JPH01115117A - Beam uniformized optical device - Google Patents

Beam uniformized optical device

Info

Publication number
JPH01115117A
JPH01115117A JP27415387A JP27415387A JPH01115117A JP H01115117 A JPH01115117 A JP H01115117A JP 27415387 A JP27415387 A JP 27415387A JP 27415387 A JP27415387 A JP 27415387A JP H01115117 A JPH01115117 A JP H01115117A
Authority
JP
Japan
Prior art keywords
intensity distribution
optical
beam splitter
beams
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27415387A
Other languages
Japanese (ja)
Inventor
Takashi Itoga
隆志 糸賀
Masayoshi Koba
木場 正義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP27415387A priority Critical patent/JPH01115117A/en
Publication of JPH01115117A publication Critical patent/JPH01115117A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To uniformize the intensity distribution of beams by branching laser beams into two optical paths by a first beam splitter, mounting an optical system, sectional intensity distribution of which is weakened and increased in the periphery, to one optical path, collecting these optical paths and optical system by a second beam splitter and obtaining parallel beams having uniform intensity distribution. CONSTITUTION:Circularly polarized parallel monochromatic beams are passed through a first beam splitter 81, and one of beams emitted branched into two optical paths from the first beam splitter 81 is passed through optical systems 91, 92 constituted so that sectional intensity distribution is weakened at the center and increased in the periphery. Beams emitted branched to the other optical path from the first beam splitter 81 and beams emitted from the optical systems 91, 92 are passed through a second beam splitter 82, and parallel beams having uniform intensity distribution are acquired from the second beam splitter 82. Accordingly, the intensity distribution of parallel laser beams projected from a device is brought close, and the displacement of a surface applied to a sample is reduced even when the intensity distribution of original laser beams is displaced from Gaussian distribution.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は半導体装置を製造する分野で利用される単結晶
薄膜形成装置におけるレーザー等のビーム照射を行なう
光学装置の改良に関し、さらに詳細には非晶質下地上に
形成した非晶質あるいは多結晶等の非単結晶シリコン薄
膜にCWレーザーを照射して非単結晶シリコン薄膜を溶
融させて単結晶薄膜形成装置における光学装置の改良に
関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to an improvement in an optical device for irradiating a beam such as a laser in a single-crystal thin film forming apparatus used in the field of manufacturing semiconductor devices. This invention relates to the improvement of optical equipment in a single crystal thin film forming apparatus by irradiating a CW laser onto a non-single crystal silicon thin film such as amorphous or polycrystalline silicon formed on an amorphous base to melt the non-single crystal silicon thin film. be.

く従来の技術〉 従来より結晶性全有しない絶縁膜の上に非晶質あるいは
多結晶等の非単結晶シリコン薄膜を形成し、この非単結
晶シリコン薄膜にエネルギービーム照射を行っ之りヒー
ターランプ等による加熱を行って溶融再結晶化させるこ
とにエリ単結晶薄膜を作製する方法(いわゆる5OI(
Silicon onInsulator)技術)が提
案されている。
Conventional technology: Conventionally, an amorphous or polycrystalline non-monocrystalline silicon thin film is formed on an insulating film that does not have any crystallinity, and this non-monocrystalline silicon thin film is irradiated with an energy beam. A method (so-called 5OI (
Silicon on Insulator technology) has been proposed.

従来りり提案されている方法として第5図(a)に示す
工うにシリコ゛ン基板11の上に絶縁膜12を形成し、
さらにその上に非晶質あるいは多結晶の非単結晶シリコ
ン薄膜13を形成した後、第5図(b)に示すようにガ
ウス分布を有するレーザービームの照射、あるいはヒー
ターやランプによる加熱l5を行って単結晶化膜14を
得ている。しかしこの方法で得られるシリコン単結晶化
膜14の結晶粒の大きさは大きくなく、この膜にトラン
ジスタを形成しても良好な動作特性を示さない。
A conventionally proposed method is to form an insulating film 12 on a silicon substrate 11 as shown in FIG. 5(a),
Further, after forming an amorphous or polycrystalline non-single-crystal silicon thin film 13 thereon, irradiation with a laser beam having a Gaussian distribution or heating 15 with a heater or lamp is performed as shown in FIG. 5(b). A single crystallized film 14 is obtained. However, the crystal grain size of the silicon single crystallized film 14 obtained by this method is not large, and even if a transistor is formed in this film, it does not exhibit good operating characteristics.

