JPH01116482A - Microcurrent monitor - Google Patents

Microcurrent monitor

Info

Publication number
JPH01116482A
JPH01116482A JP27302287A JP27302287A JPH01116482A JP H01116482 A JPH01116482 A JP H01116482A JP 27302287 A JP27302287 A JP 27302287A JP 27302287 A JP27302287 A JP 27302287A JP H01116482 A JPH01116482 A JP H01116482A
Authority
JP
Japan
Prior art keywords
duct
microcurrent
ceramic
magnetic
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27302287A
Other languages
Japanese (ja)
Inventor
Junichi Hirota
淳一 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP27302287A priority Critical patent/JPH01116482A/en
Publication of JPH01116482A publication Critical patent/JPH01116482A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure a current value of a 10<-9>A-range microcurrent and a beam position simultaneously by arranging a superconductive quantum interferometer in a magnetic shield. CONSTITUTION:A microcurrent monitor consists of a vacuum duct 4 forming a vacuum tank, a ceramic duct 5 partially made of ceramic and a magnetic shield 6 which is placed outside the duct 5 and circulates a refrigerant while shielding all but a magnetic field made by a beam. A superconductive quantum interferometer 1 is disposed in the shield 6 so that it can measure unbalance of the magnetic field made by a beam. The interferometer 1 combines a Meissner effect and a Josephson effect of a superconductor to determine the amount of a magnetic flux passing therethrough. This enables the measuring of a current value of a 10<-9>A-range microcurrent and a beam position simultaneously.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、粒子加速器に係り、特に重イオン加速器のよ
うな微小電流発生装置の電流計測に好適なモニターシス
テムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a particle accelerator, and particularly to a monitor system suitable for measuring current in a microcurrent generator such as a heavy ion accelerator.

〔従来の技術〕[Conventional technology]

イオン加速器で得れる電流は、一般に電子加速器に比較
して小さい。特に重イオン加速器での最終引出し電流は
、1〜数十nAとなる。この電流を測定するのには、従
来電流トランス型モニターが使用されていて、これにつ
いては、アイ・イー・イー・イートランザクション・オ
ン・ニュークリアサイエンス・エヌエス32.45 1
985年第1959〜1961頁(IEEE Trau
s、NuclearScience N532  Vo
125 1959(1985))において述べられてい
る。
The current obtained with an ion accelerator is generally smaller than that with an electron accelerator. In particular, the final extraction current in a heavy ion accelerator is 1 to several tens of nA. Conventionally, a current transformer type monitor has been used to measure this current, and this is described in IE Transactions on Nuclear Science NS 32.45 1
985, pp. 1959-1961 (IEEE Trau
s, NuclearScience N532 Vo
125 1959 (1985)).

〔発明が解決しようとする問題点3 重イオン加速器では、そのイオン源等の制約により最終
エネルギーで得られる電流は、11子加速器に比較して
非常に小さく、1〜数士nA程度となる。従来、加速器
の電流値を測定するには、ファラデーカップ、蛍光板等
の破am定と電流トランスモニター、静電型モニター等
の非破壊測定が行なわれている。しかし、どれも微小電
流のために雑音対策等が大変となる。
[Problem to be Solved by the Invention 3] In a heavy ion accelerator, the current obtained at the final energy due to restrictions of the ion source, etc., is very small compared to an 11-son accelerator, and is about 1 to several nA. Conventionally, in order to measure the current value of an accelerator, a non-destructive measurement using a Faraday cup, a fluorescent screen, etc., and a current transformer monitor, an electrostatic monitor, etc. have been used. However, in all cases, noise countermeasures are difficult due to the minute current.

