JPH01116446A - Sensor for reducing substance - Google Patents

Sensor for reducing substance

Info

Publication number
JPH01116446A
JPH01116446A JP27539687A JP27539687A JPH01116446A JP H01116446 A JPH01116446 A JP H01116446A JP 27539687 A JP27539687 A JP 27539687A JP 27539687 A JP27539687 A JP 27539687A JP H01116446 A JPH01116446 A JP H01116446A
Authority
JP
Japan
Prior art keywords
titania
sensor
reducing
substance
reducing substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27539687A
Other languages
Japanese (ja)
Inventor
Makoto Kume
久米 眞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP27539687A priority Critical patent/JPH01116446A/en
Publication of JPH01116446A publication Critical patent/JPH01116446A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize a sensor for a reducing organic substance usable for a long time repeatedly at a normal temperature by using a titania-carrying porous substance. CONSTITUTION:A sensor for a reducing organic substance is used having titania (TiO2) supported on a porous body. When irradiated with light, TiO2 changes to TiO with oxygen being deprived thereof and turn to black from white. In this case, with the presence of a reducing substance, active oxygen generated by this reaction is bonded to the reducing substance to promote the reaction. As a result, the degree of coloring varies according to the density of the reducing substance to allow measurement of the amount of the reducing substance depending on the degree of the coloring. When the causative reducing substance is gone after the coloring, TiO changes to TiO2 being bonded to oxygen or the like in the air and the color returns to original white, thereby enabling the use of the titania for the subsequent measurement again.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、気体ないし液体中の還元性物質、特に比較的
低分子量の還元性有機物質の量を常温にても検出するこ
とができるセンサーに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a sensor that can detect the amount of reducing substances in gas or liquid, especially reducing organic substances with relatively low molecular weight, even at room temperature. Regarding.

[従来の技術] 従来、アルコール、水素ガス、炭化水素等のガスを検知
するセンサーとして、半導体センサー、特にS n02
センサーなどが知られている。これらのセンサーでは、
上記半導体の表面にガスが接触すると半導体の電気室導
度が変化することを利用している。これらのセンサーは
、検出感度を高めるために、通常300〜500℃の高
温に常時保持して使用される。このため、検知部分の近
傍には、ヒーターを配置している。
[Prior Art] Conventionally, semiconductor sensors, especially S n02, have been used as sensors for detecting gases such as alcohol, hydrogen gas, and hydrocarbons.
Sensors are known. With these sensors,
This method utilizes the fact that the electrical chamber conductivity of the semiconductor changes when a gas comes into contact with the surface of the semiconductor. These sensors are normally kept at a high temperature of 300 to 500° C. in order to increase detection sensitivity. For this reason, a heater is placed near the detection part.

[発明が解決しようとする問題点] しかしながら、このような従来の半導体センサーは、こ
れを高温において使用しなければならないから、加熱コ
ストが嵩むと共に、火災防止等の安全対策も要するとい
う短所がある。また、使用中に半導体粒子の焼結が進行
することにより、検出感度が経時的に著しく低下するた
め、数年で交換しなければならないという不都合を有す
る。
[Problems to be solved by the invention] However, such conventional semiconductor sensors have disadvantages in that they must be used at high temperatures, which increases heating costs and requires safety measures such as fire prevention. . Furthermore, as sintering of the semiconductor particles progresses during use, the detection sensitivity decreases significantly over time, resulting in the inconvenience of having to be replaced every few years.

本発明は、上記従来の問題点を解決し、常温で繰返し長
期間にわたって使用可能な還元性有機物質のセンサーを
提供するものである。
The present invention solves the above conventional problems and provides a sensor for reducing organic substances that can be used repeatedly at room temperature for a long period of time.

[問題点を解決するための手段] 本発明の還元性物質のセンサーは、多孔体にチタニア(
二酸化チタン:Ti02)を担持してなるものである。
[Means for solving the problems] The reducing substance sensor of the present invention includes titania (
It supports titanium dioxide (Ti02).

