JPH01113067A - Separation of plasma - Google Patents

Separation of plasma

Info

Publication number
JPH01113067A
JPH01113067A JP62270718A JP27071887A JPH01113067A JP H01113067 A JPH01113067 A JP H01113067A JP 62270718 A JP62270718 A JP 62270718A JP 27071887 A JP27071887 A JP 27071887A JP H01113067 A JPH01113067 A JP H01113067A
Authority
JP
Japan
Prior art keywords
plasma
blood
line
pressure
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62270718A
Other languages
Japanese (ja)
Other versions
JPH0773603B2 (en
Inventor
Yasushi Shimomura
下村 泰志
Yuzo Kuromatsu
黒松 勇蔵
Koichiro Fukuzaki
福崎 好一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP62270718A priority Critical patent/JPH0773603B2/en
Publication of JPH01113067A publication Critical patent/JPH01113067A/en
Publication of JPH0773603B2 publication Critical patent/JPH0773603B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain plasma excellent in sieve coefficient such as IgM, by performing separation operation while holding the pressure on the side of a plasma line to negative pressure. CONSTITUTION:In a plasma separation apparatus consisting of a plasma separator 1 having a plasma separation membrane mounted therein, a blood feeding line for transporting blood to said plasma separator 1, a blood return line for returning a red corpuscle concd. liquid from which plasma is separated and a plasma line for transporting plasma, the pressure on the side of the plasma line is held to negative pressure. The negative pressure applied to the side of the plasma line (the side of a filtrate) is used within a range of -50--100mmHg in general. As mentioned above, by applying high negative pressure to the side of the filtrate to forcibly obtain plasma, plasma separating operation good in sieve coefficient such as total protein is performed. In collecting plasma, it is necessary to use a proper amount of an anticoagulant.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は血漿分離膜により血液から赤血球、白血球およ
び血小板よりなる血球成分と、血漿成分とを効果的に分
離する血漿分離方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a plasma separation method for effectively separating blood cell components consisting of red blood cells, white blood cells and platelets from blood and plasma components using a plasma separation membrane.

[従来の技術] 近年になって、プラズマフェレーシスと呼ばれる血漿分
離法が開発されつつある。この血漿分離法は、血液をま
ず血漿成分と血球成分に分離し、血漿成分を各種手段で
処理して疾病因子を除去するものであり、このような血
漿分離法には、例えば、 ■血液を血漿分離膜を介して血漿成分と血球成分に分離
した後、疾病因子を含む血漿成分を排出し、血球成分の
み、あるいは血漿成分と同量の人工血漿を血球成分と混
合して採血者の体内に返還する方法、 ■血液を血漿分離膜を介して血漿成分と血球成分に分離
した後、疾病因子を含む血漿成分を吸着剤と接触させて
疾病因子を吸着除去し、次いでその血漿成分を血球成分
と再び混合して採血者の体内に返還する方法、 などが提案されている。
[Prior Art] In recent years, a plasma separation method called plasmapheresis has been developed. This plasma separation method first separates blood into plasma components and blood cell components, and then processes the plasma components using various means to remove disease factors. After separating plasma components and blood cell components through a plasma separation membrane, the plasma components containing disease factors are discharged, and either only the blood cell components or the same amount of artificial plasma as the plasma components are mixed with the blood cell components and then injected into the blood donor's body. After blood is separated into plasma components and blood cell components through a plasma separation membrane, the plasma components containing disease factors are brought into contact with an adsorbent to adsorb and remove disease factors, and then the plasma components are separated into blood cells. A method has been proposed in which the blood is mixed with other components and returned to the body of the person collecting the blood.

このような各分離法を実施するためにはいずれの場合も
血液を血漿成分と血球成分とに効果的に分離することが
必要である。そして、通常、血漿分離法においてはその
濾過圧が膜間圧力差により定義されている。ここで膜間
圧力差(pT)は、下記式で示されるものである。
In order to carry out each of these separation methods, it is necessary to effectively separate blood into plasma components and blood cell components. In plasma separation methods, the filtration pressure is usually defined by the transmembrane pressure difference. Here, the transmembrane pressure difference (pT) is expressed by the following formula.

