JPH01113697A - Refueling of nuclear reactor fuel - Google Patents
Refueling of nuclear reactor fuelInfo
- Publication number
- JPH01113697A JPH01113697A JP62270460A JP27046087A JPH01113697A JP H01113697 A JPH01113697 A JP H01113697A JP 62270460 A JP62270460 A JP 62270460A JP 27046087 A JP27046087 A JP 27046087A JP H01113697 A JPH01113697 A JP H01113697A
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- axis
- ordinates
- refueling
- operating device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003758 nuclear fuel Substances 0.000 title claims description 20
- 239000000446 fuel Substances 0.000 claims abstract description 95
- 230000007246 mechanism Effects 0.000 claims abstract description 18
- 239000002915 spent fuel radioactive waste Substances 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 9
- 230000008602 contraction Effects 0.000 claims description 4
- 238000012544 monitoring process Methods 0.000 claims description 4
- 238000007689 inspection Methods 0.000 description 5
- 230000000737 periodic effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、原子力発電所の定期検査時等に実施される原
子炉燃料の交換方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for exchanging nuclear fuel, which is carried out during periodic inspections of nuclear power plants.
原子力発電所において、原子炉の燃料(燃料集合体)交
換は、通常定期的に実施されるプラント定期検査の期間
に原子炉運転を停止して行なわれるが、このような原子
炉燃料の交換作業は、従来は手動操作方式の交換システ
ム或いは遠隔自動操作方式の交換システムを用いて行な
われている。At nuclear power plants, reactor fuel (fuel assemblies) are replaced by stopping reactor operation during periodic plant inspections, which are normally carried out periodically. Conventionally, this has been carried out using a manually operated exchange system or a remote automatic operation type exchange system.
ここで、従来の手動操作式及び遠隔自動操作式の燃料交
換方法について第6図ないし、第8図に基づき説明する
。Here, conventional manual and remote automatic fuel exchange methods will be explained with reference to FIGS. 6 to 8.
第6図は手動操作式の燃料交換システムの概要を示すも
ので、図中、1は燃料交換操作機で、燃料交換操作機1
は、例えば原子炉建屋5階床上で。Figure 6 shows an overview of a manually operated fuel exchange system. In the figure, 1 is a fuel exchange operating device;
For example, on the fifth floor of a nuclear reactor building.
使用済燃料貯蔵プール2と炉心プール5の上方にまたが
って設置されている。この燃料交換操作機1は、炉心プ
ール5及び使用済燃料貯蔵プール2の間をX軸−Y軸平
面上で移動する走行機10と、走行機10の機上に設置
される操作台11と、走行機10の下部に配置される燃
料つかみ機構12等で構成される。走行機10は、例え
ばレール(図示せず)を介してX軸方向に走行する 走
行台車10aと、このX軸走行台車上をX軸と直交して
Y軸方向に走行(横行)とするY軸走行台車10bとを
組合、せてなる。また、燃料つかみ機構12は、X軸、
Y軸と垂直なZ軸方向に昇降可能な伸縮棒12aとつか
み部12bよりなる。伸縮棒12aは、原子炉燃料つか
み作業の位置合せのため軸を中心にして回転する機能を
有する。3は使用済燃料貯蔵プール2の内部に配置され
る使用済燃料貯蔵ラック、4は原子炉格納容器、6は原
子炉圧力容器、7は多数の燃料集合体8で構成される炉
心である。It is installed above the spent fuel storage pool 2 and the core pool 5. This fuel exchange operating device 1 includes a traveling device 10 that moves between a core pool 5 and a spent fuel storage pool 2 on an X-axis-Y axis plane, and an operation console 11 installed on the traveling device 10. , a fuel gripping mechanism 12 and the like disposed at the bottom of the traveling machine 10. The traveling machine 10 includes, for example, a traveling vehicle 10a that travels in the X-axis direction via rails (not shown), and a Y-travel vehicle that travels (traversing) in the Y-axis direction perpendicular to the X-axis on the X-axis traveling vehicle 10a. It is combined with the shaft running bogie 10b. Further, the fuel gripping mechanism 12 has an X axis,
It consists of an extendable rod 12a that can be moved up and down in the Z-axis direction perpendicular to the Y-axis and a grip part 12b. The telescoping rod 12a has the function of rotating around an axis for positioning during reactor fuel grabbing work. 3 is a spent fuel storage rack arranged inside the spent fuel storage pool 2, 4 is a reactor containment vessel, 6 is a reactor pressure vessel, and 7 is a reactor core composed of a large number of fuel assemblies 8.
