JPH01116433A - Measurement of concentration of fine particle by laser beam - Google Patents

Measurement of concentration of fine particle by laser beam

Info

Publication number
JPH01116433A
JPH01116433A JP62277110A JP27711087A JPH01116433A JP H01116433 A JPH01116433 A JP H01116433A JP 62277110 A JP62277110 A JP 62277110A JP 27711087 A JP27711087 A JP 27711087A JP H01116433 A JPH01116433 A JP H01116433A
Authority
JP
Japan
Prior art keywords
laser beam
particle
particles
light
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62277110A
Other languages
Japanese (ja)
Inventor
Mitsuyo Takahashi
三餘 高橋
Hiroo Hasegawa
裕夫 長谷川
Iwao Yamashita
山下 巌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP62277110A priority Critical patent/JPH01116433A/en
Publication of JPH01116433A publication Critical patent/JPH01116433A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/718Laser microanalysis, i.e. with formation of sample plasma

Abstract

PURPOSE:To perform measurement or local measurement in a high speed flow field by a method wherein a laser beam is allowed to be incident on a particle to allow the evaporated substance from the particle to emit a beam while the emitted beam is spectrally diffracted to obtain a spectrum which is, in turn, used in the measurement of the particle. CONSTITUTION:The laser beam 1 emitted from a laser beam oscillator 9 is once diffused by a concave lens 11 and subsequently condensed by a condensing optical system 14 containing convex lenses 12, 13. A specimen 7 is placed at the position where said condensed laser beam 1 is received. The beam 4 emitted from the plasma generated in the vicinity of the surface of the particle of the specimen 7 is condensed by a condenser 15 to be incident on a spectroscope 5 and spectrally diffracted by the spectroscope 5 to obtain monochromatic beam which is, in turn, photoelectrically converted by a photomultiplier 16 to be amplified by an amplifier 17 and, thereafter, the change of the intensity of the beam with the elapse of time is recorded by an oscilloscope 18.

Description

【発明の詳細な説明】 (イ)発明の目的 [産業上の利用分野] この発明は、ディーゼルエンジン、ガスタービン等の排
気中或いはクリーンルーム内の、粒子濃度や粒径の計測
、粒子構成物質の同定等の、微粒子m度計測法に関する
ものである。
[Detailed Description of the Invention] (a) Purpose of the Invention [Field of Industrial Application] This invention is applicable to the measurement of particle concentration and particle size, and the measurement of particle constituent substances in the exhaust of diesel engines, gas turbines, etc. or in clean rooms. This relates to a method for measuring particle size, such as identification.

[従来の技術] 近年、環境汚染が大きな社会問題となっており、例えば
ディーゼルエンジン、ガスタービン或いはスターリング
エンジン等の各種排気はその含む粒子の濃度や粒子径、
構成物質をコントロールする必要がある。
[Prior Art] In recent years, environmental pollution has become a major social problem. For example, various types of exhaust from diesel engines, gas turbines, Stirling engines, etc.
It is necessary to control the constituent substances.

このような場合に用いる粒子濃度・粒径等の測定法とし
て従来用いられているのは、 (1)粒子をフィルター等で捕集してそれを顕微鏡等で
観測する (2)粒子の分散系に光を入射し粒子の光散乱による入
射光の減衰を用いる (3)粒子の分散系に光を入射し粒子による散乱光を検
出する (4)フラウンホーファー回折を利用して粒径分布を計
測する 等の方法である。
Conventionally used methods for measuring particle concentration, particle size, etc. in such cases are: (1) collecting particles with a filter etc. and observing them with a microscope etc. (2) dispersion system of particles (3) Inject light into a dispersion system of particles and detect the light scattered by the particles. (4) Measure particle size distribution using Fraunhofer diffraction. It is a method such as doing.