pT =  ((P、+P2  )/2)−P3(式中
、Plは血漿分離器の血液入口側の圧力、P2は血漿分
離器の血球成分出口側の圧力、およびP3は血漿分離器
の濾液(血漿成分)側圧力を指す。) 従来、溶血防止の観点から、血漿分離操作における膜間
圧力差を一定以上(通常、50〜100m m Hg程
度以下)に上昇しないよう制御する手段が提案されてい
る。(特開昭59−177058号公報及び特開昭61
−85951号公報)[発明か解決しようとする問題点
] しかしながら、上記従来の技術にあっては溶血は防止で
きるものの、膜間圧力差を100mmHg程度以下に維
持しているため、総蛋白、IgM等の篩い係数が多少劣
るものであった。
pT = ((P, +P2)/2)-P3 (where Pl is the pressure on the blood inlet side of the plasma separator, P2 is the pressure on the blood cell component outlet side of the plasma separator, and P3 is the filtrate of the plasma separator) (Plasma component) side pressure) Conventionally, from the perspective of preventing hemolysis, means have been proposed to control the transmembrane pressure difference in plasma separation operations so that it does not rise above a certain level (usually about 50 to 100 mm Hg or less). ing. (Unexamined Japanese Patent Publications No. 59-177058 and Unexamined Japanese Patent Publication No. 61
-85951 Publication) [Problems to be Solved by the Invention] However, although the above-mentioned conventional techniques can prevent hemolysis, the transmembrane pressure difference is maintained at about 100 mmHg or less, so total protein, IgM The sieving coefficient was somewhat inferior.

[問題点を解決するための手段] そこで、本発明者は溶血を防止しつつ、総蛋白等の篩い
係数を改善し得る血漿分離法について、種々の角度から
検討したところ、濾過圧を膜間圧力差てなく濾液側の圧
力という観点からみた場合、血漿ライン側、即ち、濾液
側の圧力を防圧に保持すると、上記目的を達成できるこ
とを見出し、本発明に到達した。
[Means for Solving the Problems] Therefore, the present inventor investigated from various angles a plasma separation method that can improve the sieving coefficient of total protein while preventing hemolysis. When viewed from the viewpoint of the pressure on the filtrate side without any pressure difference, the inventors have discovered that the above object can be achieved by maintaining the pressure on the plasma line side, that is, the filtrate side, at a pressure-proof level, and have arrived at the present invention.

即ち、本発明によれば、血漿分離膜を内蔵した血漿分離
器と、該血漿分離器へ血液を輸送する送血ラインと、前
記血漿分離器において血漿が分離された赤血球濃厚液を
返送する返血ラインと、前記分離された血漿を輸送する
血漿ラインとからなる血漿分離系における血漿分離に際
し、前記血漿ライン側圧力を防圧に保持することを特徴
とする血漿分離方法、が提供される。
That is, according to the present invention, a plasma separator having a built-in plasma separation membrane, a blood supply line for transporting blood to the plasma separator, and a return system for returning the red blood cell concentrate from which plasma has been separated in the plasma separator are provided. There is provided a plasma separation method characterized in that during plasma separation in a plasma separation system consisting of a blood line and a plasma line for transporting the separated plasma, the pressure on the plasma line side is maintained at a pressure-proof level.

本発明では、血漿分離操作に際し、通常実施されている
程度の濾過圧(即ち、膜間圧力差)と全く異なった範囲
の圧力にて分離操作を行なうことにその特徴を有してお
り、しかもその圧力においても血球成分の破壊(即ち、
溶血)が生じないのである。
The present invention is characterized in that the plasma separation operation is performed at a pressure range that is completely different from the filtration pressure (i.e., transmembrane pressure difference) that is normally implemented. Even at that pressure, destruction of blood cell components (i.e.,
Hemolysis) does not occur.

血漿ライン側(濾液側)に負荷する防圧としては、通常
−50mmHg 〜−100mmHgの範囲、好ましく
は−65m m Hg 〜−80m m Hgの範囲で
用いられる。本発明では、このように濾液側に高度の防
圧を負荷して強制的に濾液、即ち血漿を得るようにして
、総蛋白等の篩い係数の良い血漿分離操作を行なうので
ある。
The pressure applied to the plasma line side (filtrate side) is usually in the range of -50 mm Hg to -100 mm Hg, preferably in the range of -65 mm Hg to -80 mm Hg. In the present invention, a high pressure is applied to the filtrate side to forcibly obtain the filtrate, that is, plasma, thereby performing a plasma separation operation with a good sieving coefficient for total protein and the like.

