the application of permanent magnet rotating machines that are put into practical use will extend to various fields and promise immeasurable progress. The permanent magnet rotating machine according to the present invention is based on one method and configuration for the reference of various technical personnel who have the same concept.
The present invention aims to provide a multi-magnetic field phase reversible permanent magnet rotating machine.

〔発明の目的〕[Purpose of the invention]

本発明は、以上の点に鑑みなされたもので、多磁界相可
逆永久磁石回転機に関するものである。
The present invention was made in view of the above points, and relates to a multi-magnetic field phase reversible permanent magnet rotating machine.

〔問題点を解決するための手段と作用〕本発明は、永久
磁石の多磁界相磁気回転パターンで、構成する磁極構造
を、磁気供給極の摺連動制御可能な反転磁極構成に転換
し、磁化極えの反対磁極性磁気を、中間にある反磁界用
磁石の反発磁気で遮断し、回転磁界相パターンの磁化極
に流入する反対磁極性磁気を阻止する構造を特徴とする
。回転磁界相に於ける、反発域と吸引域の面積を、摺連
動の磁気供給極により磁気供給を制御、反発磁界と吸引
磁界の磁気を変え、回転トルクに対応させる。更に、製
作仕様により、回転相を、4磁界相より6磁界相、8磁
界相、12磁界相等に設定し、回転角度を15度より5
度〔実施例〕に微細分する事で、回転トルク角を極度に
上昇させ得る構成を選定出来る。磁気供給位置を固定界
磁極の磁気に対応する位置にすると、磁気吸引が強まり
、回転を停止する。停止前後の位置では、磁界の強度を
変えられ、正回転及び逆回転時の回転トルクを制御出来
る。製作仕様に拠る回転性能で、高速回転向きには、4
磁界相、6磁界相を、高回転トルク用は、8磁界相、1
2磁界相等の回転パターン構成を推奨出来るものになる
。磁化極の磁気受給部を、磁化極幅の半分に切削し、磁
気供給時の磁気極性転換に有利な構造にする特徴をなし
、従来の、永久磁石回転機に於ける、最大堆関であった
磁気極性転換を、この方法で解決するしのである。磁気
供給は、磁気円板と磁化極間を広くとり、摺連動の磁気
供給極で、橋渡しの形で磁気を供給する。磁化極間に磁
石を配設し、磁気円板の磁気極性と同極性磁気で対向さ
せ、反発磁界を構成する。この/)に、磁化極とは、遮
断された状態になり、回転磁界パターンの磁化を助長す
る]]的を達成出来る。多磁界相同転パターンの磁極構
成を反転磁極構成に転換し、固定界磁極、回転【磁極共
に、谷磁極の外側、又は、内側に永久磁石を複数個装着
するっ製作仕様に応じた磁気線lrXに匹敵“ケる組み
合わ仕で、強力、分布状態を考慮した構造にしている。
[Means and effects for solving the problems] The present invention converts the magnetic pole structure of a multi-magnetic field phase magnetic rotation pattern of permanent magnets into an inverted magnetic pole structure that can control sliding interlocking of magnetic supply poles, and It is characterized by a structure in which the opposite magnetic polarity magnetism of the poles is blocked by the repulsive magnetism of the demagnetizing field magnet located in the middle, and the opposite magnetic polarity magnetism flowing into the magnetization poles of the rotating magnetic field phase pattern is blocked. Magnetic supply is controlled by sliding interlocking magnetic supply poles to control the areas of the repulsion and attraction regions in the rotating magnetic field phase, and the magnetism of the repulsion and attraction fields is changed to correspond to the rotational torque. Furthermore, depending on the manufacturing specifications, the rotation phase is set from 4 magnetic field phases to 6 magnetic field phases, 8 magnetic field phases, 12 magnetic field phases, etc., and the rotation angle is changed from 15 degrees to 5 degrees.
By finely dividing the angle into degrees (example), it is possible to select a configuration that can extremely increase the rotational torque angle. When the magnetic supply position is set to a position corresponding to the magnetism of the fixed field pole, magnetic attraction becomes stronger and rotation is stopped. At the positions before and after stopping, the strength of the magnetic field can be changed, and the rotational torque during forward and reverse rotation can be controlled. The rotation performance depends on the manufacturing specifications, and for high speed rotation, 4
Magnetic field phase, 6 magnetic field phases, for high rotation torque, 8 magnetic field phases, 1
A rotation pattern configuration such as two magnetic field phases can be recommended. The magnetic receiving part of the magnetized pole is cut to half the width of the magnetized pole, making it advantageous for changing the magnetic polarity when supplying magnetism. This method solves the problem of magnetic polarity reversal. For magnetic supply, there is a wide gap between the magnetic disk and the magnetized pole, and magnetic supply poles are slidingly interlocked to supply magnetism in the form of a bridge. A magnet is disposed between the magnetized poles and is opposed with the same polarity as the magnetic polarity of the magnetic disk to form a repulsive magnetic field. At this time, the magnetization poles are cut off and the magnetization of the rotating magnetic field pattern is promoted. Convert the magnetic pole configuration of the multi-magnetic field phase synchronization pattern to an inverted magnetic pole configuration, and install a fixed field pole and a rotating magnetic pole (for both the magnetic poles, multiple permanent magnets are attached to the outside or inside of the valley magnetic pole). It has a structure that takes into account the strength and distribution state of the product.