[発明が解決しようとする問題点] しかるに、 (1)はバッチ(batch)方法であり、時間的・空
間的に近接した一区間を1回分にまとめてからする測定
しかできないため対応が遅れかつ局所計測ができないう
えに、場に大きな擾乱を与える(2)は入射光の光路全
長についての平均値の計測しかできない (3)は粒子物質の区別ができず、粒径が小さくなると
S/N比(信号雑音比)バ低くなり劣る。
[Problems to be solved by the invention] However, (1) is a batch method, which can only perform measurements after combining temporally and spatially adjacent sections into one measurement, resulting in delayed response and In addition to not being able to perform local measurements, (2), which causes large disturbances to the field, can only measure the average value over the entire optical path length of the incident light, and (3) cannot distinguish between particle substances, and as the particle size becomes smaller, the S/N decreases. The ratio (signal to noise ratio) is low and inferior.

(4)は高速の測定には不適当である 等の問題点をそれぞれ有する。(4) is inappropriate for high-speed measurements Each has its own problems.

この発明は上記の如き事情に鑑みてなされたものであっ
て、場を擾乱することなく高速流れ場での測定、局所計
測が可能で、S/N比が極めて高く、粒子濃度と同時に
粒径の推定も可能で、しかも重要な点として従来出来な
かった粒子物質の区別をも可能とする微粒子濃度計測法
を提供することを目的としている。
This invention was made in view of the above-mentioned circumstances, and it is possible to perform measurements in high-speed flow fields and local measurements without disturbing the field, has an extremely high S/N ratio, and can simultaneously measure particle concentration and particle size. The purpose of the present invention is to provide a method for measuring the concentration of particulates that enables the estimation of the amount of particles and, importantly, the ability to distinguish between particulate substances, which has not been possible in the past.

(ロ)発明の構成 [問題を解決するための手段1 この目的に対応して、この発明のレーザ発光による微粒
子濃度計測法は、粒子にレーザ光を入射することにより
前記粒子からの蒸発物を発光させ、該発光を分光して得
られるスペクトルにより粒子を測定することを特徴とし
ている。
(B) Structure of the Invention [Means for Solving the Problem 1] Corresponding to this object, the method for measuring the concentration of particulates by laser emission of the present invention detects evaporated matter from the particles by injecting laser light into the particles. It is characterized by emitting light and measuring the particles based on the spectrum obtained by spectroscopy of the emitted light.

以下、この発明の詳細を一実施例を示す図面について説
明する。
Hereinafter, details of the present invention will be explained with reference to the drawings showing one embodiment.

まず第3図についてこの測定法の原理を説明する。第3
図は炭素の固体表面にパルスレーザ光(ヤグレーザ、波
長1.06μm)を当てて、1パルス当たりの蒸発ff
1(μg/パルス)を計測したものであるが、その際、
パルスレーザ光の出力強度を約50011jを最大1と
してOから1まで種々変化させた各場合について計測し
その結束をプロットし、グラフに示したものである。
First, the principle of this measurement method will be explained with reference to FIG. Third
The figure shows the evaporation rate ff per pulse when pulsed laser light (YAG laser, wavelength 1.06 μm) is applied to the solid surface of carbon.
1 (μg/pulse), but at that time,
The output intensity of the pulsed laser beam was measured for each case in which the output intensity was varied from 0 to 1, with a maximum value of 1 at about 50011j, and the results were plotted and shown in a graph.

第3図では、パルスレーザ光の出力強度がある強度(図
中的0.3)以上のときは、出力強度が大きくなっても
1パルス当たりの炭素の蒸発量はらはや増加せず、はぼ
一定値となることが示されている。
In Figure 3, when the output intensity of the pulsed laser beam exceeds a certain level (0.3 in the figure), the amount of carbon evaporated per pulse does not increase any more even if the output intensity increases; It has been shown that the value remains almost constant.