また、本発明においては、血漿採取の実施に当り、血液
の抗凝固剤を適量使用する必要がある。
Further, in the present invention, it is necessary to use an appropriate amount of a blood anticoagulant when collecting plasma.

尚、抗凝固作用を有する血液回路、血漿分離器が開発さ
れると、抗凝固剤による血漿の希釈が防止可能となる。
If a blood circuit and a plasma separator with anticoagulant effects are developed, dilution of plasma by anticoagulants can be prevented.

抗凝固剤としては、体外血液潅流に使用できるものであ
れば、いずれでもよく、例えば、クエン酸(ACD、C
PD等)、ヘパリン、プロスタグランジン、FOY、M
D−805等が使用される。これらはその特性により献
血者へ注射することによって投与することもできる他、
穿針部、またはその下流側の血液ラインに分枝を設け、
そこから持続投与器、或いは点滴で投与することも可能
である。
Any anticoagulant that can be used for extracorporeal blood perfusion may be used, such as citric acid (ACD, C
PD, etc.), heparin, prostaglandin, FOY, M
D-805 etc. are used. Due to their properties, these can be administered to blood donors by injection.
A branch is established in the blood line at or downstream of the puncture point,
It is also possible to administer from there via a continuous infusion device or an intravenous drip.

また、本発明に用いる血漿分離器としては、血漿分離速
度が大きく、血漿蛋白質の透過性が良好な、いずれの脱
型血漿分離器も使用可能であるが、中空糸膜型の分離膜
モジュールを使用することが好ましい。
Furthermore, as the plasma separator used in the present invention, any deformed plasma separator that has a high plasma separation rate and good plasma protein permeability can be used, but a hollow fiber membrane type separation membrane module can be used. It is preferable to use

血漿゛分離膜モジュールに用いられる中空糸膜としては
、親水性を有するものが好ましく用いられるが、他方、
元来は疎水性であっても、界面活性剤又はコーティング
剤等により親水化処理したものも好ましく使用できる。
As the hollow fiber membrane used in the plasma separation membrane module, one having hydrophilic properties is preferably used, but on the other hand,
Even if they are originally hydrophobic, those treated with a surfactant or coating agent to make them hydrophilic can also be preferably used.

更に、疎水性の中空糸膜な水と相溶性がよく表面張力の
小さい、例えばアルコールのような物質によって洗浄し
、生理食塩水等の無菌水、無塵水にて充填しておき、使
用に際して血液と置換することによって本発明の中空糸
膜として用いることができる。
Furthermore, the membrane is a hydrophobic hollow fiber membrane that is highly compatible with water and has a low surface tension, washed with a substance such as alcohol, and filled with sterile water such as physiological saline or dust-free water before use. It can be used as the hollow fiber membrane of the present invention by replacing it with blood.

また、中空糸の材料としては、特に制限されるものでは
ない。高分子材料を素材とするものの例としては、ポリ
オレフィン(高密度ポリエチレン、ポリプロピレン、ポ
リ(4−メチル−ペンテン−1)など)、フッ素含有高
分子化合物、ポリスルホン、ポリカーボネート、ポリ塩
化ビニル、セルロースアセテート、ポリアクリロニトリ
ル、ボリビニルアルコール、ポリメチルメタアクリレー
ト、ポリアミド等の多孔質中空糸を挙げることができる
。また無機材料を素材とするものの例としては、ガラス
、セラミック、炭素等の多孔質中空糸を挙げることかで
きる。以上のうち、耐溶血性が高い点からポリオレフィ
ンを素材とする膜が好ましい。
Furthermore, the material for the hollow fibers is not particularly limited. Examples of polymer materials include polyolefins (high-density polyethylene, polypropylene, poly(4-methyl-pentene-1), etc.), fluorine-containing polymer compounds, polysulfone, polycarbonate, polyvinyl chloride, cellulose acetate, Examples include porous hollow fibers such as polyacrylonitrile, polyvinyl alcohol, polymethyl methacrylate, and polyamide. Examples of materials made of inorganic materials include porous hollow fibers made of glass, ceramic, carbon, and the like. Among the above, membranes made of polyolefin are preferred because of their high resistance to hemolysis.