これらの方法により、磁石の効率を損なわず、漏洩磁気
も少ない、磁気減衰防止策になる。本発明の、多磁界相
永久磁石回転機は、反磁界と、磁界相回転方法で構成す
るため、反磁界による磁気減衰対策は尊重しなければな
らない。永久磁石の選別は、これ等を考慮し、最適品種
を厳選する事は、これらを意味する訳である。磁気回転
機で、永久磁石の選定を誤ると折角の目的を達成出来な
くなる為、特に注意を要するものである。本発明は、主
要目的を、移動機関としており、永久磁石回転機単体で
なく、複合連装で利用するので、繊細制御可能な機構を
備え、大口径、強回転トルク、高速回転等の条件を満た
す製作仕様を要求される。この為、低速より高速回転の
条件をクリヤーする機構を特徴としているのである。用
途により、対応する種別に限界はない為に、小口径より
大口径、大形機に至る多種類まで、実用化の範囲は広く
、何よりも、最大特徴である資源消耗の全く無い、多磁
界相可逆永久磁石回転機を提供せんとするものである。
These methods provide measures to prevent magnetic attenuation that do not impair the efficiency of the magnet and cause less magnetic leakage. Since the multi-magnetic field phase permanent magnet rotating machine of the present invention is constructed using a demagnetizing field and a magnetic field phase rotation method, measures against magnetic attenuation due to the demagnetizing field must be respected. The selection of permanent magnets takes these factors into consideration, and the selection of the most suitable types means these things. For magnetic rotating machines, special care must be taken because if the permanent magnets are selected incorrectly, the intended purpose will not be achieved. The main purpose of the present invention is as a mobile engine, and since it is used not as a single permanent magnet rotating machine but as a complex combination, it has a mechanism that allows delicate control, and satisfies conditions such as large diameter, strong rotational torque, and high speed rotation. Manufacturing specifications are required. For this reason, it features a mechanism that satisfies the conditions for high speed rotation rather than low speed. There is no limit to the types that can be used depending on the application, so the scope of practical application is wide, from small diameter to large diameter, and large machines. Above all, the most important feature is the multi-magnetic field, which does not consume resources at all. The present invention aims to provide a reversible permanent magnet rotating machine.

〔実施例〕〔Example〕

この発明を、実施例の図面を参照しながら、説明をする
。第1図〔構造、二断面図〕は、第2図〔固定界磁極。
This invention will be explained with reference to drawings of embodiments. Figure 1 [Structure, two sectional views] is similar to Figure 2 [Fixed field pole.