これはパルスレーザの出力がある強度以上であると、1
パルスの一部分、すなわちスタートからある時点までの
間に、固体表面が非常に高温となりそこから蒸発が起っ
て固体表面近傍にプラズマ状態が発生し、後続の光はこ
のプラズマにブロックされて固体表面に達しなくなって
蒸発量は増加しなくなるものと考えられ、かわりにこの
ブロックされたレーザ光がこのプラズマを熱しその強度
に応じた強度の発光現象が起る。
This means that if the output of the pulsed laser exceeds a certain intensity, 1
During a portion of the pulse, that is, from the start to a certain point, the solid surface becomes very hot and evaporation occurs, creating a plasma state near the solid surface, and subsequent light is blocked by this plasma and reaches the solid surface. It is thought that the amount of evaporation no longer increases as the amount of evaporation stops increasing, and instead the blocked laser light heats the plasma and a light emission phenomenon occurs with an intensity corresponding to the intensity of the laser light.

この発光は固体の構成物質によりそれぞれ異なるスペク
トルを示し、かつその強度は粒子の断面積に比例するか
ら、一定の強度のレーザ光を入射したときの該発光を分
光して得られた単色光のスペクトルの強度を計測すれば
、粒子の構成物質の同定、レーザ光が入射した粒子の断
面積が分かる。
This emitted light shows different spectra depending on the constituent materials of the solid, and its intensity is proportional to the cross-sectional area of the particle. Therefore, monochromatic light obtained by spectroscopy of the emitted light when a laser beam of a certain intensity is incident on the particle. By measuring the intensity of the spectrum, it is possible to identify the constituent substances of the particles and find out the cross-sectional area of the particles into which the laser beam is incident.

次に第2図によってこの発明のレーザ発光による微粒子
a度計測法を示す。
Next, FIG. 2 shows a method of measuring particle a degree using laser emission according to the present invention.

まず、粒子2に前記した一定強度以上のレーザ光1を入
射しく第2図(a))、粒子2の表面近傍で粒子2から
の蒸発物3によるプラズマ状態を発生させかつこの蒸発
物3から光4を発光させる(第2図(b))。この発光
はレーザ光1がパルスレーザ光である場合1パルスの時
間内において起る。
First, the laser beam 1 of a certain intensity or more is incident on the particle 2 (FIG. 2(a)), and a plasma state is generated near the surface of the particle 2 by the evaporated material 3 from the particle 2. Light 4 is emitted (FIG. 2(b)). This light emission occurs within the time of one pulse when the laser beam 1 is a pulsed laser beam.

この先4を集光して分光器5で分光して得られるスペク
トル6を光電変換器20で受光する。
A photoelectric converter 20 receives a spectrum 6 obtained by condensing the light 4 and separating it with a spectroscope 5 .

レーザ光照射体積に含まれる粒子数が1以下のような粒
子11度が稀薄の場合、発光回数を計数することにより
粒子S度の測定を、また発光強度が粒子断面積に比例す
ることがら粒径の推計を行なう。
When the particle 11 degree is dilute, such as the number of particles contained in the laser beam irradiation volume is 1 or less, the particle S degree can be measured by counting the number of times of light emission. Estimate the diameter.

一方粒子濃度が高くレーザ光照射体積内に複数の粒子が
存在する場合には空間分解能を有する光電変換器(例え
ばマトリックス状のマイクロチャンネルプレート)で発
光を受け、同時発光する粒子の計数を行なう。また上記
粒子S度が稀薄な場合と同様発光強度から粒径の推計を
行なう。
On the other hand, when the particle concentration is high and a plurality of particles exist within the laser beam irradiation volume, the light is received by a photoelectric converter (for example, a matrix-like microchannel plate) having spatial resolution, and the particles that emit light simultaneously are counted. Further, as in the case where the particle S degree is dilute, the particle size is estimated from the emission intensity.

また構成物質の相異なる複数種の粒子からの発光を分光
しそれぞれの構成物質に対応する単色光の強さを検出し
て、各粒子の濃度を区別してH41lする。
Furthermore, the light emitted from a plurality of types of particles having different constituent substances is spectrally dispersed, and the intensity of monochromatic light corresponding to each constituent substance is detected, and the concentration of each particle is distinguished and determined.