一般に、TiO2は、約420nm以下の光が照射され
ると、 (白色)     (黒色) のような反応が生じることにより、TiO2から酸素が
うばわれでTiOとなり、黒く着色する。
In general, when TiO2 is irradiated with light of about 420 nm or less, a reaction such as (white) (black) occurs, whereby oxygen is absorbed from TiO2 and becomes TiO, turning it black.

この場合、還元性物質、特に比較的低分子量のぶ光性有
機物質が存在すると、反応により発生する活性な酸素と
還元性物質とが結合するため、上記反応は促進される。
In this case, the presence of a reducing substance, particularly a relatively low-molecular-weight luminescent organic substance, promotes the reaction because the active oxygen generated by the reaction combines with the reducing substance.

しかして、還元性物質の濃度に応じて、着色の程度が変
わるため、この着色の程度を参照光を照射した場合の光
量変化で定量することにより、還元性物質の量を測定す
ることができる。
Therefore, the degree of coloring changes depending on the concentration of the reducing substance, so the amount of reducing substance can be measured by quantifying the degree of coloring by the change in light intensity when a reference light is irradiated. .

そして、着色後、原因となる還元性物質がなくなると、
気中の酸素あるいは液中の溶存酸素と再結合して、Ti
OはTiO2となり、速やかに褪色して、再び次の測定
に使用可能になる。
After coloring, when the reducing substance that causes it disappears,
By recombining with oxygen in the air or dissolved oxygen in the liquid, Ti
O becomes TiO2, quickly fades, and becomes usable again for the next measurement.

ところで、上述の着色は、単層のTiO2薄膜では非常
に弱く、例えば、500人の膜厚のTiO2薄膜で被覆
されたガラス板では、着色は肉眼で認められない。しか
しながら、本発明におけるように、TiO2を多孔体に
担持させることにより、還元性物質、特に気相ないし液
相中の還元性有機物質と、TiO2との接触面積が増加
し、その結果、看色度が増加する。また、可視光が通過
するTiO2層の光路長が大きくなるため、TiO2の
着色が明瞭となる。
By the way, the above-mentioned coloring is very weak in a single-layer TiO2 thin film, and for example, in a glass plate coated with a TiO2 thin film with a thickness of 500 people, the coloring is not visible to the naked eye. However, as in the present invention, by supporting TiO2 on a porous body, the contact area between TiO2 and a reducing substance, especially a reducing organic substance in the gas phase or liquid phase, increases, and as a result, the visual appearance degree increases. Furthermore, since the optical path length of the TiO2 layer through which visible light passes becomes large, the coloring of TiO2 becomes clear.

以下に本発明の構成につき、さらに詳細に説明する。The configuration of the present invention will be explained in more detail below.

本発明の還元性物質のセンサーは、多孔体にチタニアが
担持されてなるものであるが、チタニアの担持形態とし
ては具体的には、次のものが例示される。
The reducing substance sensor of the present invention has titania supported on a porous body, and specific examples of the supported form of titania include the following.

■ 多孔体にチタニア微粒子を含浸させる。■ Impregnate the porous body with titania fine particles.

■ 多孔体表面にチタニア薄膜の被覆膜を形成する。■ Form a coating film of titania thin film on the surface of the porous body.

等が挙げられる。etc.

上記■における含浸させるチタニア微粒子の粒径や含浸
量、■におけるチタニア薄膜の膜厚は、センサーの感度
等の決定因子となるため、使用目的、要求感度等に応じ
て適宜決定されるが、一般には、チタニア微粒子の粒径
は1ooA〜0,5μm程度、その含浸量は多孔体の細
孔体積の0.005〜5体積%程度、チタニア薄膜の膜
厚は300〜2000A程度の範囲で適宜薄窓される。
The particle size and impregnation amount of the titania fine particles to be impregnated in (1) above, and the thickness of the titania thin film in (2) are determining factors such as the sensitivity of the sensor, so they are determined as appropriate depending on the purpose of use, required sensitivity, etc., but in general The particle size of the titania fine particles is about 1ooA to 0.5 μm, the amount of impregnation is about 0.005 to 5% by volume of the pore volume of the porous body, and the thickness of the titania thin film is appropriately thin in the range of about 300 to 2000A. It is windowed.

