JPH01114670A - Cryogenic refrigerator - Google Patents

Cryogenic refrigerator

Info

Publication number
JPH01114670A
JPH01114670A JP27387187A JP27387187A JPH01114670A JP H01114670 A JPH01114670 A JP H01114670A JP 27387187 A JP27387187 A JP 27387187A JP 27387187 A JP27387187 A JP 27387187A JP H01114670 A JPH01114670 A JP H01114670A
Authority
JP
Japan
Prior art keywords
gas
tube
temperature end
chamber
pulse tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27387187A
Other languages
Japanese (ja)
Other versions
JP2600720B2 (en
Inventor
Hidefumi Saito
英文 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP62273871A priority Critical patent/JP2600720B2/en
Publication of JPH01114670A publication Critical patent/JPH01114670A/en
Application granted granted Critical
Publication of JP2600720B2 publication Critical patent/JP2600720B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1417Pulse-tube cycles without any valves in gas supply and return lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1419Pulse-tube cycles with pulse tube having a basic pulse tube refrigerator [PTR], i.e. comprising a tube with basic schematic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1426Pulse tubes with basic schematic including at the pulse tube warm end a so called warm end expander

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Compressor (AREA)

Abstract

PURPOSE: To improve a refrigerating capacity by a constitution wherein an expandible-contractible gas chamber formed of an elastic material is provided at a high-temperature end of a pulse tube, and a liquid coolant is filled around the gas chamber so that it communicates with an outside liquid reservoir through an orifice and further functions preferably as a working fluid. CONSTITUTION: When a piston 5 of a compressor 4 is depressed, an internal pressure of a pulse tube 1 rises in a moment and thereafter high pressure gas is introduced gently into the tube 1 from a low-temperature end 1a through a regenerator 2. At this time, the gas in the tube 1 is compressed adiabatically and the temperature thereof rises, while the volume of a gas chamber 10 at a high-temperature end 1b is expanded by a gas pressure. Then a liquid coolant 12 filled in a power absorbing chamber 11 surrounding the gas chamber 10 cools down compressed gas in the gas chamber 10, while a liquid pressure rises relatively and the liquid flows out into an outside liquid reservoir 13 from a communication passage 14 through an orifice 15. As the result, the liquid coolant 12 in the power absorbing chamber 11 takes out the energy of the compressed gas in the tube 1 as expansion work and this is converted into thermal energy by the orifice 15 and vanished.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はパルスチューブを利用して100″′に以下の
極低温を実現するパルスチューブ型の極低温冷凍機に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a pulse tube type cryogenic refrigerator that uses a pulse tube to achieve a cryogenic temperature of 100'' or less.

[従来の技術] 近年、極低温下で可動部を要しない小型極低温浴法機と
して、パルスチューブ(Pulse tube)を利用
したパルスチューブ冷凍機が提案されている。
[Prior Art] In recent years, a pulse tube refrigerator using a pulse tube has been proposed as a small-sized cryogenic bath method that does not require any moving parts at extremely low temperatures.

この冷凍機は、その内部にガスを導入して往復動させる
と、温度勾配を形成してガス導入側に低温端を反対側に
高温端をつくり出すパルスチューブの熱交換機能を利用
したもので、可動部の存在に起因した振動や摩耗等によ
る性能低下を蒙らないのが大きな特徴である。
This refrigerator utilizes the heat exchange function of a pulse tube, which creates a temperature gradient when gas is introduced inside and reciprocated, creating a low-temperature end on the gas introduction side and a high-temperature end on the opposite side. A major feature is that it does not suffer from performance deterioration due to vibration or wear caused by the presence of moving parts.

既提案に係るパルスチューブ冷凍機は、パルスチューブ
とりジェネレータを組合わせたもので、その具体的構成
が第2図に示される。すなわち、パルスチューブ1の低
温端1aとリジェネレータ2の低温端2aとを吸熱部(
熱交換器)3を介して連通し、圧縮機4からアフターク
ーラ7を介してリジェネレータ2の高温端2b側に供給
されるガスを、該リジェネレータ2及び吸熱部3を介し
パルスチューブ1の低温端1aから高温端lb側に向け
て導入するようにしている。
The previously proposed pulse tube refrigerator is a combination of a pulse tube generator and its specific configuration is shown in FIG. That is, the low temperature end 1a of the pulse tube 1 and the low temperature end 2a of the regenerator 2 are connected to the heat absorption section (
The gas supplied from the compressor 4 to the high temperature end 2b side of the regenerator 2 via the aftercooler 7 is connected to the pulse tube 1 via the regenerator 2 and the heat absorption section 3. The gas is introduced from the low temperature end 1a toward the high temperature end lb.