上記従来例は、雑音対策を考慮して設計されているが、
(1)検出感度及びSN比を上げるためにトロイダルコ
アを小さくする。そのため、(2)モニター本体及び一
部の処理回路を真空中に設置している。等の問題点を有
する。重イオン加速器ではビーム寿命を長くするために
超高真空を維持しなくてはならないため、真空中への機
器挿入を極力ひかえなくてはならない。また、重イオン
のように軌道放射によるビームサイズの減衰がない装置
では、大きなベータトロン振動によるビームロスをさけ
るため、ビームダクトは十分に大きく取りたい。従って
、モニターコアを小さくすることができない。
The above conventional example is designed with noise countermeasures in mind, but
(1) Make the toroidal core smaller to increase detection sensitivity and SN ratio. Therefore, (2) the monitor body and some processing circuits are installed in a vacuum. It has the following problems. Heavy ion accelerators must maintain an ultra-high vacuum to extend beam life, so inserting equipment into the vacuum must be avoided as much as possible. In addition, in devices such as heavy ions where the beam size does not attenuate due to orbital radiation, the beam duct should be made sufficiently large to avoid beam loss due to large betatron oscillations. Therefore, the monitor core cannot be made smaller.

本発明の目的は、真空外に設置し、微小ビーム電流値及
びビーム位置を測定するモニターを提供することによる
An object of the present invention is to provide a monitor that is installed outside a vacuum and measures minute beam current values and beam positions.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、以下のようにして達成される。 The above objective is achieved as follows.

まず、ビームダクト中の電磁場が真空外へ洩れるように
、モニタ一部のダクトをセラミックスとする。そこに、
超電導量子干渉計(以下、5QUID)をビームの作る
磁場と垂直になるように、上下左右に四ケ所に設置する
First, a part of the monitor duct is made of ceramic so that the electromagnetic field in the beam duct leaks out of the vacuum. there,
Superconducting quantum interferometers (hereinafter referred to as 5QUID) will be installed at four locations on the top, bottom, left and right, perpendicular to the magnetic field created by the beam.

〔作用〕[Effect]

ビームの誘起する電磁場は、セラミックダクト部で、真
空外に洩れ出すことができる。これにより、真空外での
測定が可能となる。
The electromagnetic field induced by the beam can leak out of the vacuum at the ceramic duct section. This allows measurement outside a vacuum.

5QUIDは、超電導体のマイスナー効果とジョセフソ
ン効果を応用し、その素子を通過する磁束量を求めるも
のである。よって、通過磁束量から周回するビーム電流
値を知ることができる。また5QUIDの測定下限は、
〜1FIST(テスラ)であるため、例として、半径2
5I1mの円筒ダクトを仮定すると、測定下限ビーム電
流値は、〜130pAとなる。
5QUID applies the Meissner effect and Josephson effect of superconductors to determine the amount of magnetic flux passing through the element. Therefore, the circulating beam current value can be determined from the amount of passing magnetic flux. In addition, the lower measurement limit of 5QUID is
~1FIST (Tesla), so as an example, radius 2
Assuming a 5I1m cylindrical duct, the lower limit beam current value for measurement is ~130pA.

さらに、上下左右にモニターを設置することにより、ビ
ームが中心からずれた時に生じる上下左右の磁束のアン
バランスを測定することが可能となる。このアンバラン
スを用いて、ビーム位置を測定する。
Furthermore, by installing monitors on the top, bottom, left and right sides, it becomes possible to measure the imbalance of magnetic flux in the top, bottom, left and right directions that occurs when the beam deviates from the center. This unbalance is used to measure the beam position.

水平位置=左−右/左+右 垂直位置=上−下/上+下 〔実施例〕 以下本発明の一実施例を第1図により説明する。Horizontal position = left - right / left + right Vertical position = top - bottom / top + bottom 〔Example〕 An embodiment of the present invention will be described below with reference to FIG.

真空槽を形成するビームダクト4とその中を周回する重
イオンビーム3と3が誘起する電磁場を真空外に洩れ出
させるセラミックダクト5と、5の外側に配置された、
3の誘起する磁場を測定する5QUIDIと1を外部か
らの磁場から遮蔽するとともに、5QUID冷却用に使
用する磁気シールド6により構成する。上下左右に置い
た5QUIDを各々、モニター11.12,13.14
とする。
A beam duct 4 forming a vacuum chamber, heavy ion beams 3 circulating inside the duct 5, and a ceramic duct 5 leaking the electromagnetic field induced by the 3 to the outside of the vacuum;
It consists of a 5QUIDI that measures the magnetic field induced by 3 and a magnetic shield 6 that shields 1 from external magnetic fields and is used for cooling the 5QUID. 5QUIDs placed on the top, bottom, left and right of the monitors 11, 12 and 13, 14 respectively.
shall be.