そのため、第6図に示す工うに非単結晶シリコン薄膜1
3の上に絶縁膜】6を形成し、さらにその上に非単結晶
シリコン薄膜17を選択的に形成するなどして、レーザ
ー光の反射率を周期的に変化させたものの上を、ガウス
分布を有するレーザー光15を矢印の方向に走査してい
くことにエリ、非単結晶シリコン薄膜13は反射率が最
大である部分の直下を核として結晶成長していく几め、
反射率が最大である部分の間隔の幅を有する単結晶が得
られる。
Therefore, the non-single crystal silicon thin film 1 shown in FIG.
By forming an insulating film [6] on 3 and selectively forming a non-single-crystal silicon thin film 17 on top of the insulating film 6, the reflectance of the laser beam is periodically changed, and a Gaussian distribution is formed on the film. By scanning the laser beam 15 in the direction of the arrow, the non-single-crystal silicon thin film 13 grows crystals with the core directly under the part where the reflectance is maximum.
A single crystal is obtained having a width equal to the distance between the parts where the reflectance is maximum.

〈発明が解決し二うとする問題点〉 しかし、上記した従来の方法では、割合に頻繁に起こる
レーザー光のガウス分布からの強度のずれが現れた場合
に、反射率が最大である部分の直下が温度が低いという
現象が正しくなくなり、単結晶部に粒界や結晶欠陥が入
り、意図し九大きさの単結晶が得られない。そのために
偶々この部分に作製したトランジスタが動作不良を起こ
してしまう等の問題点があった。
<Problems to be solved by the invention> However, in the conventional method described above, when a deviation in intensity from the Gaussian distribution of laser light occurs, which occurs quite frequently, the The phenomenon that the temperature is low becomes incorrect, grain boundaries and crystal defects enter the single crystal part, and a single crystal of the intended size cannot be obtained. For this reason, there were problems such as a transistor fabricated in this portion accidentally malfunctioning.

本発明は上記の点に鑑みて創案され友もので、頻繁に起
こるレーザーの強度分布の変化に対しても、試料に照射
されるレーザーの強度分布の変化はある程度緩和され、
−様の強度分布を有するレーザー光による再結晶化を可
能とする単結晶薄膜の形成に際して用いて好適なビーム
均一化光学装置を提供することを目的としている0 く問題点を解決するための手段〉 上記の目的を達成するため、本発明のビーム均一化光学
装置は、円偏光しt平行な単色光を第1のビームスピリ
ッターに通し、この第1のビームスピリッターから二つ
の光路に分岐して出る光の一方を断面強度分布が中央で
弱く周辺で強くなる工うに構成し定光学系に通し、上記
のilのビームスピリッターの他方の光路に分岐して出
る光及び上記の光学系から出る光を第2のビームスピリ
ッターに通してなり、上記の第2のビームスピリッター
より均一な強度分布の平行光を得る工うに構成している
The present invention was devised in view of the above points, and even with frequent changes in the intensity distribution of the laser, the changes in the intensity distribution of the laser irradiated onto the sample are alleviated to a certain extent.
The purpose of the present invention is to provide a beam uniformizing optical device suitable for use in forming a single crystal thin film that enables recrystallization with a laser beam having a -like intensity distribution. 〉 In order to achieve the above object, the beam homogenizing optical device of the present invention passes circularly polarized, t-parallel monochromatic light through a first beam spitter, and branches it into two optical paths from this first beam spitter. One of the emitted lights is configured so that the cross-sectional intensity distribution is weak at the center and strong at the periphery, and passed through a constant optical system, and the light is branched into the other optical path of the above-mentioned il beam spitter and emitted from the above-mentioned optical system. The light emitted from the beam is passed through a second beam spitter, and is configured to obtain parallel light with a more uniform intensity distribution than the second beam spitter.

即ち、本発明のビーム均一化光学装置は、レーザー光な
どの平行な単色光の断面の強度分布を均一にしようとす
る際に、均−化後も平行光であるLうに、円偏光である
レーザー光を複屈折板などのilのビームスプリッタ−
で2つの光路に分岐し、一方の光路に断面強度分布が中
央で弱く周辺で強くなるような光学系(例えば一対の円
錐プリズム)を挿入し、その後これらの2つの光路を複
屈折板などの第2のビームスプリッタ−で1つにまとめ
て2つの強度分布が加算されることによって均一な強度
分布の平行光を得る工うに構成している。
That is, the beam homogenizing optical device of the present invention, when trying to make the intensity distribution of a cross section of parallel monochromatic light such as a laser beam uniform, can be used to make parallel light that remains parallel even after equalization, but circularly polarized light. Laser light is transmitted through an IL beam splitter such as a birefringent plate.
An optical system (for example, a pair of conical prisms) is inserted into one optical path so that the cross-sectional intensity distribution is weak at the center and strong at the periphery, and then these two optical paths are divided into two optical paths using a birefringent plate, etc. The configuration is such that parallel light with a uniform intensity distribution is obtained by combining the two intensity distributions into one by a second beam splitter and adding them.