しかして、このパルスチューブ冷凍機では、圧縮機4の
ピストン動力で圧縮されたガスは、リジェネレータ2の
内部を通り予冷されながら吸熱部3及びパルスチューブ
低温端1aに入り、更にパルスチューブ1の低温端1a
に導入された高圧ガスは、その中の残留ガスを高温端1
bに向けて圧縮する。このときパルスチューブ1内のガ
スは、断熱圧縮を受けて温度上昇しながら温度勾配のあ
る同チューブ1内を移動する。そして、圧縮ガスはパル
スチューブ高温端1bの放熱部(熱交換器)8に入り、
ここで放熱して冷却される。次いで、ピストン5を引き
上げると、放熱部8で熱を放出したガスはパルスチュー
ブ1内で断熱膨張し降温してから、吸熱部3及びリジェ
ネレータ2を冷やし込みながら戻され、このサイクルを
繰り返すことで、被冷却物を冷却する吸熱部3に100
°に以下の極低温を実現することができる。
In this pulse tube refrigerator, the gas compressed by the piston power of the compressor 4 passes through the inside of the regenerator 2 and enters the heat absorption section 3 and the low temperature end 1a of the pulse tube 1a while being precooled. Low temperature end 1a
The high-pressure gas introduced into the high-temperature end 1
Compress toward b. At this time, the gas in the pulse tube 1 undergoes adiabatic compression and moves through the tube 1 with a temperature gradient while increasing in temperature. Then, the compressed gas enters the heat radiation part (heat exchanger) 8 of the pulse tube high temperature end 1b,
Here, heat is radiated and cooled. Next, when the piston 5 is pulled up, the gas that has released heat in the heat radiation part 8 expands adiabatically in the pulse tube 1 and cools down, and then returns while cooling the heat absorption part 3 and the regenerator 2, and this cycle is repeated. 100 to the heat absorption part 3 that cools the object to be cooled.
Extremely low temperatures below ° can be achieved.

[発明が解決しようとする問題点コ パルスチューブ冷凍機は、以上のように、パルスチュー
ブ内のガスピストンの働きにより、断熱圧縮、膨張作用
を繰返し寒冷を発生するものであるが、冷凍効率を高め
る上では、チューブ内における高温端側への断熱圧縮行
程でガスの保有エネルギを出来るだけ効率よく放出させ
てから、断熱膨張行程に移行させるのが肝要となる。
[Problems to be Solved by the Invention As described above, the copulse tube refrigerator generates cold by repeating adiabatic compression and expansion by the action of the gas piston inside the pulse tube, but it is difficult to improve the refrigeration efficiency. In order to increase the temperature, it is important to release the retained energy of the gas as efficiently as possible in the adiabatic compression stroke toward the high-temperature end in the tube, and then move to the adiabatic expansion stroke.

しかるに、上述したパルスチューブ冷凍機の場合は、チ
ューブ高温端側に配した放熱部(水冷熱交換器)8によ
り、チューブ内の圧縮ガスから熱エネルギを放出させる
だけのものであるため、断熱膨張でガスが自冷して得ら
れる寒冷に一定の限界がある。
However, in the case of the above-mentioned pulse tube refrigerator, the heat dissipation section (water-cooled heat exchanger) 8 placed on the high-temperature end of the tube simply releases heat energy from the compressed gas in the tube. There is a certain limit to the amount of cold that can be obtained by self-cooling the gas.

本発明は、このような問題点に着目し、低温可動部を排
除できるパルスチューブ型の小型極低温冷凍機の冷凍能
力を改善することに主眼を置く。
The present invention focuses on these problems and focuses on improving the refrigerating capacity of a pulse tube type compact cryogenic refrigerator that can eliminate low-temperature moving parts.