[実施例] 第1図はこの発明のレーザ発光による微粒子濃度計測法
を実施するための測定装置10を示している。測定装置
10においてはレーザ光発振器9から発したレーザ光1
を凹レンズ11によっていったん拡光後、凸レンズ12
.13を含む集光光学系 14で集光する。この集光さ
れたレーザ光1を断面の半径0.5am〜0.8Hnの
スポット状に受ける位置に試料7を置く。
[Example] FIG. 1 shows a measuring device 10 for carrying out the method of measuring particulate concentration using laser emission according to the present invention. In the measuring device 10, a laser beam 1 emitted from a laser beam oscillator 9 is used.
Once the light is expanded by the concave lens 11, the convex lens 12
.. A condensing optical system 14 including 13 condenses the light. A sample 7 is placed at a position where it receives this focused laser beam 1 in a spot shape with a cross-sectional radius of 0.5 am to 0.8 Hn.

試料7の粒子の表面近傍に発生したプラズマからの発光
4を集光器15で集光して分光器5に入射し、分光器5
により分光して得られた単色光をフォトマルチプライア
−16により光電変換し、アンプ17で増幅後オシロス
コープ18によりその強度の経時変化を記録する。オシ
ロスコープ18はフォトダイオード21をトリガーとし
て作動するように、発光4の一部はフォトダイオード2
1に入るようにされている。
Luminescence 4 from the plasma generated near the surface of the particles of the sample 7 is collected by a condenser 15 and incident on the spectrometer 5.
The monochromatic light obtained by spectroscopy is photoelectrically converted by a photomultiplier 16, and after being amplified by an amplifier 17, the change in intensity over time is recorded by an oscilloscope 18. The oscilloscope 18 operates using the photodiode 21 as a trigger, so that a part of the light emission 4 is connected to the photodiode 21.
It is set to be number 1.

[実験例] 試料7としてここでは炭素板7aを用い、モータ8によ
り定速回転させて、炭素板7aにおけるレーザ光1の入
射位置が定速で移動するようにし、炭素板7aの表面を
構成する炭素粒子の同一なるものが逐次レーザ光1に入
射されるようにして、粒子の流通運動を摸する。測定装
置10によって、大気中で炭素板7aの表面の炭素粒子
にレーザ光1を入射して、その際の発光4を分光して)
9られたスペクトルの強さの経時変化を記録し、第4図
を得た。すなわちレーザ光が炭素板に入射されるとその
表面近傍にプラズマ状態が発生し、蒸発物のうち炭素C
に対応して波長248 n1llの単色光、C2に対応
して波長516nmのスペクトル、及びCNに対応して
波長388 ru++のスペクトルが現れ、このプラズ
マ状態が冷却するに伴い発光が減衰する様子を示してい
る。
[Experiment example] Here, a carbon plate 7a is used as the sample 7, and is rotated at a constant speed by a motor 8 so that the incident position of the laser beam 1 on the carbon plate 7a moves at a constant speed, so that the surface of the carbon plate 7a is configured. The same carbon particles are successively incident on the laser beam 1 to simulate the flow motion of the particles. Using the measuring device 10, the laser beam 1 is incident on the carbon particles on the surface of the carbon plate 7a in the atmosphere, and the emitted light 4 at that time is spectrally separated)
The time-dependent changes in the intensity of the obtained spectra were recorded, and Figure 4 was obtained. That is, when a laser beam is incident on a carbon plate, a plasma state is generated near the surface of the carbon plate, and carbon C among the evaporated matter is
Monochromatic light with a wavelength of 248 nm appears corresponding to , a spectrum with a wavelength of 516 nm corresponds to C2, and a spectrum with a wavelength of 388 ru++ appears corresponding to CN, indicating that the light emission attenuates as this plasma state cools. ing.