このような手動操作式の燃料交換システムを用いて燃料
交換を行なう場合には、第6図に示すように、運転員が
燃料交換操作機1の操作台11に2人乗り、1人が走行
機10の走行及びつかみ機構12を操作し、もう1人が
双眼鏡により、炉心7に装荷された燃料集合体8の目標
位置(交換位置)を確認し、これらの共動作業により目
標位置の燃料集合体8を炉心7から取出し、その後走行
機10を介して燃料交換操作機1を使用済燃料貯蔵プー
ル2上の所定位置に移動させ、つかみ機構12を操作し
て炉心7から取出した燃料集合体8を使用済燃料貯蔵ラ
ック3に貯蔵していた。When performing fuel exchange using such a manually operated fuel exchange system, as shown in FIG. One person operates the traveling and gripping mechanism 12 of the machine 10, and the other person uses binoculars to confirm the target position (replacement position) of the fuel assembly 8 loaded in the reactor core 7, and through these joint operations, the fuel at the target position is removed. The fuel assembly 8 is taken out from the reactor core 7, and then the fuel exchange operating device 1 is moved to a predetermined position on the spent fuel storage pool 2 via the traveling machine 10, and the gripping mechanism 12 is operated to remove the fuel assembly from the reactor core 7. 8 was stored in the spent fuel storage rack 3.
第7図は、遠隔自動操作式の燃料交換システムの概要を
示すもので、図中、既述した第1図の従来例と同一符号
は同−或いは共通する要素を示すものである。この燃料
交換システムは、原子炉建屋に燃料交換操作機1と離れ
て遠隔操作室9を設け、遠隔操作室9から燃料交換操作
機1の走行機10及び燃料つかみ機構12を自動制御手
段を介して操作して、目標の燃料集合体8を炉心7から
取出し、使用済燃料貯蔵ラック3の所定位置に貯蔵する
ものである。FIG. 7 shows an outline of a remotely automatically operated fuel exchange system, and in the figure, the same reference numerals as in the conventional example shown in FIG. 1 described above indicate the same or common elements. In this fuel exchange system, a remote control room 9 is provided in the reactor building, separate from the fuel exchange operation device 1, and the traveling machine 10 and fuel gripping mechanism 12 of the fuel exchange operation device 1 are controlled from the remote control room 9 via automatic control means. The target fuel assembly 8 is taken out from the reactor core 7 and stored at a predetermined position in the spent fuel storage rack 3.
この遠隔自動操作式のシステム構成は、第8図に示すよ
うに燃料交換に必要とする燃料交換操作機1の目標位置
の設定や走行、停止指令、つかみ機構12の動゛作指令
を与える遠隔操作盤20ど、上記一連の燃料交換動作に
必要な演算を行なう計算機21と、遠隔操作盤20の直
接の操作指令及び計算機21の出力に基づき走行台車1
0a、横行台車10bその他燃料つかみ機構等を制御す
る共通制御盤22と、共通制御盤22の機能を補助する
ため、熱交換操作機1に組込まれる機上補助盤23及び
機上操作盤24等で構成されている。As shown in FIG. 8, this remote automatic system configuration is based on a remote control system that provides commands for setting the target position of the refueling operation device 1 necessary for refueling, commands for traveling and stopping, and operating commands for the gripping mechanism 12. An operation panel 20, etc., a computer 21 that performs calculations necessary for the above series of fuel exchange operations, and a running trolley 1 based on direct operation commands from the remote operation panel 20 and the output of the computer 21.
0a, the traversing trolley 10b, a common control panel 22 that controls other fuel gripping mechanisms, etc., and an on-board auxiliary panel 23, an on-board operating panel 24, etc. that are incorporated into the heat exchange operating device 1 to assist the functions of the common control panel 22. It consists of
なお、従来の遠隔自動化の燃料交換システムに関連する
ものには1例えば特開昭52−135992号等が挙げ
られる。Incidentally, an example of a system related to a conventional remotely automated fuel exchange system is disclosed in Japanese Patent Application Laid-open No. 135992/1983.
前述した原子炉燃料交換システムにおいて、手動操作式
のものは、燃料交換の位置決めに正確さが欠は微調整を
必要とするため時間がかかり、しかも燃料交換作業に際
しては、常時複数作業員による燃料交換位置の確認と燃
料交換操作を必要とし作業能率が悪いといった改善すべ
き点があった。Among the above-mentioned reactor refueling systems, manually operated ones lack precision in positioning for refueling and require fine adjustments, which takes time. There were issues that needed to be improved, such as the need to confirm the replacement position and perform fuel replacement operations, resulting in poor work efficiency.
また、遠隔自動操作式のものは、燃料交換作業の時間の
短縮化及び安全性の向上化を図り得、最近ではその実施
が推進されているが、次のような改善すべき点があった
。In addition, remote automatic control systems can shorten the time required for fuel exchange and improve safety, and their implementation has been promoted recently, but there are still areas that need improvement, such as: .
すなわち、遠隔自動操作式のものは、通常「機上」、「
手動」、「半自動」、「自動」の4つの運転モードで構
成されており、このうち、「機上」運転モードは、「自
動」、「半自動」運転モードが何らかの理由で操作不能
となった場合のバックアップモードであり、実質的には
、前述した手動操作方式同様に人間の機上操作に頼る操
作方式を採用するものである。In other words, those that are remotely automatically operated are usually operated "on-board" or "on-board".
It consists of four operating modes: "manual,""semi-automatic," and "automatic." Of these, the "on-aircraft" operating mode is inoperable when the "automatic" and "semi-automatic" operating modes become inoperable for some reason. This is a backup mode for the aircraft, and it essentially employs an operation method that relies on human on-board operations, similar to the manual operation method described above.