′i比、本発明の実施態様にあっては、後述するように
直径1m以上の平行なレーザー光を均一な強度分布にし
て、しかもビーム形状成形手段出射後も平行な光になる
工うに光路の一部に1/4波長板を置いた後、複屈折板
により2つの光路に分岐し、一方の光路に一対の円錐の
プリズムがその先端同志が向い合った配置になっている
光学系を挿入して強度分布を中央で弱く周辺で強いもの
きし几あと、これらの2つの光路を複屈折板で1つにま
とめるといった構成のビーム均一化光学装置を通過した
レーザー光を収束レンズで絞って絶縁膜で被覆された単
結晶基板の表面に形成され念非単結晶シリコン薄膜に照
射することに工り単結晶薄膜を得るLうに成している。
In the embodiment of the present invention, as will be described later, parallel laser beams with a diameter of 1 m or more are made to have a uniform intensity distribution, and even after being emitted from the beam shape shaping means, the light path remains parallel. After placing a 1/4 wavelength plate in a part of the optical system, the optical system is split into two optical paths by a birefringent plate, and one optical path has a pair of conical prisms with their tips facing each other. After inserting the laser beam, the intensity distribution is made weaker at the center and stronger at the periphery.After passing through a beam homogenizing optical device that combines these two optical paths into one using a birefringent plate, the laser beam is focused using a converging lens. A single crystal thin film is obtained by irradiating a thin non-single crystal silicon film formed on the surface of a single crystal substrate covered with an insulating film.

即ち、本発明の実施態様にあってはレーザー光の光路の
一部に1/4波長板と複屈折板と一対の円錐のプリズム
と複屈折板を組合せてS成したビーム均一化光学装置を
置き、出射し友平行なレーザー光が一様に近い分布を有
する。!:うにし、非単結晶シリコン薄膜から単結晶シ
リコン薄膜を得る際に安定で粒界や結晶欠陥が少ない単
結晶薄膜f:得るように成している。
That is, in an embodiment of the present invention, a beam homogenizing optical device that combines a 1/4 wavelength plate, a birefringent plate, a pair of conical prisms, and a birefringent plate to form an S is provided in a part of the optical path of the laser beam. The parallel laser light that is emitted has a nearly uniform distribution. ! : When a single crystal silicon thin film is obtained from a non-single crystal silicon thin film, a stable single crystal thin film f: with few grain boundaries and crystal defects is obtained.

く作用〉 直径1簡以上の平行なレーザー光の光路中に1/4波長
板と複屈折板と一対の円錐プリズムと複屈折板を組合せ
て構成したビーム均一化光学装置を挿入することにエリ
、装置を出射し几平行なレーザー光の強度分布は一様に
近くなり、若し元のレーザー光の強度分布がガウス分布
からずれ之場合でも試料に照射される面の分布のずれは
小さくなる。
Effect> An advantage is to insert a beam homogenizing optical device consisting of a combination of a 1/4 wavelength plate, a birefringent plate, a pair of conical prisms, and a birefringent plate into the optical path of a parallel laser beam with a diameter of 1 cm or more. , the intensity distribution of the parallel laser beam emitted from the device becomes nearly uniform, and even if the intensity distribution of the original laser beam deviates from the Gaussian distribution, the deviation in the distribution of the surface irradiated to the sample will be small. .

く実施例〉 以下、図面を参照して本発明の一実施例を詳細に説明す
る。
Embodiment> Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例のビーム均一化光学装置を用
いた単結晶薄膜形成装置の構成を示す図であり、lはレ
ーザー光源、2は反射ミラー、10は収束レンズ、3は
本発明に従ってレーザーの光路4中に設けられたビーム
均一化光学装置、5は薄膜試料、6は試料載置台であり
、レーザー光源1から照射さn之し−ザー光が試料載置
台6上にセットされ几薄膜試料5に照射され、走査され
る。
FIG. 1 is a diagram showing the configuration of a single crystal thin film forming apparatus using a beam uniformizing optical device according to an embodiment of the present invention, where l is a laser light source, 2 is a reflecting mirror, 10 is a converging lens, and 3 is a main body. According to the invention, a beam homogenizing optical device is provided in the optical path 4 of the laser, 5 is a thin film sample, 6 is a sample mounting table, and the laser beam irradiated from the laser light source 1 is set on the sample mounting table 6. The light is irradiated onto the thin film sample 5 and scanned.