二面図〕及び、第3゜4図〔磁気供給極。回転子磁極構
成。二面図〕の各裁断面図示線の断面を示すものである
。更に、主軸を中心とする半裁断面で示している。第1
図〔56−反磁界用永久磁石〕は、第1図〔35−回転
子磁化極〕と第1図(36o37=回転子磁気円板、S
磁極用。N磁極用〕との間に装着する。磁気的に、反発
磁界に働き、磁化極とも、反発し、磁気用1Fの動作を
させる。第1図〔35−回転子磁化−〕は、第1図〔2
9゜3〇−磁気供給極、S磁極用。N磁極用〕より、第
1図〔40=回転子用永久磁石〕の磁気で、回転磁界パ
ターンの磁化極を構成する。回転子回転と共に、磁気受
給位置が変わり、磁化極は、回転パターンに応じた磁気
極性に転換し、回転磁界用の回転磁界を構成する。
Two views] and Figure 3.4 [Magnetic supply pole. Rotor magnetic pole configuration. FIG. Furthermore, it is shown as a half-cut cross section centered on the main axis. 1st
Figure [56-Permanent magnet for demagnetizing field] is shown in Figure 1 [35-Rotor magnetization pole] and Figure 1 (36o37 = rotor magnetic disk, S
For magnetic poles. for N magnetic pole]. Magnetically, it acts on a repulsive magnetic field and repels the magnetization poles, causing a magnetic 1F operation. Figure 1 [35-Rotor magnetization-] is shown in Figure 1 [2
9゜3〇-Magnetic supply pole, for S magnetic pole. For the N magnetic pole], the magnetization poles of the rotating magnetic field pattern are constituted by the magnetism of FIG. 1 [40 = permanent magnet for rotor]. As the rotor rotates, the magnetic reception position changes, and the magnetization poles change to magnetic polarity according to the rotation pattern, forming a rotating magnetic field for the rotating magnetic field.

第1図〔29゜30・・磁気供給極〕はS磁極用。Figure 1 [29°30...magnetic supply pole] is for S magnetic pole.

N磁極用共に摺連動して、正回転。逆回転。停止1+?
、置の磁界制御を可能とし、それぞれの磁界回転動作を
させろ。第1図〔17゜23−固定界磁々北極。界磁極
用永久磁石〕と対応する、第1図〔35−回転子磁化極
〕は、第9図〔4磁界相。6磁界相。8磁界相=正回転
始動位置磁界関係展開説明図〕に示す回転磁界パターン
を構成、反発と吸引11合組みの磁界回転トルクを発生
する。逆回転時、及び、停止−は、第8図〔8磁界相。
Both for N magnetic pole are slidingly interlocked and rotate forward. back reverse. Stop 1+?
, make it possible to control the magnetic field of each position, and make each magnetic field rotate. Figure 1 [17°23-Fixed field magnetic north pole. FIG. 1 [35-rotor magnetization pole] corresponding to the field pole permanent magnet] corresponds to FIG. 9 [4 magnetic field phase]. 6 magnetic field phase. The rotating magnetic field pattern shown in 8 Magnetic Field Phases = Positive Rotation Start Position Magnetic Field Relationship Development Explanation Diagram] is configured, and a magnetic field rotation torque of 11 combinations of repulsion and attraction is generated. During reverse rotation and when stopped, see Figure 8 [8 Magnetic field phase].

逆回転始動位置磁界関係展開説明図〕、第6図〔8磁界
相。回転停止F位置展開説明図〕及び、摺連動制御動作
説明図に示す様に、停止位置より、逆方向に摺連動して
、逆回転速度をコントロールする。第9図〔各磁界用。
Reverse rotation starting position magnetic field relationship development explanatory diagram], Fig. 6 [8 magnetic field phases. As shown in the rotation stop F position development explanatory diagram] and the sliding interlock control operation explanatory diagram, the reverse rotation speed is controlled by sliding interlocking in the opposite direction from the stop position. Figure 9 [For each magnetic field.

正回転始動位置磁界関係展開説明・図〕に、4磁界相。Forward rotation starting position magnetic field relationship development explanation/diagram] shows 4 magnetic field phases.