[問題点を解決するための手段] 本発明は、このような目的を達成するために、パルスチ
ューブの高温端に弾性体で形成した拡縮自在のガス室を
設けるとともに、このガス室のまわりに、外部の液溜め
とオリフィスを介し連通され、更に好ましくは作動流体
として冷却液を充満するようにして、動力吸収室を設け
たことを特徴としている。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides an expandable and contractible gas chamber made of an elastic material at the high-temperature end of the pulse tube, and also provides a gas chamber around the gas chamber. A power absorption chamber is provided which communicates with an external liquid reservoir via an orifice and is preferably filled with a cooling liquid as a working fluid.

[作用] パルスチューブの高温端にかかる動力吸収機構を付加し
たものであれば、チューブ内の低温端側に導入された高
圧ガスがチューブ内のガスを高温端側に断熱圧縮して行
くとき、高温端のガス室が膨張し、これに伴う容積変化
で動力吸収室内の冷却液がオリフィスを通して外部の液
溜めに強制的に放出される。このとき、ガス室と連通さ
れる液溜めはダンパ機能を営んで、圧縮ガスのエネルギ
をガス室から膨張仕事として取り出し、オリフィスで熱
エネルギとして消費する。そして、液溜めに充満される
作動流体を冷却液に兼用すれば、ガス室の圧縮ガスを冷
却する作用が同時に発現されて、−層エネルギ吸収度が
高まる。従って、パルスチューブ内の圧縮ガスには、冷
凍能力の増大に直結する効率的なエネルギ吸収が実現さ
れる。
[Operation] If a power absorption mechanism is added to the high-temperature end of the pulse tube, when the high-pressure gas introduced into the low-temperature end of the tube adiabatically compresses the gas inside the tube toward the high-temperature end, The gas chamber at the high temperature end expands, and the resulting change in volume forces the coolant in the power absorption chamber to be discharged through the orifice into an external reservoir. At this time, the liquid reservoir communicating with the gas chamber performs a damper function, extracts the energy of the compressed gas from the gas chamber as expansion work, and consumes it as heat energy in the orifice. If the working fluid filled in the liquid reservoir is also used as a cooling fluid, the effect of cooling the compressed gas in the gas chamber is simultaneously exerted, increasing the degree of energy absorption in the negative layer. Therefore, the compressed gas within the pulse tube achieves efficient energy absorption, which directly leads to an increase in refrigeration capacity.

[実施例コ 以下、本発明の一実施例を第1図に図示して説明する。[Example code] An embodiment of the present invention will be described below with reference to FIG. 1.

但し、この実施例は第2図の従来例と同じくスターリン
グサイクルの場合のシステム構成を示す。
However, this embodiment shows a system configuration in the case of a Stirling cycle, similar to the conventional example shown in FIG.

本発明に係る極低温冷凍機の基本構成は、既述したパル
スチューブ冷凍機と共通しており、図において、1は薄
肉のステンレスパイプ等からなる中空のパルスチューブ
、2は内部に蓄熱要素を装着したりジュネレータで、両
者の低温端1a12aを連通させ、その間に被冷却物を
冷却する吸熱部3を設けている。そして、リジェネレー
タ2の高温端2bには、ピストン5を嵌装した圧縮機4
の圧縮室との間でガスを導出入させるガス通路6が連通
され、該通路6の途中にはアフタークーラ7が設けられ
る。
The basic configuration of the cryogenic refrigerator according to the present invention is the same as that of the pulse tube refrigerator described above, and in the figure, 1 is a hollow pulse tube made of a thin stainless steel pipe, etc., and 2 is a heat storage element inside. The low-temperature ends 1a12a of both are connected by mounting or a generator, and a heat absorption part 3 for cooling the object to be cooled is provided between them. A compressor 4 fitted with a piston 5 is connected to the high temperature end 2b of the regenerator 2.
A gas passage 6 for introducing and introducing gas is communicated with the compression chamber, and an aftercooler 7 is provided in the middle of the passage 6.

一方、パルスチューブ1の高温端(常温端)1bには、
従前の水冷熱交換器8に代えて、本発明に係る動力吸収
機構が設けられる。この機構は次のように構成される。
On the other hand, at the high temperature end (normal temperature end) 1b of the pulse tube 1,
In place of the conventional water-cooled heat exchanger 8, a power absorption mechanism according to the present invention is provided. This mechanism is constructed as follows.