従って、遠隔自動操作式の場合にも「機上」モードの事
態になった場合には、手動操作方式と同様の問題があっ
た。Therefore, even in the case of the remote automatic operation type, there are problems similar to those of the manual operation type when a situation occurs in the "on-board" mode.
本発明は、以上の点に鑑みてなされたものであり、その
目的とするところは、手動操作式及び遠隔自動操作式の
「機上」モードのいずれの場合にも適用可能で、従来よ
りも燃料交換作業の時間の短縮化及び作業能率の向上化
を図り得ると共に。The present invention has been made in view of the above points, and its purpose is to be applicable to both manual operation type and remote automatic operation type ``on-air'' mode, and to be more effective than conventional methods. It is possible to shorten the time required for fuel exchange work and improve work efficiency.
設置コストも遠隔自動操作式の自動システム要素に較べ
極めて安価な原子炉燃料の交換法を提供することにある
。The aim is to provide a method of replacing reactor fuel that is significantly less expensive to install than remotely operated automated system elements.
上記目的は、炉心プール及び使用済燃料貯蔵プールの間
をX軸−Y軸平面上で移動する燃料交換操作機と、前記
燃料交換操作機と共に移動し、この燃料交換操作機の操
作を通して前記X軸−Y軸平面と垂直の4軸方向に伸縮
動作を行なう燃料つかみ機構とを備え、前記燃料交換操
作機の移動及び前記燃料つかみ機構の伸縮動作、燃料つ
かみ・解除動作により原子炉燃料の交換を行なうシステ
ムにおいて、前記燃料交換操作機のX軸、Y軸廻行方向
に燃料交換操作機の現在位置を知らせる座標を前記炉心
プールの各燃料装荷位置及び前記使用済燃料貯蔵プール
の各燃料収納位置に対応させて設けると共に、前記燃料
交換操作機にこれらの座標を監視するためのテレビカメ
ラを設置し、このテレビカメラで映し出された座標画像
を前記燃料交換操作機に設置したテレビモニタに伝送し
。The above purpose is to provide a fuel exchange operating device that moves between a core pool and a spent fuel storage pool on an X-axis-Y-axis plane, and a It is equipped with a fuel gripping mechanism that extends and contracts in four axial directions perpendicular to the axis-Y axis plane, and exchanges reactor fuel by moving the fuel exchange operating device, expanding and contracting the fuel gripping mechanism, and fuel gripping and releasing operations. In the system, coordinates indicating the current position of the refueling operation device in the X-axis and Y-axis rotation directions of the refueling operation device are set at each fuel loading position in the core pool and each fuel storage in the spent fuel storage pool. A television camera for monitoring these coordinates is installed on the fuel exchange operating machine, and the coordinate image displayed by the television camera is transmitted to a television monitor installed on the fuel exchange operating machine. death.
このテレビモニタを監視しながら前記燃料交換操作機を
X軸、Y軸平面上の目標位置まで移動させて燃料交換を
行なうことで達成される。This is accomplished by moving the fuel exchange operating device to a target position on the X-axis and Y-axis planes and performing the fuel exchange while monitoring the television monitor.
このような構成よりなる本発明によれば、燃料交換操作
機のX軸、Y軸廻行方向に設けた現在位置認識用の座標
が炉心の各燃料装荷位置及び使用済燃料貯蔵プールの各
燃料収納位置に対応させであるので、これをテレビカメ
ラ及びテレビモニタを介して操作者が視認することによ
り、燃料交換操作機が、現在炉心プール上及び使用済燃
料貯蔵プール上のどの位置にあるか容易に知ることがで
きる。従って、燃料交換に際して燃料交換操作機を任意
の位置から、炉心プール上及び使用済燃料貯蔵プール上
の目標位置まで移動させる場合には、走行時にテレビモ
ニタに映し出されるX軸及びY軸座標位置をみながら燃
料交換操作機を走行操作して、目標位置に近づき、目標
位置の座標位置を視認した時に走行を停止させればよい
。そして、この停止位置で燃料つかみ機構を操作さてれ
ば燃料の交換を行なうことができる。According to the present invention having such a configuration, the coordinates for current position recognition provided in the X-axis and Y-axis rotation directions of the fuel exchange operating device correspond to each fuel loading position in the reactor core and each fuel in the spent fuel storage pool. Since this corresponds to the storage position, the operator can visually check this via a television camera and television monitor to determine where the refueling operation device is currently located above the core pool and spent fuel storage pool. It is easy to know. Therefore, when moving the fuel exchange operating device from an arbitrary position to a target position on the core pool or spent fuel storage pool during fuel exchange, the X-axis and Y-axis coordinate positions displayed on the TV monitor while moving are It is sufficient to operate the fuel exchange operating device while watching the vehicle, approach the target position, and stop traveling when the coordinate position of the target position is visually confirmed. Then, by operating the fuel gripping mechanism at this stop position, fuel can be replaced.
しかして、本発明によれば、燃料交換操作機の移動状態
を座標を通して容易に且つ確実に認識でき、且つこの座
標を通して認識される位置で燃料交換作業ができるので
、従来のように操作者の経験に頼ることなく、しかも単
数の操作者だけで燃料交換位置決めと燃料交換作業を迅
速且つ正確に行なうことができる。Therefore, according to the present invention, the moving state of the refueling operation device can be easily and reliably recognized through the coordinates, and the refueling operation can be performed at the position recognized through the coordinates, so that the operator can Refueling positioning and refueling work can be quickly and accurately performed by a single operator without relying on experience.