重イオンは、ベータトロン振動が大きいので、4は半径
50+nmの円筒形として考えると、3の作る磁場は、 と与えられる。
Heavy ions have large betatron vibrations, so if 4 is considered as a cylinder with a radius of 50+nm, the magnetic field created by 3 is given as follows.

又は、中心からのずれ、では、測定点のXからの角度を
示す。まず、ビームが中心を通る時を考えると、x=o
より、B=μoI/2πrとなる。
Or, deviation from the center indicates the angle from X of the measurement point. First, if we consider when the beam passes through the center, x=o
Therefore, B=μoI/2πr.

I=1nAとすると、’r=50mmで作る磁場は、4
 X 10−”T となり、1の測定下限h/2e〜2
 X 10”T より十分に大きい。ここでhはブラン
クの定数である。この時、6により余分な外場を十分に
遮敞し、5QUIDの冷却を行なう。
If I=1nA, the magnetic field created by 'r=50mm is 4
X 10-”T, the lower measurement limit of 1 h/2e~2
It is sufficiently larger than X 10''T.Here, h is a blank constant.At this time, the extra external field is sufficiently shielded by 6, and the 5QUID is cooled.

これにより、1nA からの電流値が測定できる。With this, current values starting from 1 nA can be measured.

X≠0のときは、r > xとすると として表わせる。従って、四箇所に置いたモニターを足
し合わせると、X≠0による効果を消すことが可能とな
る。
When X≠0, it can be expressed as r > x. Therefore, by adding up the monitors placed at four locations, it is possible to eliminate the effect of X≠0.

次に、(2)式を用いて、 ■は、各5QUIDの出力電圧 の演算を行なうと、 Rl ”  X      Rl ”  X 水平垂直 のような関係が生じる。Next, using equation (2), ■ is the output voltage of each 5QUID When you perform the calculation, Rl ”    X     Rl ”    A relationship like this arises.

これにより、ビーム位置(水平及び垂直)の測定が可能
となる。本実施例により、nA級の電流値及び位置が同
時に測定でき、モニター数を減らすことが可能となる。
This allows measurement of beam position (horizontal and vertical). According to this embodiment, nA class current values and positions can be measured simultaneously, making it possible to reduce the number of monitors.

又、逆に、各位置での電流値が測定できる。Conversely, the current value at each position can be measured.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、nA級の従来測定が非常に回連であっ
た電流値が測定でき、さらに位置測定が可能となり、R
F空胴又は偏向磁石等のフィードバックセンサーとして
、高感度のものを提供できる。
According to the present invention, it is possible to measure the current value which conventionally measures nA class, which is very repetitive, and it is also possible to measure the position.
A highly sensitive feedback sensor such as an F cavity or a deflection magnet can be provided.

また、重イオン用の真空ダクトを十分に大きく取ること
ができる。
Furthermore, the vacuum duct for heavy ions can be made sufficiently large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の説明図を示す。 1・・・電流測定用5QUID、2・・・ビームの作る
磁界、3・・・重イオンビーム、4・・・通常のビーム
ダクト、5・・・セラミックダクト、6・・・5QUI
D用磁馬1図
FIG. 1 shows an explanatory diagram of an embodiment of the present invention. 1... 5QUID for current measurement, 2... Magnetic field created by beam, 3... Heavy ion beam, 4... Ordinary beam duct, 5... Ceramic duct, 6... 5QUI
Magnetic horse 1 diagram for D

Claims (1)