試料5の薄膜は従来公知の方法に工っで作製され几多結
晶或いは非晶質のシリコン薄膜からなる単結晶化すべき
薄膜を有しており、レーザコン単結晶基板上にSiO2
等の絶縁性薄膜を介して被着されている。
The thin film of sample 5 was fabricated by a conventionally known method, and had a thin film to be made into a single crystal, consisting of a polycrystalline or amorphous silicon thin film, and was made by depositing SiO2 on a laser conductor single crystal substrate.
It is attached via an insulating thin film such as.

レーザー光源lと収束レンズlOとの間のレーザー光路
4上には、レーザー光の強度分布を制御する之めのビー
ム均一化光学装置3が設けられており、このビーム均一
化光学装置13は後述する工うにI/4波長板7と2枚
の複屈折板81.82と一光路中の一対の円錐のプリズ
ム91.92から構成されており、第2図(a)のLう
なガウス分布をもって放射されたレーザー光を第2図(
c)に示す工つな一様な強度分布をもつ光に変換する。
A beam homogenizing optical device 3 for controlling the intensity distribution of the laser beam is provided on the laser optical path 4 between the laser light source l and the converging lens lO, and this beam homogenizing optical device 13 will be described later. The device consists of an I/4 wavelength plate 7, two birefringent plates 81, 82, and a pair of conical prisms 91, 92 in one optical path, and has the L-shaped Gaussian distribution shown in Fig. 2 (a). Figure 2 shows the emitted laser light (
c) The light is converted into light having a uniform intensity distribution as shown in FIG.

第3図は、本発明のビーム均一化光学装置の基本的構成
を示し、レーザー光の強度分布を一様な強度分布に変換
するための2光路に分割し次光を1光路に1とめるため
の原理を示す図である。
Figure 3 shows the basic configuration of the beam homogenizing optical device of the present invention, which divides the laser beam into two optical paths to convert the intensity distribution into a uniform intensity distribution and stores one beam in one optical path. FIG.

第3図において、ガウス型、直磁偏光し友平行な単色光
であるレーザー光(入射光)21は1/4波長板7を通
される。この1/4波長板7を用いることにエリ、直線
偏光し之レーザー光21が円偏光に変えられる。
In FIG. 3, laser light (incident light) 21, which is a Gaussian type, direct magnetically polarized, parallel, monochromatic light, is passed through a quarter-wave plate 7. By using this quarter wavelength plate 7, the linearly polarized laser light 21 can be changed into circularly polarized light.

1/4波長板7を出たレーザー光は第1のビームスプリ
ッタ−である複屈折板8Iに通され、一つの光路の光が
二つの光路18,19の光に分岐される。また光路19
内には第4図に示すように一対の円錐のプリズム91.
92をその先端同志が向い合った状態に配置して断面強
度分布が中央で弱く周辺で強くなる工うに構成しt光学
系が挿入されており、その後、二つの光路18.19の
光は第2のビームスプリッタ−を構成する複屈折板82
に通さ九、一つの光にまとめら九で一つの光路エフ出射
光22として出射さ九る。この工うにして複屈折板82
によって、第2図(a)に示す光路18上のガウス分布
の光と、第2図(b)に示す光学系(91゜92)よジ
出る中央がくぼんだ光を混合して、その2つの強度分布
を加算するこさに工っで、第2図(c)に示すLうに一
様な分布を持つ一つの平行光が得られることになる。
The laser beam exiting the quarter-wave plate 7 is passed through a birefringent plate 8I, which is a first beam splitter, and the light on one optical path is split into two optical paths 18 and 19. Also, optical path 19
Inside is a pair of conical prisms 91, as shown in FIG.
92 are arranged with their tips facing each other so that the cross-sectional intensity distribution is weak in the center and strong in the periphery, and an optical system is inserted.Then, the light in the two optical paths 18 and 19 is Birefringent plate 82 constituting the second beam splitter
The light passes through 9, is combined into one light, and is emitted as one optical path F output light 22. In this way, the birefringent plate 82
By mixing the light with a Gaussian distribution on the optical path 18 shown in FIG. 2(a) and the light with a concave center emerging from the optical system (91°92) shown in FIG. 2(b), By adding up the two intensity distributions, one parallel beam having a uniform distribution as shown in FIG. 2(c) can be obtained.