本発明の実施例を第1図ないし第5図に基づき説明する
。Embodiments of the present invention will be described based on FIGS. 1 to 5.
第1図(a)、(b)は、本発明の原子炉燃料交換法を
適用した第1実施例の概略を示す平面図及び一部省略断
面側面図で、本実施例は遠隔自動操作方式の原子炉燃料
交換システムの機上運転モードを表わすものである。第
1図において、第7図の従来例と同一符号は同−或いは
共通する要素を示すもので、内容の重複する部分につい
ては説明を省略する。FIGS. 1(a) and 1(b) are a plan view and a partially omitted cross-sectional side view schematically showing a first embodiment to which the reactor fuel exchange method of the present invention is applied, and this embodiment is a remote automatic operation method. This represents the on-board operation mode of the nuclear reactor refueling system. In FIG. 1, the same reference numerals as those in the conventional example shown in FIG. 7 indicate the same or common elements, and descriptions of overlapping parts will be omitted.
この遠隔自動操作方式の原子炉燃料交換システムは、既
述したように、「自動」、「半自動」。As mentioned above, this remotely operated nuclear reactor fuel exchange system is ``automatic'' and ``semi-automatic.''
「手動」、「機上」の4つの運転モードで運転すること
ができる。It can be operated in four operating modes: ``manual'' and ``onboard.''
「自動」、「半自動」の運転モードは、遠隔操作室9か
ら運転員の操作に基づき計算機が燃料交換操作機1を構
成する各装置(走行機10.燃料つかみ機構12等)の
制御を自動的に行い燃料交換を実施する。In the "automatic" and "semi-automatic" operation modes, the computer automatically controls each device (traveling machine 10, fuel gripping mechanism 12, etc.) that constitutes the fuel exchange operating device 1 based on the operator's operation from the remote control room 9. Carry out a fuel change.
「手動」モードは、遠隔操作室9から計算機の監視の下
に「自動」、「半自動」モードと同等な制御を手動で行
うものである。In the "manual" mode, control equivalent to the "automatic" and "semi-automatic" modes is manually performed from the remote control room 9 under the supervision of a computer.
「機上」モードは、機上の操作盤により燃料交換作業を
行うものである。本実施例では、この遠隔自動操作式の
機上運転モードに必要な機構の改良に関するものであり
、以下、この改良点について説明する。In the "on-board" mode, refueling operations are performed using the on-board control panel. This embodiment relates to an improvement in the mechanism required for this remotely automatically operated on-board operation mode, and the improvements will be described below.
第1図(b)に示すように、燃料交換操作機1の走行機
1oは、X軸走行台車10aとY軸走行台車10bとで
構成され、走行台車10aは、第1図(a)に示すよう
に炉心プール5上及び使用済燃料貯蔵プール2上の両サ
イドに配設されたレール1aに案内されてX軸平面上を
移動し、走行台車10bは走行台車10a上をX軸と垂
直なY軸平面上を走行するもので、走行台車10b上に
操作台11が設けられている。そして、本実施例では、
レール1aの一方に沿って燃料交換操作機1の位置を表
わすX軸座標25′を記したX軸座標板25が設けてあ
り、また走行台車10a上に同じく燃料交換、操作機1
の位置を表わすためのY軸座標26′を記したY軸座標
板26が設けである。また、走行台車10aの一端にX
軸座標25′を映し出すX軸テレビカメラ27が取付け
られ、操作台11にY軸座標26′を映し出すY軸テレ
ビカメラ28が取付けられている。As shown in FIG. 1(b), the traveling machine 1o of the fuel exchange operating device 1 is composed of an X-axis traveling truck 10a and a Y-axis traveling truck 10b. As shown, the carriage 10b moves on the X-axis plane guided by the rails 1a arranged on both sides of the core pool 5 and the spent fuel storage pool 2, and the carriage 10b moves perpendicular to the X-axis on the carriage 10a. The vehicle travels on a Y-axis plane, and an operating platform 11 is provided on a traveling vehicle 10b. And, in this example,
An X-axis coordinate board 25 is provided along one side of the rail 1a, on which an X-axis coordinate 25' indicating the position of the fuel exchange operating device 1 is written, and a fuel exchange operating device 1 is also provided on the traveling trolley 10a.
A Y-axis coordinate plate 26 is provided on which Y-axis coordinates 26' are written to indicate the position of the image. Also, an X is attached to one end of the traveling trolley 10a.
An X-axis television camera 27 that displays the axis coordinates 25' is attached, and a Y-axis television camera 28 that displays the Y-axis coordinates 26' is attached to the operation console 11.
29は、操作台11上に設置されたテレビモニタで、X
軸テレビカメラ27及びY軸テレビカメラ28から伝送
される画像を映し出す。29 is a television monitor installed on the operation console 11;
Images transmitted from the axis television camera 27 and the Y-axis television camera 28 are displayed.