一方、チタニアを担持させる多孔体としては、■ 無機
繊維、特にガラス繊維よりなる織布ないし不織布。(有
機1M維よりなる織布ないし不織布、あるいは濾紙も使
用可能であるが、安定性が高く、長寿命であることから
、無機繊維が好ましい。) ■ 粒径1〜200μmのガラス粒子の焼結体。この場
合、例えば、ガラスフィルターとして市販されているガ
ラス焼結体を用いることができる。
On the other hand, the porous body supporting titania is (1) a woven or non-woven fabric made of inorganic fibers, especially glass fibers. (Woven or non-woven fabrics made of organic 1M fibers or filter paper can also be used, but inorganic fibers are preferred because they are highly stable and have a long life.) ■ Sintering of glass particles with a particle size of 1 to 200 μm. body. In this case, for example, a glass sintered body commercially available as a glass filter can be used.

■ 孔径的0.5〜10μmの細孔を有する多孔性ガラ
ス。
(2) Porous glass having pores of 0.5 to 10 μm in diameter.

等が挙げられる。etc.

本発明においては、特に、後述の測定方法におけるセン
サーとして使用した場合、十分な着色を得るためには、
上記多孔体の細孔径が約0.5〜200μm1特に1〜
100μmの範囲にあることが望ましい。また、多孔体
の気孔率は10〜80%程度であることが好ましい。
In the present invention, in order to obtain sufficient coloring, especially when used as a sensor in the measurement method described below,
The pore diameter of the porous body is about 0.5 to 200 μm, especially 1 to
It is desirable that the thickness be in the range of 100 μm. Moreover, it is preferable that the porosity of the porous body is about 10 to 80%.

これらの多孔体にチタニア微粒子を含浸させる方法とし
ては、チタニア(アナターゼ)ゾル(−次粒子の径: 
tooA、TiO26%、多本化学@)中に多孔体を浸
漬し、減圧して上記多孔体の細孔中に上記ゾルを含浸せ
しめた後、乾燥せしめる方法がある。チタニアゾルの代
りに、チタニア(アナターゼ)微粒子(径300A、住
友セメント■)のイソプロピルアルコール懸濁液を用い
ても良い。上記含浸操作は、数回繰返して行なっても良
い。
As a method for impregnating these porous bodies with titania fine particles, titania (anatase) sol (-sized particle diameter:
There is a method in which a porous body is immersed in tooA, 26% TiO, Tamoto Kagaku@), the pressure is reduced to impregnate the sol into the pores of the porous body, and then the sol is dried. Instead of titania sol, an isopropyl alcohol suspension of titania (anatase) fine particles (diameter 300A, Sumitomo Cement ■) may be used. The above impregnation operation may be repeated several times.

また、多孔体表面にチタニア薄膜を形成する方法として
は、テトライソプロピルオルトチタネート(Ti [(
CH3)2 CHOコ4)ないし四塩化チタン(T i
 C20)のアルコール溶液、ないしはアセチルアセト
ンチタン(T i 0(CH2COCH2COCH3)
2 )のN、Nジメチルホルムアミド(HCON (C
H3)2 )溶液中に、多孔体を浸漬して、多孔体内に
チタン化合物を付着させた後、乾燥後400〜600℃
程度で空気中にて焼成し、TiO2薄膜を生成させる方
法がある。
In addition, as a method for forming a titania thin film on the surface of a porous body, tetraisopropyl orthotitanate (Ti[(
CH3)2 CHO4) or titanium tetrachloride (T i
C20) alcohol solution or acetylacetone titanium (T i 0(CH2COCH2COCH3)
2) of N,N dimethylformamide (HCON (C
H3) 2) After immersing the porous body in the solution and adhering the titanium compound inside the porous body, after drying the porous body at 400 to 600°C
There is a method in which a TiO2 thin film is produced by firing in air at a low temperature.