6磁界相。8磁界相の、固定界磁極と対応する、各磁界
用に於ける回転子磁化極の磁界関係を示している。この
為、各磁界用の磁化極の回転進角度は、4磁界相=15
度。6磁界相−1〇度。8磁界相−7,5度。毎に磁気
極性が転換することになる。磁界に於ける反発、吸引磁
界回転力は、全周に渉り、回転トルクを発揮する為、従
来回転機にあった、磁化極の磁化休止や、遊体極が一切
無い為、回転効率は一段と強力である。又、回転進角度
が小さいので、従来の回転機より、回転力は大きく、電
動回転機に見られる励磁電流相の遅れ等が無く、磁化効
率は、電動回転機より、遥かに優れた性能を有するもの
である。磁気反発と磁気吸引力のバランスが効率良く配
分される事で、回転上昇と共に、加速上昇途上には、回
転ムラ、回転トルク節、トルク振動等の障害は無く、静
粛で滑らかな回転が得られる。
6 magnetic field phase. It shows the magnetic field relationship of the rotor magnetization poles for each magnetic field, corresponding to the fixed field poles of 8 magnetic field phases. Therefore, the rotation advance angle of the magnetization pole for each magnetic field is 4 magnetic field phases = 15
Every time. 6 Magnetic field phase -10 degrees. 8 magnetic field phase -7.5 degrees. The magnetic polarity will change each time. Repulsion and attraction in the magnetic field The rotational force of the magnetic field extends over the entire circumference and exerts rotational torque, so the rotational efficiency is low because there is no magnetization pause or free-flowing poles that were present in conventional rotating machines. It's even more powerful. In addition, since the rotation advance angle is small, the rotational force is greater than that of conventional rotating machines, there is no excitation current phase delay, etc. seen in electric rotating machines, and the magnetization efficiency is far superior to that of electric rotating machines. It is something that you have. By efficiently distributing the balance between magnetic repulsion and magnetic attraction, as the rotation increases, there are no problems such as rotation unevenness, rotational torque nodes, or torque vibration, and quiet and smooth rotation is achieved during acceleration. .

第2図〔固定界磁極ヨーク及び磁権構成図〕は、実施例
−8磁界相を示し、S磁極=12極。N磁極=12極で
構成する。S磁極、N磁極それぞれ2極ずつ・が、交互
に磁化極になるものである。磁化極の配列は、第5図〔
固定界磁極。回転子磁極構成図〕の固定界磁極に示す。
FIG. 2 [Fixed field pole yoke and magnetic domain configuration diagram] shows the magnetic field phase of Example-8, with S magnetic poles=12 poles. Consists of N magnetic poles = 12 poles. Two S magnetic poles and two N magnetic poles each become magnetization poles alternately. The arrangement of magnetization poles is shown in Figure 5 [
Fixed field pole. This is shown in the fixed field pole in [Rotor Magnetic Pole Configuration Diagram].