第3図はX軸座標25′及びY軸座標26′と使用済燃
料貯蔵プール2の貯蔵ラック3及び炉心プール5の炉心
上部格子板30の位置関係を表わす上面図である。同図
に示すように、X軸座標板25に記されるX軸座標25
′の中で、使用済燃料貯蔵ラック3の各燃料収納位置に
対応するものは大文字のアルファベットで表わされ、ま
たX軸座標25′の中で炉心プール5の各格子(燃料集
合体装荷箇所)30に対応するものは数字の奇数番号で
表わされている。一方、Y軸座標板26に記されるY軸
座標26′の中で、使用済燃料貯蔵ラック3の各貯蔵位
置に対応するものは小文字のアルファベットで表わされ
、またY軸座標26′の中で炉心プール5の各格子30
に対応するものは数字の偶数番号で表わされている。FIG. 3 is a top view showing the positional relationship between the X-axis coordinate 25' and the Y-axis coordinate 26', the storage rack 3 of the spent fuel storage pool 2, and the core upper grid plate 30 of the core pool 5. As shown in the figure, the X-axis coordinate 25 written on the X-axis coordinate plate 25
', those corresponding to each fuel storage position of the spent fuel storage rack 3 are represented by capital letters, and in the X-axis coordinate 25', each grid of the core pool 5 (fuel assembly loading position) ) Those corresponding to 30 are represented by odd numbers. On the other hand, among the Y-axis coordinates 26' written on the Y-axis coordinate plate 26, those corresponding to each storage position of the spent fuel storage rack 3 are represented by lowercase alphabets. Inside each grid 30 of the core pool 5
Those corresponding to are represented by even numbers.
第4図(a)は、X軸テレビカメラ27のカメラ撮像2
7′を示すもので、X軸テレビカメラ27には、予めチ
エツクマーク31がレンズ中央部に印されている。第4
図(b)は、テレビモニタ29のうちX軸テレビモニタ
画面で、モニタ画面にはX軸の座JIA25′が映し出
され、このうちチエツクマーク31に該当する座標番号
が燃料交換操作機1のX軸方向の現在位置を示すもので
ある。FIG. 4(a) shows camera imaging 2 of the X-axis television camera 27.
7', the X-axis television camera 27 has a check mark 31 marked in advance at the center of the lens. Fourth
Figure (b) shows the X-axis TV monitor screen of the TV monitor 29. The X-axis seat JIA 25' is displayed on the monitor screen, and the coordinate number corresponding to the check mark 31 is the X-axis of the fuel exchange operating device 1. This indicates the current position in the axial direction.
第5図(a)は、Y軸テレビカメラ28のカメラ撮像2
8′を示すもので、Y軸テレビカメラ28には、予めチ
エツクマーク32がレンズ中央部に印されている。同図
に示すようよ、Y軸座標板26には、使用済燃料ラック
のY軸座標(小文字アルファベット)26′と炉心7の
Y軸座標(偶数番号)26′が2段で記されているため
、カメラ撮像28′にも双方のY軸座標が撮られる。FIG. 5(a) shows camera imaging 2 of the Y-axis television camera 28.
8', the Y-axis television camera 28 has a check mark 32 marked in advance at the center of the lens. As shown in the figure, on the Y-axis coordinate plate 26, the Y-axis coordinate (lowercase alphabet) 26' of the spent fuel rack and the Y-axis coordinate (even number) 26' of the reactor core 7 are written in two rows. Therefore, both Y-axis coordinates are also captured by the camera image 28'.
第5図(b)は、テレビモニタ29のうちY軸テレビモ
ニタ画面で、モニタ画面にはY軸座標が映し出され、こ
のうちチエツクマーク32に該当する座標番号が燃料交
換操作機1のY軸方向の現在位置を示すものである。な
お第4図(b)と第5図(b)の画像は同時に映し出さ
れる。FIG. 5(b) shows the Y-axis TV monitor screen of the TV monitor 29. The Y-axis coordinates are displayed on the monitor screen, and the coordinate number corresponding to the check mark 32 is the Y-axis coordinate number of the fuel exchange operating device 1. This indicates the current position in the direction. Note that the images in FIG. 4(b) and FIG. 5(b) are displayed simultaneously.
次に本実施例の動作を説明する。Next, the operation of this embodiment will be explained.
4つの運転モードのうち、「自動」、「半自動」の運転
モードが何らかの理由で操作不能になったと想定した場
合、「機上」モードの運転者による手動操作に頼らなけ
ればならない。すなわち、運転者は操作台11に搭乗し
て原子炉燃料の交換を行なうもので1本実施例では、炉
心7より燃料集合体8を取出して使用済燃料貯蔵ラック
3に貯蔵する際に、X軸テレビカメラ27にて、X軸座
標25′を、Y軸テレビカメラ28にて、Y軸座標26
′を映し出すことにより行なうものである。If it is assumed that among the four operating modes, ``automatic'' and ``semi-automatic'' become inoperable for some reason, the operator will have to rely on manual operation by the driver in ``onboard'' mode. That is, the operator rides on the operating console 11 and replaces the reactor fuel. In this embodiment, when taking out the fuel assembly 8 from the reactor core 7 and storing it in the spent fuel storage rack 3, The axis TV camera 27 sets the X-axis coordinate 25', and the Y-axis TV camera 28 sets the Y-axis coordinate 26'.