まず、パルスチューブ1の高温端1bを小径に絞り、こ
の上に同チューブ1内を上昇するガスが勢いよくその内
部に導入されるガス室10を連設している。このガス室
10は薄膜状の適宜弾性体をもってバルーン状に形成さ
れており、下方一箇所にある開口縁をチューブ高部端1
bと気密に結合し、その内部に導入される圧縮ガスのガ
ス圧で図示矢印のように拡縮自在どなる。
First, the high-temperature end 1b of the pulse tube 1 is narrowed to a small diameter, and a gas chamber 10 is provided above the high-temperature end 1b into which the gas rising in the tube 1 is introduced with force. This gas chamber 10 is formed in the shape of a balloon with a thin film-like elastic material, and the opening edge at one lower part is connected to the upper end of the tube.
b, and can be expanded and contracted as shown by the arrows in the figure by the gas pressure of the compressed gas introduced into the inside.

また、ガス室10のまわりには、同ガス室10を液密に
包囲する剛体容器製の動力吸収室11が冠設される。そ
して、動力吸収室11の内部には作動流体として、ガス
室10の外面と接する冷却液12が充満される。冷却液
12は、ガス室10の冷却と同時に、本発明の第1義的
な狙いであるガス膨張仕事を取り出す役目を担うもので
、非圧縮性の液体(例えば水など)が用いられる。
Further, a power absorption chamber 11 made of a rigid container is provided around the gas chamber 10 to liquid-tightly surround the gas chamber 10. The inside of the power absorption chamber 11 is filled with a cooling liquid 12 as a working fluid, which is in contact with the outer surface of the gas chamber 10 . The cooling liquid 12 plays the role of cooling the gas chamber 10 and at the same time extracting the work of gas expansion, which is the primary aim of the present invention, and is an incompressible liquid (for example, water).

更に又、この動力吸収室11の外部には冷却液(作動流
体)12を貯溜する液溜め13が装備され、動力吸収室
11の一側と液溜め13の底部とがオリフィス15を介
挿した連絡流路14で連通されている。この場合、液溜
め13は嵌合ピストン13aの背面にオフセットスプリ
ング13bを介装して、その内部に貯溜される冷却液1
2の液圧を略一定に保つ液圧シリンダからなっている。
Furthermore, a liquid reservoir 13 for storing a cooling fluid (working fluid) 12 is provided outside the power absorption chamber 11, and an orifice 15 is inserted between one side of the power absorption chamber 11 and the bottom of the liquid reservoir 13. They are communicated through a communication channel 14. In this case, the liquid reservoir 13 has an offset spring 13b interposed on the back surface of the fitting piston 13a, and the coolant 13 stored therein.
It consists of a hydraulic cylinder that keeps the hydraulic pressure of 2 approximately constant.

上記の構成を具備した極低温冷凍機であると、既に説明
した従前のパルスチューブ冷凍機と同様の冷凍サイクル
を営み、その際パルスチューブ1の高温端1bに付加し
た動力吸収機構が有効に作動する。圧縮機4のピストン
5を押し下げると、パルスチューブ1の内圧は一瞬にし
て上昇し、その後リジェネレータ2を通して低温端1a
からチューブ1内に高圧ガスが緩やかに導入される。こ
のとき、チューブ1内のガスは断熱圧縮されて昇温する
とともに、ガス圧で高温端1bのガス室10の容積を拡
大する。すると、ガス室10のまわりの動力吸収室11
に充満された冷却液12はガス室10内の圧縮ガスを冷
却するとともに、液圧が相対的に上昇して、連絡流路1
4からオリフィス15を介して外部の液溜め13に流出
する。この結果、動力吸収室11内の冷却液12はチュ
ーブ1内の圧縮ガスがもつエネルギを膨張仕事として取
り出し、これをオリフィス15で熱エネルギに変換して
消散する。
The cryogenic refrigerator having the above configuration operates a refrigeration cycle similar to the conventional pulse tube refrigerator described above, and at this time, the power absorption mechanism added to the high temperature end 1b of the pulse tube 1 operates effectively. do. When the piston 5 of the compressor 4 is pushed down, the internal pressure of the pulse tube 1 rises instantaneously, and then passes through the regenerator 2 to the low temperature end 1a.
High pressure gas is slowly introduced into the tube 1. At this time, the gas in the tube 1 is adiabatically compressed and heated, and the gas pressure expands the volume of the gas chamber 10 at the high temperature end 1b. Then, the power absorption chamber 11 around the gas chamber 10
The coolant 12 filled with water cools the compressed gas in the gas chamber 10, and the liquid pressure increases relatively, causing the communication flow path 1 to cool.
4 through an orifice 15 into an external reservoir 13. As a result, the cooling liquid 12 in the power absorption chamber 11 extracts the energy of the compressed gas in the tube 1 as expansion work, converts it into thermal energy in the orifice 15, and dissipates it.