以上、中空糸膜を説明したが、耐溶血性の観点から、特
に、下記に示す多孔性中空糸膜な用いることか好ましい
Hollow fiber membranes have been described above, but from the viewpoint of hemolysis resistance, it is particularly preferable to use the porous hollow fiber membranes shown below.

即ち、ポリオレフィンの多孔性中空糸膜であって、その
周壁部は、該中空糸膜の長さ方向に対し、略直角に走る
比較的太いロッド郡と、その各ロウド間に該中空糸膜の
長さ方向に走り且つ各ロッド間につながる微小フィブリ
ル郡とによって構成され、これらのロッド郡及び微小フ
ィブリル郡によって短冊状の微小孔部を形成してなり、
膜厚が50〜1100jL、内径が250〜400gm
、且つバブルポイント法で測定したとき口径が0.2〜
1.0JLmである多孔性中空糸膜を、本発明の血漿分
離膜として使用することが好ましい。
That is, it is a porous hollow fiber membrane of polyolefin, the peripheral wall of which has a group of relatively thick rods running approximately perpendicular to the length direction of the hollow fiber membrane, and a group of relatively thick rods running between the rods of the hollow fiber membrane. It is composed of a group of microfibrils running in the length direction and connected between each rod, and a strip-shaped micropore is formed by these rods and microfibrils,
Film thickness is 50-1100jL, inner diameter is 250-400gm
, and the diameter is 0.2 to 0.2 when measured by the bubble point method.
Preferably, a porous hollow fiber membrane of 1.0 JLm is used as the plasma separation membrane of the present invention.

そして、上記の多孔性中空糸膜はポリオレフィンの中空
糸を低温下、すなわち−60°C以下、好ましくは一1
50℃以下において延伸することによって作成される。
The above-mentioned porous hollow fiber membrane is prepared by using polyolefin hollow fibers at low temperature, that is, below -60°C, preferably at -11°C.
It is created by stretching at 50°C or lower.

また、この延伸は、窒素、酸素、アルゴン、−酸化炭素
、メタンおよびエタンからなる郡から選ばれる媒体中で
行なうことが好ましい。
The stretching is preferably carried out in a medium selected from the group consisting of nitrogen, oxygen, argon, carbon oxide, methane and ethane.

[実施例] 以下、本発明を実施例に基いて詳細に説明するが、本発
明がこれら実施例に限られるものてないことは明らかで
あろう。
[Examples] Hereinafter, the present invention will be explained in detail based on Examples, but it will be clear that the present invention is not limited to these Examples.

(実施例、比較例) ACDを加えた生血4文を用い、図面に示す血漿分離回
路により、濾液側の圧力を防圧(≦−50mmHg)に
保持した場合と、通常の圧力(≧Om m Hg )の
場合とにおける血漿分離操作を実施し、比較検討した。
(Example, Comparative Example) Using 4 samples of raw blood to which ACD was added, the pressure on the filtrate side was maintained at a barrier pressure (≦-50 mmHg) and the case where the pressure on the filtrate side was maintained at a pressure-proof pressure (≧Om m Plasma separation operations were performed and compared in the case of Hg).

その結果を下表に示す。The results are shown in the table below.

尚、図面において、■は血漿分#器、2は生血貯蔵タン
ク、3は赤血球濃厚液貯蔵タンク、4は分離血漿(濾液
)バッグ、5及び6はポンプを示す。又、P、、Po及
びprは各々圧力計を示す。
In the drawings, ■ indicates a plasma separator, 2 indicates a fresh blood storage tank, 3 indicates a concentrated red blood cell storage tank, 4 indicates a separated plasma (filtrate) bag, and 5 and 6 indicate pumps. Further, P, Po and pr each represent a pressure gauge.

以上から明らかなように、通常圧力により血漿分離と、
高度防圧下の血漿分離とは、総蛋白、IgM等の篩い係
数に差が認められた。しかも、このような高度の防圧下
における分離操作においても溶血は認められなかった。
As is clear from the above, plasma separation using normal pressure,
Differences were observed in the sieving coefficients of total protein, IgM, etc. compared to plasma separation under high pressure. Moreover, no hemolysis was observed even during the separation operation under such high pressure.