This is done by projecting .
例えば、燃料交換操作機1が任意の位置にある場合に、
炉心の座標(1,14)の燃料を取り出し、この燃料を
使用済燃料ラック3の座標(A。For example, when the fuel exchange operating device 1 is at an arbitrary position,
The fuel at the coordinates (1, 14) of the reactor core is taken out, and this fuel is transferred to the spent fuel rack 3 at the coordinates (A).
a)の位置に貯蔵する場合には、機上の運転者がテレビ
モニタ29の画面に映し出された現在位置のX軸、Y軸
の座標番号をみながら、走行台車10a、10bを走行
操作して、目標位置(1゜14)に近づいているか否か
を移りゆく座標番号を通して監視する。そして、X軸テ
レビカメラ27及びY軸テレビカメラ28及びテレビモ
ニタ29を介して目的の座標番号が映し出されると、走
行台車10a、10bの走行を停止させ、その後、この
停止位置で燃料つかみ機′構12の伸縮及び燃料つかみ
動作を操作して目標位置の燃料集合体8を取上げる。そ
の後、機上の運転者が上記同様にテレビモニタ29に映
し出された画面をみながら使用済燃料貯蔵ラック3の目
標位置(A、a)に走行台車10a、10bを走行させ
、この目標位置をテレビモニタで確認すると、走行台車
10a。When storing at position a), the operator on the aircraft operates the traveling carts 10a and 10b while looking at the X-axis and Y-axis coordinate numbers of the current position displayed on the screen of the television monitor 29. Then, it is monitored whether or not the target position (1° 14) is being approached through the changing coordinate numbers. When the target coordinate number is displayed via the X-axis television camera 27, Y-axis television camera 28, and television monitor 29, the running of the traveling carts 10a and 10b is stopped, and then, at this stop position, the fuel grabber' The fuel assembly 8 at the target position is picked up by operating the mechanism 12's expansion/contraction and fuel grasping operations. Thereafter, the operator on the aircraft drives the traveling carts 10a and 10b to the target position (A, a) of the spent fuel storage rack 3 while watching the screen displayed on the television monitor 29 in the same manner as described above. When I checked on the TV monitor, I saw that it was the traveling trolley 10a.
10bの走行を停止させ、この位置で燃料つかみ機構1
2の伸縮及び燃料解除動作を操作して使用済燃料の貯蔵
を行なう。10b is stopped, and at this position, the fuel gripping mechanism 1
The spent fuel is stored by operating the expansion/contraction and fuel release operations in step 2.
しかして11本実施例によれば、X軸及びY軸座標板、
X軸及びY軸テレビカメラ、テレビモニタを加えること
で燃料交換作業の実施において、取り出そうとする燃料
及び貯蔵しようとするラックの位置確認を迅速かつ正確
に行なうことが可能となり、燃料交換作業の能率向上及
び時間の短縮化を図り得る。これを従来の遠隔自動操作
方式の機上モードと比較した場合、従来は、1ステツプ
あたり15分、1定検で10.5日要していたものを、
1ステツプあたり10分、1定検あたり7日で燃料交換
を終えることができ、その結果3.5 日の定検工程短
縮を実現することができた。According to the eleventh embodiment, the X-axis and Y-axis coordinate plates,
By adding X-axis and Y-axis television cameras and television monitors, it becomes possible to quickly and accurately confirm the location of the fuel to be taken out and the rack to be stored during fuel exchange operations, increasing the efficiency of fuel exchange operations. It is possible to improve the performance and shorten the time. Comparing this with the conventional remote automatic operation system on-board mode, the conventional method required 15 minutes per step and 10.5 days per periodic inspection.
Fuel exchange could be completed in 10 minutes per step and 7 days per periodic inspection, resulting in a reduction in the periodic inspection process of 3.5 days.
第2図(a)、(b)は本発明の第2実施例を示すもの
で、同図において第1実施例と同一符号は同−或いは共
通する要素を示すものである。本実施例は5手動操作方
式の燃料交換システムに適用したもので、第1実施例の
如き遠隔操作室9を有しておらず、常に機上操作で燃料
の交換を行なうものである。そして、本実施例の燃料交
換も第1実施例同様にX軸座標、Y軸座標をテレビモニ
タを通して監視して、所定座標位置での燃料交換を行な
うものである。しかして1本実施例によれば、これまで
手動で行われていた旧来式の燃料交換作業にわずかな装
置を設置するだけで、第1実施例同様に迅速かつ正確に
燃料取替が実施でき、しかも、このような効果を奏して
も遠隔自動操作式の燃料交換システムの如く遠隔操作盤
(自動/手動)20、計算機21.共通制御盤229機
上補助盤23、機上操作盤24等のシステム構成を必要
としないため、設備費の観点から大幅なコスト安を図る
ことができる。FIGS. 2(a) and 2(b) show a second embodiment of the present invention, in which the same reference numerals as in the first embodiment indicate the same or common elements. This embodiment is applied to a five-manual operation type fuel exchange system, and does not have a remote control room 9 as in the first embodiment, and the fuel exchange is always carried out by on-board operation. Similarly to the first embodiment, in the fuel exchange of this embodiment, the X-axis coordinate and the Y-axis coordinate are monitored through a television monitor, and the fuel exchange is performed at a predetermined coordinate position. However, according to this embodiment, by simply installing a small amount of equipment in the conventional fuel exchange operation that was previously performed manually, fuel exchange can be performed quickly and accurately as in the first embodiment. Moreover, even with these effects, the remote control panel (automatic/manual) 20, computer 21, etc. Since system configurations such as the common control panel 229, on-machine auxiliary panel 23, and on-machine operation panel 24 are not required, significant cost reductions can be achieved from the viewpoint of equipment costs.