本発明において、チタニアとしてはアナターゼ(鋭錐石
)型の結晶構造のものが好適であるが、ルチル型あるい
はイタチタン石型なと他の結晶構造のものでも良い。
In the present invention, titania preferably has an anatase crystal structure, but titania having other crystal structures such as rutile or titanite may also be used.

次に、このような本発明のセンサーを用いて還元性物質
の検出、測定を行なう方法について説明する。
Next, a method for detecting and measuring reducing substances using the sensor of the present invention will be described.

まず、本発明のセンサーを還元性物質の存在する気相な
いし液相の被測定相内に置き、被測定相内のセンサーに
適当な位置から、波長約420nm以下の光を照射する
。センサーに担持されているTiO2は、還元性物質の
存在下、上記波長の光照射により黒色のTiOとなるた
め、センサーの変色により還元性物質の有無が検知され
る。
First, the sensor of the present invention is placed in a gaseous or liquid phase to be measured in which a reducing substance is present, and the sensor in the phase to be measured is irradiated with light having a wavelength of about 420 nm or less from an appropriate position. Since the TiO2 supported on the sensor becomes black TiO when irradiated with light of the above wavelength in the presence of a reducing substance, the presence or absence of the reducing substance can be detected by the color change of the sensor.

還元性物質を定量するためには、変色したセンサーを被
測定相内から取り出し、これに約450nm以上の波長
の参照光を照射し、参照先の入射光量に対する反射光又
は透過光の光量変化を測定することにより、着色の程度
、即ち還元性物質の量を測定することができる。特に、
この場合、予め検量線を作成しておくことにより、この
検量線を基準として光量変化に対する還元性物質量を極
めて容易に求めることが可能となる。なお、参照先はチ
ョッパー等で変調し、ロック・イン・アンプで検出する
ことにより、S/N比を高めるようにしても良い。
In order to quantify reducing substances, a discolored sensor is taken out from within the phase to be measured, irradiated with reference light of a wavelength of approximately 450 nm or more, and changes in the amount of reflected or transmitted light relative to the amount of incident light at the reference target are measured. By measuring, the degree of coloring, that is, the amount of reducing substances can be determined. especially,
In this case, by creating a calibration curve in advance, it becomes possible to extremely easily determine the amount of reducing substance with respect to a change in the amount of light using this calibration curve as a reference. Note that the S/N ratio may be increased by modulating the reference destination with a chopper or the like and detecting it with a lock-in amplifier.

本発明のセンサーは、測定に使用した後、酸化性の状態
に置くと、TiOが再び気相ないし液相中の酸素と結合
しTiO2に戻り、速やかに褪色して、次の測定に再使
用可能となる。
When the sensor of the present invention is placed in an oxidizing state after being used for measurement, TiO combines with oxygen in the gas or liquid phase again and returns to TiO2, quickly fading and being reused for the next measurement. It becomes possible.

このような本発明のセンサーは、気相ないし液相中の還
元性物質、特に、メタノール、エタノール等のアルコー
ルなどの還元性液体、−酸化炭素、メタン、プロパン等
の還元性気体など、比較的低分子量の各種還元性有機物
質の検出に極めて有効である。
Such a sensor of the present invention can be used to detect reducing substances in the gas phase or liquid phase, particularly reducing liquids such as alcohols such as methanol and ethanol, and reducing gases such as carbon oxide, methane, and propane. It is extremely effective in detecting various low molecular weight reducing organic substances.

[実施例] 以下、実施例について説明する。[Example] Examples will be described below.

実施例1 竺2土二Ω1】 ガラスフィルター3号(目開き20〜30μm、直径3
0mm)をテトライソプロピルオルトチタネート(Ti
  [(CH3)2 CHO]4 )の10%エチルア
ル−−ル溶液中に浸漬し、乾燥後、電気炉中で450℃
、30分焼成した。
Example 1 Glass filter No. 3 (opening 20 to 30 μm, diameter 3
0 mm) and tetraisopropyl orthotitanate (Ti
It was immersed in a 10% ethyl alcohol solution of [(CH3)2CHO]4), dried, and then heated at 450°C in an electric furnace.
, baked for 30 minutes.