第2図〔固定界磁極ヨーク及び磁極構成図〕の両側に、
第3図〔磁気供給極。S磁極用。N磁極用〕を摺連動可
能に装着する。第4図〔回転子磁極構成図。二面図〕は
、実施例−48極とし、第2図〔40−回転子用永久磁
石〕の磁気を、第3図〔磁気供給極〕により、橋渡しの
形で、第4図〔35−回転子磁化極〕に供給、磁化極を
構成する。第to、、tt図〔各磁界相別。回転子磁化
順次説明図〕は、磁気供給極により、回転子の磁化極状
態を表示するものである。回転と共に、6極の磁界回転
進行の磁化極性変化を示す。第1O図〔4磁界相。6磁
界相。正逆回転表〕の磁化極は、2楊。と3極が磁化極
として進行し、磁気受給位置の転換で、進行先端が反対
の極性に変わり、磁界の反発、吸引の対応動作を連続し
て繰り返す。第11図〔8磁界相。12磁界相、正逆回
転表〕の磁化極は、4極及び6極が磁化極〔N磁極。又
はS磁極〕で磁界対応をなす。先端の磁化転換は、いず
れも、4磁界相と同様に!極ずつが転換するので、回転
進角は、より小さくなる。磁界相も多い程、回転トルク
を強力に出来る特徴を有するものである。即ち磁界対応
面積が大きくなる為、磁気対応中心に及ぶ反発、吸引力
は、回転力として評価される為である。正。逆回転共に
同じ回転トルクを特徴とする。第12図〔磁界構成。磁
気回路展開説明図〕は、本発明の主要構成を示すもので
、回転磁極構成の磁気回路展開図である。第12図〔4
0−回転子用永久磁石〕より、第12図〔36゜37=
回転子磁気円板。S磁極用。N磁極用〕を経て、第12
図〔34゜35=回転子磁極ヨーク。回転子磁化極〕え
、第12図〔29゜30=磁気供給極。S磁極用。N磁
極用〕で、磁気を供給し、磁化極を構成するもので、磁
化された極と、異なる極性の磁気円板間で磁界が存在す
る為、この異なる磁気を、第12図〔56゜61..6
2=反磁界用永久磁石。反磁界磁極−N磁極用。S磁極
用〕とで、各対向する磁気を、反磁界により遮断、阻止
する。磁化極と磁気円板との間隙は、広い為、磁気回路
的には、磁気供給極の磁気回路抵抗より遥かに高い数値
になる。磁束線量もこれにつれ、数百分のl比となるが
、反磁界に阻害され、更にその数値比を微量にする事が
可能となり、本発明の目的を達成出来る。第121+4
(34−回転子磁極ヨーク〕は、磁気回路の通路として
の構造と、回転子磁極構造の剛性を具備し、その磁界面
は、固定界磁極の磁界面と対応する。対向する磁界全面
が磁気反発、吸引で動作する回転トルクは、従来回転機
より強い回転力を発揮出来、磁気バランスの良い回転機
構々成は、多磁界相可逆永久磁石回転機の性能を更に向
上出来るものになる。製作仕様により、回転トルクを重
視する場合、回転速度に重きを置く場合、形状が限定さ
れたり等の、多くの要望事項に対処出来る幾多の特徴を
備える多磁界相可逆永久磁石回転機である。
On both sides of Fig. 2 [Fixed field pole yoke and magnetic pole configuration diagram],
Figure 3 [Magnetic supply pole. For S magnetic pole. For N magnetic pole] is attached so that it can be slidably interlocked. FIG. 4 [Rotor magnetic pole configuration diagram. 2-side view] is an example of 48 poles, and the magnetism of FIG. 2 [40-rotor permanent magnet] is bridged by FIG. 3 [magnetic supply pole], and FIG. 4 [35- rotor magnetization poles] to form the magnetization poles. Figures to, tt [for each magnetic field phase]. The rotor magnetization sequential explanatory diagram] shows the magnetization pole state of the rotor using the magnetic supply poles. It shows the change in magnetization polarity as the six-pole magnetic field rotates as it rotates. Figure 1O [4 magnetic field phases. 6 magnetic field phase. The magnetization pole of the forward/reverse rotation table is 2 yang. The three poles advance as magnetized poles, and by switching the magnetic receiving position, the advancing tip changes to the opposite polarity, and the corresponding operations of repulsion and attraction of the magnetic field are repeated continuously. Figure 11 [8 magnetic field phases. 12 magnetic field phases, forward/reverse rotation table], the magnetization poles are 4 poles and 6 poles [N magnetic pole. or S magnetic pole] corresponds to the magnetic field. The magnetization change at the tip is the same as in the 4 magnetic field phases! Since the poles are switched, the rotational advance becomes smaller. It has the characteristic that the more magnetic field phases there are, the stronger the rotational torque can be. That is, since the area corresponding to the magnetic field becomes larger, the repulsion and attraction forces exerted on the center of magnetic field correspondence are evaluated as rotational force. Correct. It features the same rotational torque in both reverse and reverse rotations. Figure 12 [Magnetic field configuration. [Magnetic circuit development explanatory diagram] shows the main structure of the present invention, and is a magnetic circuit development diagram of a rotating magnetic pole configuration. Figure 12 [4
0-Permanent magnet for rotor], Figure 12 [36°37=
Rotor magnetic disc. For S magnetic pole. for N magnetic pole], then the 12th
Figure [34°35=Rotor magnetic pole yoke. Rotor magnetization pole] Fig. 12 [29°30 = magnetic supply pole. For S magnetic pole. For N magnetic pole], it supplies magnetism and constitutes a magnetized pole, and since a magnetic field exists between the magnetized pole and a magnetic disk of a different polarity, this different magnetism can be detected as shown in Figure 12 [56°]. 61. .. 6
2 = Permanent magnet for diamagnetic field. For demagnetizing field magnetic pole - N magnetic pole. For S magnetic pole], each opposing magnetism is blocked and blocked by a demagnetizing field. Since the gap between the magnetization pole and the magnetic disk is wide, in terms of the magnetic circuit, the value is much higher than the magnetic circuit resistance of the magnetic supply pole. Accordingly, the amount of magnetic flux becomes a l ratio of several hundredths, but it is inhibited by the demagnetizing field, and it becomes possible to further reduce the numerical ratio to a minute amount, thereby achieving the object of the present invention. 121st+4
(34-Rotor magnetic pole yoke) has a structure as a path for a magnetic circuit and the rigidity of the rotor magnetic pole structure, and its magnetic interface corresponds to the magnetic interface of the fixed field pole. The rotational torque that operates through repulsion and attraction can exert stronger rotational force than conventional rotating machines, and the rotating mechanism with good magnetic balance can further improve the performance of multi-magnetic field phase reversible permanent magnet rotating machines.Manufacturing. This is a multi-magnetic field phase reversible permanent magnet rotating machine that has many features that can meet many requirements, such as when emphasis is placed on rotational torque, when emphasis is placed on rotational speed, and when the shape is limited depending on specifications.