以上のように本発明によれば1手動操作式及び遠隔自動
操作式の「機上」モードのいずれにも適用可能で、従来
よりも原子炉燃料交換作業の時間の短縮及び作業能率の
向上化を図り得ると共に、設置コストも遠隔自動操作方
式の自動システム要素に較べて安価な燃料交換システム
を実現する;乙ができる。As described above, according to the present invention, it is applicable to both manual operation type and remote automatic operation type "on-board" mode, reducing the time required for reactor fuel exchange work and improving work efficiency compared to the conventional method. A fuel exchange system can be achieved that is both cost-effective and has a lower installation cost than automatic system elements based on remote automatic operation.
【図面の簡単な説明】
第1図(a)、(b)は本発明の第1実施例を示す平面
図及び一部切欠断面図、第2図(a)。
(b)は本発明の第2実施例を示す平面図及び−部切欠
断面図、第3図は、上記第1.第2の実施例に使用され
るX軸、Y軸座標と使用済燃料貯蔵ラック及び炉心の位
置関係を表わす平面図、第4図(a)はX軸テレビカメ
ラで上記X軸座標を撮像した状態を表わす説明図、第4
図(b)はテレビモニタに表われた上記X軸座標の説明
図、第5図(a)はY軸テレビカメラで上記Y軸座標を
撮像した状態を表わす説明図、第5図(b)はテレビモ
ニタに表われた上記Y軸座標の説明図、第6図は従来の
手動操作方式の原子炉燃料交換システムを示す一部切欠
断面図、第7図は従来の遠隔自動操作方式の原子炉燃料
交換システムを示す一部切欠断面図、第8図は従来の遠
隔自動操作方式の原子炉燃料交換システムに使用される
制御要素のブロック構成図である。
1 (10,11)・・・燃料交換操作機(走行機、操
作台)、2・・・使用済燃料貯蔵プール、3・・・使用
済燃料貯蔵ラック、5・・・炉心プール、7・・・炉心
、8・・・原心炉燃料(燃料集合体)、12・・・燃料
つかみ機構、25・・・X軸座標板、25′・・・X軸
座標、26・・・Y軸座標板、26′・・・Y軸座標、
27・・・X軸テレビカメラ、28・・・Y軸テレビカ
メラ、29・・・テレビモニタ。
第3 目
第 4 日
(α)
lδ
(b)
第 S 口
(α)
(ト)
第 6 口
第 7 口BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1(a) and 1(b) are a plan view and a partially cutaway sectional view showing a first embodiment of the present invention, and FIG. 2(a) is a partially cutaway sectional view. 3(b) is a plan view and a cutaway sectional view showing the second embodiment of the present invention, and FIG. A plan view showing the X-axis and Y-axis coordinates used in the second embodiment and the positional relationship between the spent fuel storage rack and the reactor core, FIG. 4(a) is an image of the above X-axis coordinates with an X-axis television camera. Explanatory diagram showing the state, 4th
FIG. 5(b) is an explanatory diagram of the above-mentioned X-axis coordinate displayed on a television monitor, FIG. is an explanatory diagram of the above-mentioned Y-axis coordinates displayed on the television monitor, Figure 6 is a partially cutaway cross-sectional view showing a conventional manually operated nuclear reactor fuel exchange system, and Figure 7 is a conventional remote automatic operated nuclear reactor fuel exchange system. FIG. 8 is a partially cutaway sectional view showing a reactor fuel exchange system, and is a block diagram of control elements used in a conventional remote automatic operation nuclear reactor fuel exchange system. 1 (10, 11)...Fuel exchange operation machine (traveling machine, operation console), 2...Spent fuel storage pool, 3...Spent fuel storage rack, 5...Core pool, 7. ... Reactor core, 8... Nuclear reactor fuel (fuel assembly), 12... Fuel gripping mechanism, 25... X-axis coordinate plate, 25'... X-axis coordinate, 26... Y-axis Coordinate board, 26'...Y-axis coordinate,
27...X-axis television camera, 28...Y-axis television camera, 29...TV monitor. 3rd day 4th day (α) lδ (b) 6th day 7th day (α) (g) 6th day 7th day
Claims (1)
Y軸平面上で移動する燃料交換操作機と、前記燃料交換
操作機と共に移動し、この燃料交換操作機の操作を通し
て前記X軸−Y軸平面と垂直のZ軸方向に伸縮動作を行
なう燃料つかみ機構とを備え、前記燃料交換操作機の移
動及び前記燃料つかみ機構の伸縮動作、燃料つかみ・解
除動作により原子炉燃料の交換を行なうシステムにおい
て、前記燃料交換操作機のX軸、Y軸走行方向に該燃料
交換操作機の現在位置を知らせる座標を前記炉心プール
の各燃料装荷位置及び前記使用済燃料貯蔵プールの各燃
料収納位置に対応させて設けると共に、前記燃料交換操
作機にこれらの座標を監視するためのテレビカメラを設
置し、このテレビカメラで映し出された座標画像を前記
燃料交換操作機に設置したテレビモニタに伝送し、この
テレビモニタを監視しながら前記燃料交換操作機をX軸
、Y軸平面上の目標位置まで移動させて燃料交換を行な
うことを特徴とする原子炉燃料の交換方法。1. X-axis between core pool and spent fuel storage pool
a fuel exchange operating device that moves on the Y-axis plane; and a fuel grip that moves together with the fuel exchange operating device and performs an expansion and contraction operation in the Z-axis direction perpendicular to the X-axis-Y-axis plane through operation of the fuel exchange operating device. mechanism, in which reactor fuel is exchanged by movement of the fuel exchange operating device, expansion/contraction operation, and fuel grasping/releasing operation of the fuel grasping mechanism, wherein the X-axis and Y-axis traveling directions of the fuel exchange operating device Coordinates indicating the current position of the refueling operating