還元性物質の測 上記ガラスフィルター板を、メタノール水溶液を入れた
パイレックスガラスビーカー中に置き、超高圧水銀灯(
400W)から10cmの距離で光照射を5分間行ない
、次いで空気中に取り出して着色の程度を測定した。こ
の操作を各種濃度のメタノール水溶液について行なった
。なお、測定光は12V、20Wハロゲンランプの放射
光を用いた。測定器としては照度計を用い、着色の程度
を光学密度で表した。
The glass filter plate used for measuring reducing substances was placed in a Pyrex glass beaker containing an aqueous methanol solution, and an ultra-high pressure mercury lamp (
400 W) at a distance of 10 cm for 5 minutes, and then taken out into the air to measure the degree of coloration. This operation was performed on methanol aqueous solutions of various concentrations. Note that the measurement light used was radiation from a 12V, 20W halogen lamp. A luminometer was used as a measuring device, and the degree of coloring was expressed as optical density.

結果を第1図、No、1に示す。なお、第1図の横軸は
メタノール濃度(容量%)、縦軸は着色の光学密度を示
す。
The results are shown in Figure 1, No. 1. In addition, the horizontal axis of FIG. 1 shows the methanol concentration (volume %), and the vertical axis shows the optical density of coloring.

実施例2 実施例1において、被測定相をエタノール水溶液として
同様の測定を行なった。結果を第1図、No、2に示す
Example 2 Similar measurements were carried out in Example 1 using an ethanol aqueous solution as the phase to be measured. The results are shown in Figure 1, No. 2.

第1図のNo、1.No、2より、メタノール又はエタ
ノール濃度が増加すると光学密度が増加することが明ら
かである。
No. 1 in Figure 1. From No. 2, it is clear that the optical density increases as the methanol or ethanol concentration increases.

実施例3 1ヱ土二±11 ガラスフィルター4号(目開き5〜10μm。Example 3 1 ヱ 2 ± 11 Glass filter No. 4 (opening 5-10 μm.

直6径30 mm)をTi  [(CHs ) 2CH
O] 4の10%エチルアルコール溶液中に浸漬し、乾
燥後、電気炉中で450℃、30分焼成した。
Ti [(CHs) 2CH
O] 4 was immersed in a 10% ethyl alcohol solution, dried, and then baked at 450° C. for 30 minutes in an electric furnace.

lii生!旦j皿 上記ガラスフィルター板を、各種濃度のエタノール水溶
液中に置き、実施例1と同様の測定を行なった。
lii raw! The glass filter plates described above were placed in aqueous ethanol solutions of various concentrations, and the same measurements as in Example 1 were performed.

結果を第1図、N003に示す。The results are shown in FIG. 1, No. 003.

この場合においては、エタノール濃度 o、ooot%(ippm)から100%までの範囲で
、濃度と光学密度との間に直線的な比例関係が得られる
ことが明らかである。
In this case, it is clear that a linear proportional relationship between concentration and optical density is obtained in the range from ethanol concentration o,ooot% (ippm) to 100%.

本実施例において、100%エチルアルコールの測定に
用いたセンサーを空気中に放置したとぎの褪色の経時変
化を光学密度を測定することにより調べた。その結果を
第2図に示した。
In this example, the sensor used to measure 100% ethyl alcohol was left in the air, and the fading change over time was investigated by measuring optical density. The results are shown in Figure 2.

第2図より、本発明のセンサーは経時的に着色がなくな
り、繰り返し再使用が可能であることが明らかである。
From FIG. 2, it is clear that the sensor of the present invention loses its coloring over time and can be reused repeatedly.