〔発明の効果〕〔Effect of the invention〕

以上の様に、本発明の多磁界相可逆永久磁石回転機を実
用化に移行するならば、大気汚染に拍車を掛ける石油消
費の自動車機関、排ガスを多く吐き出す火力発電、放射
能の危険に手を焼く処理管理等が、極度に減少出来る、
大きなメリットがあり、画期的な利用効果が期待出来る
。澄んだ清潔な空気。騒音や、汚染された環境の改善に
寄与する利用効果は、長い間の課題であった問題点の解
消に。人類生存の為にも、本発明の効果は、枚挙に暇無
く大きい。永久磁石回転機エネルギーは、早急にと望ま
れ乍、実現が遅れた裏には、営利目的の優先が偏在して
いた事に原因があったと考えろ。又、磁気理論の確立、
利用技術等の究明が遅れているのも、これらに起因があ
るのではないかと愚考する。現状の環境改善を急務とし
て、之以−ヒ、悪化させない為にも大きく負献出来る、
多磁界相可逆永久磁石回転機を提供するものである。
As described above, if the multi-magnetic field phase reversible permanent magnet rotating machine of the present invention is put into practical use, it will be possible to solve problems such as oil-consuming automobile engines that accelerate air pollution, thermal power generation that emits a large amount of exhaust gas, and the dangers of radioactivity. Burning process management etc. can be drastically reduced.
It has great benefits and can be expected to have revolutionary effects. Clear, clean air. The use effect that contributes to the improvement of noise and polluted environments is the solution to problems that have been a problem for a long time. The effects of the present invention for human survival are too great to enumerate. Permanent magnet rotating machine energy was urgently desired, but the reason behind its delay in realization was the uneven distribution of priority given to commercial purposes. Also, the establishment of magnetic theory,
I wonder if these are the reasons behind the delay in investigating the technology used. Improving the current environment is an urgent task, and we can therefore make a huge contribution to prevent it from worsening.
A multi-magnetic field phase reversible permanent magnet rotating machine is provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〔構造、二断面図〕 第2図〔固定界磁極。二面図〕 〔固定界磁極ヨーク及び磁極構成図〕 第3図〔磁気供給部。S磁極用。N磁極用〕第4図〔回
転子磁極構成。二面図〕 第5図〔固定界磁極。回転子磁極構成図〕第6図〔8磁
界相。回転停+h位置展開説明図〕〔撰述動制御動作説
明図〕 第7図〔8磁界相。正回転始動位置磁界関係展開説明図
〕 第8図〔8磁界相。逆回転始動位置磁界関係展開説明図
〕 第9図〔各磁界用。正回転始動位置磁界関係展開説明図
〕〔4゜6磁界相。8磁界相図〕第10図〔各磁界相別
。回転子磁化順次説明図〕〔4磁界相。6磁界相。正逆
回転表〕 第11図[各磁界相別。回転子磁化順次説明図〕〔8磁
界相。12磁界相。正逆回転表〕第12図〔磁界構成。 磁気回路展開説明図〕第1図より第12図に、記入して
いる艮通ずる番号及び名称を、以下に示す。 1=360度基準線  17−固定界磁々他極2−90
度     18−ギャップ 3=+80度     19−スロット4=270度 
    20−・円板取り付は穴5−磁界而     
 21−固定界磁々気円板6 = 正回転方向。   
    〔S磁極用〕〔時計回転方向〕 22−固定界
磁々俄円板7−逆回転方向。       〔N磁極用
〕〔反時計回転方向〕23−界磁極用永久磁石8−磁界
推移方向。   24−磁石装着ネジ〔正回転方向〕 
 25−スライドビン 9−磁界推移方向。   26一連動シャフト〔逆回転
方向〕  27一連動felt車10−=主軸    
  28一連動平ギャー11−固定界磁フレーム29−
磁気供給部。 12−固定界磁枠凸起    〔S磁極用〕13−固定
界磁枠凹溝 30=磁気供給極。 14=固定界磁極ヨーク   〔N磁極用〕31・−回
転子フレーム 47−磁気抑制斜角32=回転子枠凸起
  48−ベクトル溝35−回転子磁化極  49−キ
ー溝 34−回転子磁極ヨーク5〇−通気穴、溝35−回転子
磁化極  56−反磁界用永久磁石36−回転子磁気円
板。57−反磁界磁極板〔S磁極用〕  58−スペー
サ(1)37−回転子磁気円板。59=スペーサ〔2〕
〔N磁極用〕  60−スペーサ〔3〕38−冷却ファ
ン   61−反磁界磁極。 4〇−回転子用永久磁石   〔S@極用〕41−円板
取り付はネジ62−反磁界磁極。 /13−回転子受給極     〔N磁極用〕44=−
磁気供給極円板。64−磁束流れ方向。 案内ビン       〔S磁極性〕 45−磁気供給部   65−磁束流れ方向。 46=磁気供給極。      (Nffl極性〕スラ
イド溝   7〇一回転進角度。