machine are provided in correspondence with each fuel loading position of the core pool and each fuel storage position of the spent fuel storage pool, and these coordinates are provided to the fuel exchanging operating machine. A television camera for monitoring is installed, and the coordinate image displayed by the television camera is transmitted to a television monitor installed on the fuel exchange operating machine, and while monitoring the television monitor, the fuel exchange operating machine is moved along the X axis, A method for exchanging nuclear reactor fuel, which comprises moving the reactor fuel to a target position on a Y-axis plane and exchanging the fuel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62270460A JP2621886B2 (en) | 1987-10-28 | 1987-10-28 | Reactor fuel replacement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62270460A JP2621886B2 (en) | 1987-10-28 | 1987-10-28 | Reactor fuel replacement |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01113697A true JPH01113697A (en) | 1989-05-02 |
JP2621886B2 JP2621886B2 (en) | 1997-06-18 |
Family
ID=17486603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62270460A Expired - Lifetime JP2621886B2 (en) | 1987-10-28 | 1987-10-28 | Reactor fuel replacement |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2621886B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009276196A (en) * | 2008-05-14 | 2009-11-26 | Chugoku Electric Power Co Inc:The | Method of operating nuclear fuel handling apparatus |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5973797A (en) * | 1982-10-20 | 1984-04-26 | 株式会社東芝 | Automatic exchange system of fuel |
-
1987
- 1987-10-28 JP JP62270460A patent/JP2621886B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5973797A (en) * | 1982-10-20 | 1984-04-26 | 株式会社東芝 | Automatic exchange system of fuel |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009276196A (en) * | 2008-05-14 | 2009-11-26 | Chugoku Electric Power Co Inc:The | Method of operating nuclear fuel handling apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2621886B2 (en) | 1997-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5868699A (en) | Device in radioactive material handling chamber of reprocessing facility for burnup nuclear fuel and method and device for repairing | |
EP0710394B1 (en) | System for automatic refueling of a nuclear reactor | |
EP2323195A1 (en) | Device and method for swapping out a battery in a vehicle | |
US20220062915A1 (en) | System and method for changing liners, the configuration of which allows the automated removal and insertion of liners of a mill used for ore grinding | |
US5586158A (en) | Apparatus for automatically replacing nuclear fuel assemblies | |
JPH01113697A (en) | Refueling of nuclear reactor fuel | |
CN115485104A (en) | Manipulator for manufacturing environment | |
EP3323129B1 (en) | Automated work platform assembly | |
JPS6284982A (en) | Robot device | |
Moya et al. | Sensor-driven, fault-tolerant control of a maintenance robot | |
Raimondi | The JET experience with remote handling equipment and future prospects | |
Burgess et al. | Operational experience and design recommendations for teleoperated flight hardware | |
JPH0875893A (en) | Automatic nuclear fuel replacing apparatus | |
JPH01265198A (en) | Fuel replacing system | |
Davidson et al. | A remote maintenance robot system for a pulsed nuclear reactor | |
Rolfe | Operational aspects of the JET remote handling system | |
EP0240214B1 (en) | Apparatus for mounting a siphon type converter tap hole pipe onto a converter vessel | |
Stratton et al. | Application of Shuttle Remote Manipulator System technology to the replacement of fuel channels in the Pickering CANDU reactor | |
JPS5973797A (en) | Automatic exchange system of fuel | |
CN117021132A (en) | Control system of intelligent water-cooled wall climbing maintenance operation robot | |
JPS59135399A (en) | Remote control type bolt handling machine for pipeline facility | |
JP2544387B2 (en) | Fast fuel change method | |
JPH0333697A (en) | Monitoring device for reactor core | |
Grisham et al. | Monitor 1981 | |
CN116382172A (en) | Remote centralized control system and method for fuel operation and storage equipment |