[作用・効果] 実験例では定速回転する炭素板7aにレーザ光1を入射
しているが、分散した粒子にレーザ光を入射してその発
光を分光し、そのスペクトルの強度を記録するように測
定装置を構成することができ、この場合、粒子の発光に
関する既知のデータどの比較により粒子の構成物質の同
定・粒子の計数・粒子の濃度の計測・粒子の粒径の計測
等の測定を行うことができ、高速流れ場での測定、局所
計測が可能で、S/N比が極めて高く、粒子濃度と同時
に粒径の推定も可能で、しかも重要な点として従来出来
なかった粒子物質の区別をも可能とする微粒子濃度計測
法を得ることができる。
[Function/Effect] In the experimental example, the laser beam 1 is incident on the carbon plate 7a rotating at a constant speed, but it is also possible to incident the laser beam on the dispersed particles, separate the emitted light, and record the intensity of the spectrum. In this case, the measurement device can be configured to compare the known data regarding the luminescence of the particles to identify the constituent substances of the particles, count the particles, measure the concentration of the particles, measure the particle size of the particles, etc. It is possible to perform measurements in high-speed flow fields and local measurements, the S/N ratio is extremely high, it is possible to estimate the particle size at the same time as the particle concentration, and most importantly, it is possible to measure particle materials, which was previously not possible. It is possible to obtain a method for measuring the concentration of fine particles that also makes it possible to differentiate them.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明のレーザ発光による微粒子濃度計測法
を固体表面の粒子に対して実施する測定装置の一実施例
を示す構成説明図、第2図はこの発明のレーザ発光によ
る微粒子濃度計測法を示す説明図、第3図は第1図に示
す装置において1パルス当たりの炭素の蒸発口(1シヨ
ツト当たりの炭素板の厚みの減少)と入射するパルスレ
ーザ光の強度の関係を示すグラフ、及び第4図は第1図
に示すWA置により炭素板にレーザ光を入射して記録さ
れた単色光の強度の経時変化を示すグラフである。 1・・・レーザ光  2・・・粒子  3・・・蒸発物
4・・・発光  5・・・分光器  6・・・スペクト
ル7・・・試料  7a・・・炭素板  8・・・モー
タ9・・・レーザ光発振器  10・・・測定装置  
11・・・凹レンズ  12・・・凸レンズ  13・
・・凸レンズ  14・・・集光光学系  15・・・
集光器16・・・フォトマルチプライア−17・・・ア
ンプ18・・・オシロスコープ  20・・・光電変換
器21・・・フォトダイオード 第 11 第2図 (a)        (b)           
(c)第3図 パ                        
          之バルスレーサ゛九のねす↑的づ
風皮 第4厘 時間(μS)
FIG. 1 is an explanatory diagram of the configuration of an embodiment of a measuring device for performing the method of measuring particle concentration using laser emission according to the present invention on particles on a solid surface, and FIG. 2 shows the method of measuring particle concentration using laser emission according to the present invention. FIG. 3 is a graph showing the relationship between the carbon evaporation port per pulse (reduction in the thickness of the carbon plate per shot) and the intensity of the incident pulsed laser beam in the apparatus shown in FIG. and FIG. 4 is a graph showing changes over time in the intensity of monochromatic light recorded by making laser light incident on a carbon plate using the WA apparatus shown in FIG. 1... Laser light 2... Particle 3... Evaporated matter 4... Luminescence 5... Spectrometer 6... Spectrum 7... Sample 7a... Carbon plate 8... Motor 9 ...Laser light oscillator 10...Measuring device
11... Concave lens 12... Convex lens 13.
...Convex lens 14...Condensing optical system 15...
Concentrator 16...Photomultiplier 17...Amplifier 18...Oscilloscope 20...Photoelectric converter 21...Photodiode No. 11 Fig. 2 (a) (b)
(c) Figure 3
Vals racer 9th nest↑Target wind skin 4th time (μS)

Claims (1)