このように動力吸収機構により、パルスチューブ1の断
熱圧縮行程で圧縮ガスを冷却すると同時に、その保有エ
ネルギを膨張仕事として取り出すようにしているので、
圧縮機4のピストン5を引き上げてチューブ1内のガス
を急激に膨張させる断熱膨張行程に移行すると、自冷し
てチューブ1の低温端1aから押し出される膨張ガスに
極低温を実現することができ、リターンガスで冷却され
る吸熱部3により大きな冷凍能力を発現することが可能
となる。なお、パルスチューブ1の膨張行程では、ガス
室10の縮小に伴って動力吸収室11内の液圧が相対的
に低下し、液溜め13のピストン作用で内部に冷却液1
2が自動的に補給されることになる。
In this way, the power absorption mechanism cools the compressed gas during the adiabatic compression stroke of the pulse tube 1, and at the same time extracts the retained energy as expansion work.
When the piston 5 of the compressor 4 is pulled up and the gas in the tube 1 is rapidly expanded into an adiabatic expansion stroke, the expanded gas that is self-cooled and pushed out from the low temperature end 1a of the tube 1 can be brought to a cryogenic temperature. , it becomes possible to develop a large refrigerating capacity by the heat absorbing section 3 which is cooled by the return gas. In addition, during the expansion stroke of the pulse tube 1, the liquid pressure in the power absorption chamber 11 decreases relatively as the gas chamber 10 contracts, and the cooling liquid 1 is filled inside by the piston action of the liquid reservoir 13.
2 will be automatically replenished.

本発明の実施例は、以上のような構成、作用効果を有す
るものであるが、パルスチューブ1の高温端1bに形成
するガス室10の形態は、勿論例示のものに限らず、そ
の他例えばベローやダイヤフラムを用いたものであって
もよい。
Although the embodiment of the present invention has the above-described configuration, operation, and effect, the form of the gas chamber 10 formed at the high temperature end 1b of the pulse tube 1 is of course not limited to the one illustrated, and may be other than that described above, such as a bellows. Alternatively, a diaphragm may be used.

また冷凍サイクルは、タイミングバルブの追加等を条件
に、G−Mサイクルによる運転も実施可能である。
Further, the refrigeration cycle can also be operated by a GM cycle, provided that a timing valve is added.

[発明の効果] 以上の通り、本発明の極低温冷凍機では、パルスチュー
ブの高温端に所定の動力吸収機構を設置したことにより
、低温可動部を排除できるというパルスチューブ冷凍機
の特徴を活かしながら、その冷凍能力の不足を補うこと
ができる。
[Effects of the Invention] As described above, the cryogenic refrigerator of the present invention takes advantage of the pulse tube refrigerator's feature of eliminating low-temperature moving parts by installing a predetermined power absorption mechanism at the high temperature end of the pulse tube. However, it can compensate for the lack of refrigeration capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す極低温冷凍機のシステ
ム図である。第2図は従来のパルスチューブ冷凍機の構
成を示すシステム図である。 1・・・パルスチューブ  2・・・リジェネレータ1
 a s 2 a・・・低温端 1b、2b・・・高温
端3・・・吸熱部
FIG. 1 is a system diagram of a cryogenic refrigerator showing an embodiment of the present invention. FIG. 2 is a system diagram showing the configuration of a conventional pulse tube refrigerator. 1...Pulse tube 2...Regenerator 1
a s 2 a...low temperature end 1b, 2b...high temperature end 3...endothermic part