上記の工うにレーザービーム均一化光学装置3を構成す
ることに1って、或いはさらに均一性を増すtめに複数
のレーザービーム均一化光学装置3を光路中に直列に配
置することに二って第2因(a)に示したガウス分布や
それに近い強度分布を有するレーザー光から第2図(c
)に示すように一様に近い強度分布を有するレーザー光
を得ることができ、その結果第1図に示す構成において
、粒界や結晶欠陥の生じにくい単結晶化膜が得られるこ
とになる。
It is possible to configure the laser beam homogenizing optical device 3 in the above manner, or to arrange a plurality of laser beam homogenizing optical devices 3 in series in the optical path in order to further increase the uniformity. Figure 2 (c)
), it is possible to obtain a laser beam having a near-uniform intensity distribution, and as a result, in the structure shown in FIG. 1, a single crystallized film that is less likely to have grain boundaries or crystal defects can be obtained.

〈発明の効果〉 以上のように本発明に↓れば、レーザー光がガウス分布
のみならず、それ工りず几た分布を有していても、常に
一様に近い分布をもつレーザー光を試料に照射すること
ができるため、非単結晶シリコン膜を単結晶化する場合
に用いて、安定で粒界や結晶欠陥の少ない単結晶シリコ
ン薄膜を得ることができる0
<Effects of the Invention> As described above, according to the present invention, even if the laser beam has not only a Gaussian distribution but also a neat distribution, it is possible to always generate a laser beam with a nearly uniform distribution. Since the sample can be irradiated with irradiation, it can be used when converting non-single crystal silicon films into single crystals to obtain stable single crystal silicon thin films with few grain boundaries and crystal defects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のビーム均一化光学装置を用
いた単結晶薄膜形成装置の構成全示す模式図、第2図(
a)は元の光路4及び第1光路18のレーザー光強度分
布を示す図、第2図(b)は詔2光路19のレーザー光
強度分布を示す図、第2図<c)はビーム均一化光学装
置出射後のレーザー光強度分布を示す図、第3図は本発
明におけるビーム均一化光学装置の構造例を示す図、菓
4図は一対の円錐のプリズムの形状と配置を詳細に示す
図、第5図(a) 、 (b)及び第6図にそれぞれ従
来の単結晶薄膜形成方法を説明する几めの図である。 1・・・レーザー光源、2・・・反射ミラー、3・・・
ビーム均一化光学装置、4・・・レーザーの光路、5・
・・薄膜試料、6・・・試料載置台、7・・・1/4波
長板、81゜82・・・複屈折板、91.92・・・円
錐プリズム、10・・・収束レンズ、18・・・第1光
路、19・・・第2光路〇代理人 弁理士 杉 山 毅
 至 (他1名)第1図
FIG. 1 is a schematic diagram showing the entire configuration of a single-crystal thin film forming apparatus using a beam-uniforming optical device according to an embodiment of the present invention, and FIG.
a) is a diagram showing the laser light intensity distribution of the original optical path 4 and the first optical path 18, FIG. Figure 3 shows a structural example of the beam homogenizing optical device according to the present invention; Figure 4 shows the shape and arrangement of a pair of conical prisms in detail. 5(a), 5(b), and 6 are detailed diagrams each illustrating a conventional method for forming a single crystal thin film. 1...Laser light source, 2...Reflecting mirror, 3...
Beam homogenizing optical device, 4... Laser optical path, 5.
... Thin film sample, 6... Sample mounting table, 7... Quarter wavelength plate, 81°82... Birefringent plate, 91.92... Conical prism, 10... Converging lens, 18 ...1st optical path, 19...2nd optical path〇 Agent Patent attorney Takeshi Sugiyama (1 other person) Figure 1

Claims (1)