【特許請求の範囲】[Claims] 1、真空槽を形成する真空ダクト、その一部をセラミッ
クとしたラミックダクト、セラミックダクトの外側に置
いて、ビームの作る磁場以外を遮敞するとともに、冷媒
を循環させる磁気シールドにおいて、磁気シールドの内
部に、超電導量子干渉計をビームの作る磁場のアンバラ
ンスを計測できるように配置することにより、10^−
^8A級の微小電流の電流値及びビーム位置を同時に測
定することを特徴とする微小電流モニター。
1. A vacuum duct that forms a vacuum chamber, a ceramic duct that is partially made of ceramic, and a magnetic shield placed outside the ceramic duct to block magnetic fields other than those created by the beam and to circulate the refrigerant. By placing a superconducting quantum interferometer inside so that it can measure the imbalance of the magnetic field created by the beam, 10^-
A microcurrent monitor characterized by simultaneously measuring the current value and beam position of an 8A class microcurrent.
JP27302287A 1987-10-30 1987-10-30 Microcurrent monitor Pending JPH01116482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27302287A JPH01116482A (en) 1987-10-30 1987-10-30 Microcurrent monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27302287A JPH01116482A (en) 1987-10-30 1987-10-30 Microcurrent monitor

Publications (1)

Publication Number Publication Date
JPH01116482A true JPH01116482A (en) 1989-05-09

Family

ID=17522071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27302287A Pending JPH01116482A (en) 1987-10-30 1987-10-30 Microcurrent monitor

Country Status (1)

Country Link
JP (1) JPH01116482A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1329938A2 (en) * 2001-12-28 2003-07-23 Matsushita Electric Industrial Co., Ltd. Ion irradiation system
JP2008085066A (en) * 2006-09-27 2008-04-10 Mitsumi Electric Co Ltd Opening/closing lid structure, and electronic equipment provided with the same
JP2009036551A (en) * 2007-07-31 2009-02-19 Institute Of Physical & Chemical Research Ct monitor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1329938A2 (en) * 2001-12-28 2003-07-23 Matsushita Electric Industrial Co., Ltd. Ion irradiation system
EP1329938A3 (en) * 2001-12-28 2003-08-06 Matsushita Electric Industrial Co., Ltd. Ion irradiation system
US6822247B2 (en) 2001-12-28 2004-11-23 Matsushita Electric Industrial Co., Ltd. Ion irradiation system
CN100339967C (en) * 2001-12-28 2007-09-26 松下电器产业株式会社 Ion irradiating device
JP2008085066A (en) * 2006-09-27 2008-04-10 Mitsumi Electric Co Ltd Opening/closing lid structure, and electronic equipment provided with the same
JP2009036551A (en) * 2007-07-31 2009-02-19 Institute Of Physical & Chemical Research Ct monitor

Similar Documents

Publication Publication Date Title
EP0807940B1 (en) Superconducting magnet device
US5999075A (en) Open magnet with shielding
US6853281B1 (en) Magnet apparatus and mri apparatus
US6889070B2 (en) Magnetic resonance imaging apparatus and assembly process thereof
US5084677A (en) Magnetic field generating apparatus
JPH0669027A (en) Magnetic field generation device
US5874882A (en) Open and shielded superconductive magnet
Peters et al. A cryogenic current comparator for the absolute measurement of nA beams
JPH0471324B2 (en)
JPH01116482A (en) Microcurrent monitor
US4931759A (en) Magnetic resonance imaging magnet having minimally symmetric ferromagnetic shield
US5128643A (en) Method and apparatus for producing a region of low magnetic field
Watanabe et al. A prototype of a highly sensitive cryogenic current comparator with a HTS SQUID and HTS magnetic shield
Ogle et al. Design optimization method for a ferromagnetically self-shield MR magnet
Sieber et al. Next Generation Cryogenic Current Comparator (CCC) for nA Intensity Measurement
EP0940687A2 (en) Open magnet with shielding
JP2583234B2 (en) Magnetic shield device
Peters et al. A cryogenic current comparator for nondestructive beam intensity measurements
Tanabe et al. A cryogenic current-measuring device with nano-ampere resolution at the storage ring TARN II
JP2838106B2 (en) Nuclear magnetic resonance imaging equipment
JP3372098B2 (en) Static magnetic field generator for magnetic resonance imaging
Sieber et al. JACoW: Next generation Cryogenic Current Comparator (CCC) for nA intensity measurement
Morad et al. The design and use of secondary shielding in MRI systems-experiments from 4 years of operation
Schlösser et al. Nuclear orientation at isolde/cern
Gilbert et al. An asymmetric split-pair superconducting magnet for nuclear polarization experiments