実施例4〜6 実施例3で製造したセンサーを、CO(実施例4)、メ
タン(実施例5)又はプロパン(実施例6)を各f!濃
度で含む密閉容器中に置き、実施例3と同様にして測定
を行なった。
Examples 4-6 The sensor manufactured in Example 3 was treated with CO (Example 4), methane (Example 5), or propane (Example 6) at f! The sample was placed in a closed container containing the same concentration, and measurements were carried out in the same manner as in Example 3.

結果を第3図、No、1〜3に示す。The results are shown in FIG. 3, Nos. 1 to 3.

第3図より、本発明のセンサーは気相中の還元性物質の
測定にも有効であることが認められる。
From FIG. 3, it is recognized that the sensor of the present invention is also effective for measuring reducing substances in the gas phase.

[発明の効果] 以上詳述した通り、本発明の還元性物質のセンサーは、 ■ 常温で繰返し動作し、疲労ないし感度の経時劣化を
生じない。
[Effects of the Invention] As detailed above, the reducing substance sensor of the present invention: (1) Operates repeatedly at room temperature without causing fatigue or deterioration of sensitivity over time;

■ センサーの着色の程度は光学的に検出できるため、
安全上及び環境上好ましい。
■ The degree of coloration of the sensor can be detected optically, so
Favorable from safety and environmental standpoints.

■ 電気雑音による妨害を受けることなく、いかなる場
所においても安定した測定が可能である。
■ Stable measurements can be made in any location without interference from electrical noise.

等の効果を有し、気相ないし液相中の還元性物質、とり
わけ低分子量の有機物質を工業的有利に検出、定量する
ことが可能とされる。
With these effects, it is possible to industrially advantageously detect and quantify reducing substances, especially low molecular weight organic substances, in the gas or liquid phase.

特に、本発明のセンサーは、液中で連続的に還元性物質
の濃度をモニターすることができ、例えば工業用装置等
に取り付けて製品の管理を行なうなど、様々な分野に有
用である。本発明のセンサーは、とりわけエチルアルコ
ールの検出に有効であり、ippm程度の微量をも検知
することが可能であるため、その工業的価値は極めて高
い。
In particular, the sensor of the present invention can continuously monitor the concentration of a reducing substance in a liquid, and is useful in various fields, such as when attached to industrial equipment and the like to manage products. The sensor of the present invention is particularly effective in detecting ethyl alcohol, and is capable of detecting even trace amounts of ippm, so its industrial value is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1〜3における測定結果を示すグラフ、
第2図は実施例3におけるセンサーの褪色を示すグラフ
、第3図は実施例4〜6における測定結果を示すグラフ
である。 代理人  弁理士  重 野  剛 ペ01−槌目 ぺ0+−舶駆
FIG. 1 is a graph showing the measurement results in Examples 1 to 3;
FIG. 2 is a graph showing the fading of the sensor in Example 3, and FIG. 3 is a graph showing the measurement results in Examples 4 to 6. Agent Patent Attorney Go Pei Shigeno 01-Tsuchimepe 0+-Nippon

Claims (9)