【特許請求の範囲】 1、円偏光した平行な単色光を第1のビームスピリッタ
ーに通し、 該第1のビームスピリッターから二つの光路に分岐して
出る光の一方を断面強度分布が中央で弱く周辺で強くな
るように構成した光学系に通じ、 上記第1のビームスピリッターの他方の光路に分岐して
出る光及び上記光学系から出る光を第2のビームスピリ
ッターに通してなり、 上記第2のビームスピリッターより均一な強度分布の平
行光を得るように成したことを特徴とするビーム均一化
光学装置。
[Scope of Claims] 1. Pass circularly polarized parallel monochromatic light through a first beam spitter, and send one of the lights that are split into two optical paths and exit from the first beam spitter so that the cross-sectional intensity distribution is at the center. The light is transmitted to an optical system configured to be weak at the edges and strong at the periphery, and the light branched to the other optical path of the first beam spitter and the light output from the optical system are passed through the second beam spitter. . A beam homogenizing optical device, characterized in that the second beam spitter is configured to obtain parallel light with a uniform intensity distribution.
JP27415387A 1987-10-28 1987-10-28 Beam uniformized optical device Pending JPH01115117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27415387A JPH01115117A (en) 1987-10-28 1987-10-28 Beam uniformized optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27415387A JPH01115117A (en) 1987-10-28 1987-10-28 Beam uniformized optical device

Publications (1)

Publication Number Publication Date
JPH01115117A true JPH01115117A (en) 1989-05-08

Family

ID=17537766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27415387A Pending JPH01115117A (en) 1987-10-28 1987-10-28 Beam uniformized optical device

Country Status (1)

Country Link
JP (1) JPH01115117A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158184A (en) * 2000-11-16 2002-05-31 Mitsubishi Electric Corp Laser optical system for laser heat treatment
JP2007103962A (en) * 2001-11-09 2007-04-19 Semiconductor Energy Lab Co Ltd Laser irradiator and irradiation method, and process for fabricating semiconductor device
US7405114B2 (en) * 2002-10-16 2008-07-29 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus and method of manufacturing semiconductor device
US7468312B2 (en) 2001-11-09 2008-12-23 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, laser irradiation method, and method of manufacturing a semiconductor device
JP2016184135A (en) * 2015-03-27 2016-10-20 株式会社島津製作所 Multiplexing laser beam source

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158184A (en) * 2000-11-16 2002-05-31 Mitsubishi Electric Corp Laser optical system for laser heat treatment
JP2007103962A (en) * 2001-11-09 2007-04-19 Semiconductor Energy Lab Co Ltd Laser irradiator and irradiation method, and process for fabricating semiconductor device
US7468312B2 (en) 2001-11-09 2008-12-23 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus, laser irradiation method, and method of manufacturing a semiconductor device
KR100967145B1 (en) * 2001-11-09 2010-07-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Manufacturing method of semiconductor device
JP2011066428A (en) * 2001-11-09 2011-03-31 Semiconductor Energy Lab Co Ltd Laser irradiating apparatus
US7405114B2 (en) * 2002-10-16 2008-07-29 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus and method of manufacturing semiconductor device
JP2016184135A (en) * 2015-03-27 2016-10-20 株式会社島津製作所 Multiplexing laser beam source

Similar Documents

Publication Publication Date Title
US5453814A (en) Illumination source and method for microlithography
JP2004506335A (en) Laser system
JPH01115117A (en) Beam uniformized optical device
JP3416579B2 (en) Precision variable rectangular beam optical system for double beam
CN113820914B (en) A laser light source
US6008943A (en) Laser optical system for micromachining
JPH06291038A (en) Manufacturing apparatus for semiconductor material
JPH1116851A (en) Beam homogenizer and deposition of thin semiconductor film employing it
JPS6350809A (en) Optical writer
CN216264030U (en) Laser processing device and laser processing system
US11721947B2 (en) Optical compensation system for laser beam and excimer laser annealing device
JPH03232223A (en) Photoannealing device
JPH0220137B2 (en)
JPH10333077A (en) Beam homogenizer and production of semiconductor thin film
JPH0793261B2 (en) Single crystal thin film forming equipment
JP2002244078A (en) Laser optical system and laser beam machine
KR20210079458A (en) Laser apparatus
JP2962750B2 (en) Laser beam irradiation method in optical element manufacturing by laser CVD method
TWI868780B (en) Beam combiner that automatically calibrates and modulates the power of laser beams of different wavelengths
JP3537424B2 (en) Laser beam uniform irradiation optical system
JPH0330317A (en) SOI substrate manufacturing equipment
JPH0248627A (en) Illuminating optical device
JPS63233517A (en) Apparatus for forming single crystal thin film
JP2002025933A (en) Beam homogenizer and semiconductor thin film generating method
JPS6358827A (en) Exposure device