Figure 1 [Structure, two sectional views] Figure 2 [Fixed field pole. Two views] [Fixed field pole yoke and magnetic pole configuration diagram] Figure 3 [Magnetic supply section. For S magnetic pole. For N magnetic pole] Figure 4 [Rotor magnetic pole configuration. Two views] Figure 5 [Fixed field pole. Rotor magnetic pole configuration diagram] Figure 6 [8 magnetic field phases. Rotation stop + h position development explanatory diagram] [Selected movement control operation explanatory diagram] Fig. 7 [8 magnetic field phases. Explanation diagram of forward rotation starting position magnetic field relationship development] Figure 8 [8 magnetic field phases. Reverse rotation starting position magnetic field relationship development explanatory diagram] Figure 9 [For each magnetic field. Forward rotation starting position magnetic field relationship development explanatory diagram] [4°6 magnetic field phase. 8 Magnetic field phase diagram] Figure 10 [By each magnetic field phase. Sequential explanatory diagram of rotor magnetization] [4 magnetic field phases. 6 magnetic field phase. Forward/reverse rotation table] Figure 11 [For each magnetic field phase. Sequential illustration of rotor magnetization] [8 magnetic field phases. 12 magnetic field phases. Forward/reverse rotation table] Figure 12 [Magnetic field configuration. Magnetic circuit development explanatory diagram] The numbers and names written in Figures 1 to 12 are shown below. 1=360 degree reference line 17-Fixed field other pole 2-90
Degrees 18-gap 3 = +80 degrees 19-slot 4 = 270 degrees
20-・Disk mounting hole 5-magnetic field
21-Fixed field magnetic disk 6 = forward rotation direction.
[For S magnetic pole] [Clockwise rotation direction] 22-Fixed field magnetic disk 7-Reverse rotation direction. [For N magnetic pole] [Counterclockwise rotation direction] 23 - Permanent magnet for field pole 8 - Magnetic field transition direction. 24-Magnet mounting screw [forward rotation direction]
25-Slide bin 9-Magnetic field transition direction. 26 series moving shaft [reverse rotation direction] 27 series moving felt wheel 10-=main shaft
28 series moving spur gear 11-fixed field frame 29-
Magnetic supply section. 12-Fixed field frame protrusion [For S magnetic pole] 13-Fixed field frame concave groove 30=Magnetic supply pole. 14 = Fixed field pole yoke [for N magnetic pole] 31 - Rotor frame 47 - Magnetic suppression bevel 32 = Rotor frame protrusion 48 - Vector groove 35 - Rotor magnetization pole 49 - Keyway 34 - Rotor magnetic pole yoke 50-Vent hole, groove 35-Rotor magnetization pole 56-Permanent magnet for demagnetizing field 36-Rotor magnetic disk. 57-Demagnetizing field magnetic pole plate [for S magnetic pole] 58-Spacer (1) 37-Rotor magnetic disk. 59=Spacer [2]
[For N magnetic pole] 60-Spacer [3] 38-Cooling fan 61-Demagnetizing field magnetic pole. 40 - Permanent magnet for rotor [S @ pole] 41 - Disk mounting screw 62 - Demagnetizing field magnetic pole. /13-Rotor receiving pole [for N magnetic pole] 44=-
Magnetic supply polar disk. 64-Magnetic flux flow direction. Guide bin [S magnetic polarity] 45-Magnetic supply section 65-Magnetic flux flow direction. 46 = magnetic supply pole. (Nffl polarity) Slide groove 70 One revolution advance angle.