【特許請求の範囲】[Claims] (1)多孔体にチタニアを担持してなる還元性物質のセ
ンサー。
(1) A reducing substance sensor made of a porous material supporting titania.
(2)多孔体にチタニア微粒子を含浸させることにより
チタニアを担持させてなる特許請求の範囲第1項に記載
のセンサー。
(2) The sensor according to claim 1, wherein titania is supported by impregnating a porous body with titania fine particles.
(3)多孔体表面にチタニアの被覆膜を形成することに
よりチタニアを担持させてなる特許請求の範囲第1項に
記載のセンサー。
(3) The sensor according to claim 1, wherein titania is supported by forming a titania coating film on the surface of the porous body.
(4)多孔体が無機繊維の織布ないし不織布である特許
請求の範囲第1項ないし第3項のいずれか1項に記載の
センサー。
(4) The sensor according to any one of claims 1 to 3, wherein the porous body is a woven or nonwoven fabric of inorganic fibers.
(5)無機繊維がガラス繊維である特許請求の範囲第4
項に記載のセンサー。
(5) Claim 4 in which the inorganic fiber is glass fiber
Sensors listed in section.
(6)多孔体がガラス粒子の焼結体である特許請求の範
囲第1項ないし第3項のいずれか1項に記載のセンサー
(6) The sensor according to any one of claims 1 to 3, wherein the porous body is a sintered body of glass particles.
(7)ガラス粒子の粒径が1〜200μmである特許請
求の範囲第6項に記載のセンサー。
(7) The sensor according to claim 6, wherein the glass particles have a particle size of 1 to 200 μm.
(8)多孔体が多孔性ガラスである特許請求の範囲第1
項ないし第3項のいずれか1項に記載のセンサー。
(8) Claim 1 in which the porous body is porous glass
The sensor according to any one of Items 1 to 3.
(9)多孔性ガラスの細孔径が0.5〜10μmである
特許請求の範囲第8項に記載のセンサー。
(9) The sensor according to claim 8, wherein the porous glass has a pore diameter of 0.5 to 10 μm.
JP27539687A 1987-10-30 1987-10-30 Sensor for reducing substance Pending JPH01116446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27539687A JPH01116446A (en) 1987-10-30 1987-10-30 Sensor for reducing substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27539687A JPH01116446A (en) 1987-10-30 1987-10-30 Sensor for reducing substance

Publications (1)

Publication Number Publication Date
JPH01116446A true JPH01116446A (en) 1989-05-09

Family

ID=17554915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27539687A Pending JPH01116446A (en) 1987-10-30 1987-10-30 Sensor for reducing substance

Country Status (1)

Country Link
JP (1) JPH01116446A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039536A (en) * 1983-08-12 1985-03-01 Hochiki Corp Gas sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039536A (en) * 1983-08-12 1985-03-01 Hochiki Corp Gas sensor

Similar Documents

Publication Publication Date Title
US10732093B2 (en) Gas sensor
Chocarro-Ruiz et al. A CO 2 optical sensor based on self-assembled metal–organic framework nanoparticles
Abdelghani et al. Surface plasmon resonance fibre-optic sensor for gas detection
JP4382816B2 (en) Ozone gas sensing element
Barczak et al. Micro-and nanostructured sol-gel-based materials for optical chemical sensing (2005–2015)
US10656091B2 (en) Optical sensor for detecting a chemical species
JP5182900B2 (en) Sample detection sensor and sample detection method
Melnikov et al. Optimizing Production Conditions for a Composite Optical Oxygen Sensor Using Mesoporous SiO 2
Koncki et al. Optical chemical sensing based on thin films of Prussian Blue
Pisco et al. A novel optochemical sensor based on SnO 2 sensitive thin film for ppm ammonia detection in liquid environment
Somani et al. Novel dye+ solid polymer electrolyte material for optical humidity sensing
Xing et al. High-performance chlorobenzene sensor of bimetallic ZIF-8 (Zn@ Co) based one-dimensional photonic crystals
Różycki-Bakon et al. Stack of nano-films on optical fiber end face for label-free bio-recognition
JP2009507219A (en) Zirconium oxide luminescent oxygen sensor
Doushita et al. Evaluation of photocatalytic activity by dye decomposition
JPH01116446A (en) Sensor for reducing substance
Koh et al. Fabrication of encoded rugate porous silicon interferometer for biosensor
Fan et al. Optical waveguide sensor based on silica nanotube arrays for label-free biosensing
Huang et al. Photothermal-assisted for ultrafast response acetone sensing with ZIF-90/GO coated microfiber long period gratings
Kuchyanov et al. Highly sensitive and fast response gas sensor based on a light reflection at the glass-photonic crystal interface
Salonen et al. Thermal carbonization of porous silicon: The current status and recent applications
Noor et al. Increased sensitivity of Au-Pd nanolayer on tapered optical fiber sensor for detecting aqueous ethanol
JP4993775B2 (en) Gas measuring device and method
Tyszkiewicz et al. Sol-gel derived sensitive films for ammonia sensors
Cho et al. Fabrication of human IgG sensors based on porous silicon interferometer containing Bragg structures