[発明の効果] 以上説明したように、本発明の血漿分離方法によれば血
漿ライン側圧力を防圧に保持して分離操作を行なうこと
により、IgM等の篩係数に優れた血漿を得ることかで
きる。
[Effects of the Invention] As explained above, according to the plasma separation method of the present invention, plasma with excellent sieving coefficients such as IgM can be obtained by performing the separation operation while maintaining the pressure on the plasma line side at a pressure-proof level. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、血漿分離回路の例を示す概略説明図である。 1・・・血漿分離器、2・・・生血貯蔵タンク、3・・
・赤血球濃厚液貯蔵タンク、4・・・分離血漿(濾液)
バッグ、5・・・ポンプ。
The drawing is a schematic explanatory diagram showing an example of a plasma separation circuit. 1...Plasma separator, 2...Live blood storage tank, 3...
・Red blood cell concentrate storage tank, 4...Separated plasma (filtrate)
Bag, 5...pump.

Claims (1)

【特許請求の範囲】[Claims] (1)血漿分離膜を内蔵した血漿分離器と、該血漿分離
器へ血液を輸送する送血ラインと、前記血漿分離器にお
いて血漿が分離された赤血球濃厚液を返送する返血ライ
ンと、前記分離された血漿を輸送する血漿ラインとから
なる血漿分離系における血漿分離に際し、前記血漿ライ
ン側圧力を陰圧に保持することを特徴とする血漿分離方
法。
(1) a plasma separator with a built-in plasma separation membrane, a blood supply line for transporting blood to the plasma separator, a blood return line for returning the red blood cell concentrate from which plasma has been separated in the plasma separator; 1. A plasma separation method comprising: maintaining a pressure on the plasma line side at negative pressure during plasma separation in a plasma separation system comprising a plasma line for transporting separated plasma.
JP62270718A 1987-10-27 1987-10-27 Plasma separator Expired - Lifetime JPH0773603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62270718A JPH0773603B2 (en) 1987-10-27 1987-10-27 Plasma separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62270718A JPH0773603B2 (en) 1987-10-27 1987-10-27 Plasma separator

Publications (2)

Publication Number Publication Date
JPH01113067A true JPH01113067A (en) 1989-05-01
JPH0773603B2 JPH0773603B2 (en) 1995-08-09

Family

ID=17489992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62270718A Expired - Lifetime JPH0773603B2 (en) 1987-10-27 1987-10-27 Plasma separator

Country Status (1)

Country Link
JP (1) JPH0773603B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822068A (en) * 1981-08-01 1983-02-09 テルモ株式会社 Filter type serum separator
JPS6185951A (en) * 1984-10-04 1986-05-01 株式会社 ニツシヨ− Membrane type serum separation system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5822068A (en) * 1981-08-01 1983-02-09 テルモ株式会社 Filter type serum separator
JPS6185951A (en) * 1984-10-04 1986-05-01 株式会社 ニツシヨ− Membrane type serum separation system

Also Published As

Publication number Publication date
JPH0773603B2 (en) 1995-08-09

Similar Documents

Publication Publication Date Title
KR100193172B1 (en) Biological liquid treatment system and treatment method
EP0266683B1 (en) A blood components collector unit
US4981596A (en) System for treating blood for autotransfusion
EP1016426B1 (en) Leukocyte-removing filter material
US5302299A (en) Biological semi-fluid processing assembly
JP2002526172A (en) Biological fluid filters and systems
JPH11267199A (en) Blood treatment method and device
JPH01113067A (en) Separation of plasma
JP3208132B2 (en) Blood component separation method
JPH01113068A (en) Separation of plasma
JPH01113066A (en) Separation of plasma
US20170266362A1 (en) System for removal of pro-inflammatory mediators as well as granulocytes and monocytes from blood
JP2010136803A (en) System for removal of virus and cytokine from blood
US20230173147A1 (en) Blood separation system and blood products
JP3180161B2 (en) Separation method of hemolyzed blood
JPH0197472A (en) Multistage plasma separation method
Philp et al. Hemolysis reduction in plasmapheresis by module design: operating with pulsed flow filtration enhancement
JPH02274262A (en) Blood plasma collecting device
JPS6384558A (en) Plasma sampler
JP3157519B2 (en) Blood component separation system
JPH019575Y2 (en)
JPH01160562A (en) Plasma sampler
JPS6353825B2 (en)
JPS6384560A (en) Plasma sampling apparatus
JPH01153164A (en) Plasma sampler