Claims (1)

【特許請求の範囲】 〔イ〕永久磁石で、多磁界相回転パターンの磁極構成を
、磁気供給極の摺連動制御可能な反転磁極構成にし、磁
気供給位置で、磁界面の反発及び吸引磁気力に於ける、
磁界差制御の回転動力を得る手段と、回転磁界相パター
ンの磁化極え、混入する異極性磁気を減少、遮断の反磁
界構造を備え、正回転、逆回転時の、磁化極磁気効率を
強化する事を特徴とする多磁界相可逆永久磁石回転機。 〔ロ〕磁極構成に於ける永久磁石を、単体ユニット構造
にし、磁極ヨークの円周に配設する収納部え、製作仕様
で、必要とする磁束量に応じ、複数個組み合わせ装着構
成を特徴とする第1項記載の多磁界相可逆永久磁石回転
機。
[Scope of Claims] [A] With a permanent magnet, the magnetic pole configuration of the multi-magnetic field phase rotation pattern is made into an inverted magnetic pole configuration that can be controlled by sliding interlocking of the magnetic supply pole, and at the magnetic supply position, the repulsion and attraction magnetic force of the magnetic interface In
Equipped with a means to obtain rotational power through magnetic field difference control, magnetization poles of the rotating magnetic field phase pattern, and a demagnetizing field structure that reduces and blocks mixed polarity magnetism, enhancing the magnetization pole magnetic efficiency during forward and reverse rotation. A multi-magnetic field phase reversible permanent magnet rotating machine. [B] The permanent magnets in the magnetic pole structure are made into a single unit structure, and there is a storage part arranged around the circumference of the magnetic pole yoke, and the structure is characterized in that multiple pieces can be combined and installed depending on the manufacturing specifications and the amount of magnetic flux required. 2. The multi-magnetic field phase reversible permanent magnet rotating machine according to claim 1.
JP27286887A 1987-10-28 1987-10-28 Multi field reversible phase permanent magnet rotary machine Pending JPH01117649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27286887A JPH01117649A (en) 1987-10-28 1987-10-28 Multi field reversible phase permanent magnet rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27286887A JPH01117649A (en) 1987-10-28 1987-10-28 Multi field reversible phase permanent magnet rotary machine

Publications (1)

Publication Number Publication Date
JPH01117649A true JPH01117649A (en) 1989-05-10

Family

ID=17519882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27286887A Pending JPH01117649A (en) 1987-10-28 1987-10-28 Multi field reversible phase permanent magnet rotary machine

Country Status (1)

Country Link
JP (1) JPH01117649A (en)

Similar Documents

Publication Publication Date Title
JP5211593B2 (en) Brushless electric machine
US20070222309A1 (en) High efficiency magnet motor
JP2005232965A (en) Kinetic energy acceleration amplifying device
CN110131313B (en) Magnetic bearing
WO2011057423A1 (en) Permanent magnet motion-creating apparatus and process
CN112065854B (en) Combined three-degree-of-freedom hybrid magnetic bearing with novel structure
JPH01117649A (en) Multi field reversible phase permanent magnet rotary machine
US20150357891A1 (en) Rotating electric machine system and method for controlling induced voltage for the same
CN209562362U (en) Bidirectional rotary type torque-motor
CN209562358U (en) Two-way electromechanical converter
CN210397891U (en) Electrically excited bidirectional rotary electromagnet with horizontal moment-corner characteristic
CN113131701A (en) Double-winding double-magnetism-gathering type electric stepless speed changer
CN205595913U (en) Rotatory electromagnetic actuator of high performance
JPS62203577A (en) Rotary engine utilizing magnetic force
CN205610409U (en) Penetrating screen and body are sent to bistable state actuator and electricity that revolve syntype
JP7487916B1 (en) Energy-saving 3-phase brushless DC motor
JPS62114466A (en) Rotating plate with magnet
CN209562357U (en) Electromechanical converter
JPH10243625A (en) Rotator using permanent magnet
JPH01274676A (en) Permanent magnet magnetic field rotary machine
JPS59156170A (en) Prime mover operated by force of permanent magnet
JP2003061327A (en) Synchronous rotation pulse motor
JP2003161360A (en) Accelerator
KR20210032032A (en) Rotary Motion Device Using Permanent Magnet
JPS592565A (en) Generator using superconductive magnet