【特許請求の範囲】[Claims] 粒子にレーザ光を入射することにより前記粒子からの蒸
発物を発光させ、該発光を分光して得られるスペクトル
により粒子を測定することを特徴とするレーザ発光によ
る微粒子濃度計測法
A method for measuring the concentration of particulates by laser emission, characterized in that the evaporated matter from the particles is caused to emit light by injecting a laser beam into the particles, and the particles are measured by the spectrum obtained by dispersing the emitted light.
JP62277110A 1987-10-29 1987-10-29 Measurement of concentration of fine particle by laser beam Pending JPH01116433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62277110A JPH01116433A (en) 1987-10-29 1987-10-29 Measurement of concentration of fine particle by laser beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62277110A JPH01116433A (en) 1987-10-29 1987-10-29 Measurement of concentration of fine particle by laser beam

Publications (1)

Publication Number Publication Date
JPH01116433A true JPH01116433A (en) 1989-05-09

Family

ID=17578923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62277110A Pending JPH01116433A (en) 1987-10-29 1987-10-29 Measurement of concentration of fine particle by laser beam

Country Status (1)

Country Link
JP (1) JPH01116433A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005155631A (en) * 2003-11-25 2005-06-16 General Electric Co <Ge> Method and device for evaluating rotary machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4915491A (en) * 1972-03-22 1974-02-09
JPS61178645A (en) * 1985-02-04 1986-08-11 Hitachi Ltd Apparatus for measuring density of particle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4915491A (en) * 1972-03-22 1974-02-09
JPS61178645A (en) * 1985-02-04 1986-08-11 Hitachi Ltd Apparatus for measuring density of particle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005155631A (en) * 2003-11-25 2005-06-16 General Electric Co <Ge> Method and device for evaluating rotary machine
JP4688479B2 (en) * 2003-11-25 2011-05-25 ゼネラル・エレクトリック・カンパニイ Method and apparatus for evaluating rotating machinery

Similar Documents

Publication Publication Date Title
US5308990A (en) Method for measuring microparticles, quantitative measuring method therefor and instrument for measuring microparticles
Castle et al. Variables influencing the precision of laser-induced breakdown spectroscopy measurements
Cremers et al. Direct detection of beryllium on filters using the laser spark
US6532067B1 (en) Aerosol fluorescence spectrum analyzer for rapid measurement of single airborne particles
US6137584A (en) Method and device for determining predetermined properties of target particles of a sample medium
AU624047B2 (en) High sensitivity fluorescent single particle and single molecule detection apparatus and method
Lithgow et al. Ambient measurements of metal-containing PM2. 5 in an urban environment using laser-induced breakdown spectroscopy
US3797937A (en) System for making particle measurements
JP2010534847A (en) Analytical method and apparatus for analyzing chemical substances, biological substances and explosive substances floating in the air in real time
EP1275078B1 (en) Method for generating intra-particle morphological concentration / density maps and histograms of a chemically pure particulate substance
CN209416865U (en) A kind of oil liquid Particulate Pollution detection device
US4561777A (en) Apparatus and method for quantitative determination of materials contained in fluids
WO2002088673A2 (en) Detector for airborne biological particles
US20230117469A1 (en) Particulate detection, counting, and identification
Ullom et al. A simple optical patternator for evaluating spray symmetry
JPH01116433A (en) Measurement of concentration of fine particle by laser beam
CN113167709A (en) Method for operating a particle sensor
JP2020204594A (en) Photothermal conversion spectroscope and minute amount of specimen detection method
Gibb-Snyder et al. Development of size-selective sampling of Bacillus anthracis surrogate spores from simulated building air intake mixtures for analysis via laser-induced breakdown spectroscopy
US6061641A (en) Method for improving instrument response
CN113167712A (en) Method for processing signals of a particle sensor operating on the principle of laser-induced incandescence, device for processing signals and particle sensor
Pan et al. Real-time detection and characterization of individual flowing airborne biological particles: fluorescence spectra and elastic scattering measurements
Sivaprakasam et al. Field test results and ambient aerosol measurements using dual wavelength fluorescence excitation and elastic scatter for bio-aerosols
WO2021244839A1 (en) Particle number sensor
US20230258553A1 (en) System for Characterising Particles in the Form of an Aerosol in an Ambient Gas and Associated Method