Claims (2)

【特許請求の範囲】[Claims] (1)パルスチューブの高温端に弾性体で形成した拡縮
自在のガス室を設けるとともに、このガス室のまわりに
、外部の液溜めとオリフィスを介し連通させた動力吸収
室を設けたことを特徴とする極低温冷凍機。
(1) A feature is that an expandable and contractible gas chamber made of an elastic material is provided at the high-temperature end of the pulse tube, and a power absorption chamber is provided around this gas chamber that communicates with an external liquid reservoir through an orifice. Cryogenic refrigerator.
(2)動力吸収室の液溜めには冷却液が充満されている
ことを特徴とする特許請求の範囲第1項記載の極低温冷
凍機。
(2) The cryogenic refrigerator according to claim 1, wherein the liquid reservoir in the power absorption chamber is filled with cooling liquid.
JP62273871A 1987-10-29 1987-10-29 Cryogenic refrigerator Expired - Lifetime JP2600720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62273871A JP2600720B2 (en) 1987-10-29 1987-10-29 Cryogenic refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62273871A JP2600720B2 (en) 1987-10-29 1987-10-29 Cryogenic refrigerator

Publications (2)

Publication Number Publication Date
JPH01114670A true JPH01114670A (en) 1989-05-08
JP2600720B2 JP2600720B2 (en) 1997-04-16

Family

ID=17533725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62273871A Expired - Lifetime JP2600720B2 (en) 1987-10-29 1987-10-29 Cryogenic refrigerator

Country Status (1)

Country Link
JP (1) JP2600720B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103175328A (en) * 2011-12-23 2013-06-26 中国科学院理化技术研究所 High-frequency pulse tube refrigerating machine
CN117107225A (en) * 2023-08-08 2023-11-24 上海顺心谷半导体科技有限公司 Diamond film production equipment based on MPCVD method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103175328A (en) * 2011-12-23 2013-06-26 中国科学院理化技术研究所 High-frequency pulse tube refrigerating machine
CN117107225A (en) * 2023-08-08 2023-11-24 上海顺心谷半导体科技有限公司 Diamond film production equipment based on MPCVD method
CN117107225B (en) * 2023-08-08 2024-03-08 上海顺心谷半导体科技有限公司 Diamond film production equipment based on MPCVD method

Also Published As

Publication number Publication date
JP2600720B2 (en) 1997-04-16

Similar Documents

Publication Publication Date Title
US5596875A (en) Split stirling cycle cryogenic cooler with spring-assisted expander
JP2552709B2 (en) refrigerator
US6983610B1 (en) Cold inertance tube for multi-stage pulse tube cryocooler
JPS62223577A (en) Heat drive heat pump
US5927080A (en) Vibration-actuated pump for a stirling-cycle refrigerator
US4090859A (en) Dual-displacer two-stage split cycle cooler
JPH01114670A (en) Cryogenic refrigerator
JPH0493559A (en) Reverse stirling refrigeration machine having circulating oil
ES290262A1 (en) Method of absorbing thermal energy at low temperatures and apparatus for carrying out such methods
JP2941558B2 (en) Stirling refrigeration equipment
JP3618886B2 (en) Pulse tube refrigerator
JPH0378554A (en) Stirling engine
JP2003139426A (en) Pulse tube type refrigerator
US4877434A (en) Cryogenic refrigerator
JP2944329B2 (en) Pulse tube refrigerator
US20100064681A1 (en) Method for increasing performance of a stirling or free-piston engine
JP3741300B2 (en) Pulse tube refrigerator
JP3363697B2 (en) Refrigeration equipment
JP2525269B2 (en) Refrigeration system
JPH10259966A (en) Rankine piston refrigerating machine
CN106500385B (en) The application of liquid piston work(reclaiming type pulse tube cooling system and liquid piston wherein
KR100393790B1 (en) Pulstube refrigerator
KR100652582B1 (en) After-cooler radiating fin structure for cryocooler
JPH0660769B2 (en) How to efficiently absorb heat energy at low temperatures
JP2719433B2 (en) Cryogenic refrigeration equipment