JPH01112634A - Manufacture of flashing discharge tube - Google Patents

Manufacture of flashing discharge tube

Info

Publication number
JPH01112634A
JPH01112634A JP26921487A JP26921487A JPH01112634A JP H01112634 A JPH01112634 A JP H01112634A JP 26921487 A JP26921487 A JP 26921487A JP 26921487 A JP26921487 A JP 26921487A JP H01112634 A JPH01112634 A JP H01112634A
Authority
JP
Japan
Prior art keywords
glass pipe
cathode
sealed
sealing
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26921487A
Other languages
Japanese (ja)
Other versions
JPH0459733B2 (en
Inventor
Kenichi Tashiro
田代 賢一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP26921487A priority Critical patent/JPH01112634A/en
Publication of JPH01112634A publication Critical patent/JPH01112634A/en
Publication of JPH0459733B2 publication Critical patent/JPH0459733B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Abstract

PURPOSE:To enhance the durability and starting characteristics and accomplish mass production by arranging a manufacturing process in which the heat generated when cathode and anode are hot sealed to a glass pipe, does not give adversely affect the an easy-to-emit electron substance. CONSTITUTION:At No.1 stage of manufacturing process, a cathode 11 equipped with a sintered substance 15 of mase metal is hot sealed to one end of a glass pipe 16 through a bead 13. When the heat of hot sealing has gone out in No.2 stage, an aqueous solution 24 of an electron easy-to-emit substance is poured to the sintered substance 15 for impregnation by the use of an injection tool 23 in such a way as not splashing on the inside of the glass pipe 16. At No.3 stage, the sealed cathode and glass pipe are dried. At No.4 stage, rare gas is encapsulated in the glass pipe 16, and an anode 12 is hot sealed to the other end of the glass pipe 16 through a bead 14. Thus the easy-to-emit electron substance is held active to enable mass production.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、フラッシュ発光装置の光源として利用する
ところの閃光放電管の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method of manufacturing a flash discharge tube used as a light source of a flash light emitting device.

「従来の技術」 フラッシュ発光装置は写真撮影用の照明器として広く知
られている通り、光源として閃光放電管を備え、この閃
光放電管がメーンコンデンサに予め菩えられた電気エネ
ルギーを放電させてフラッシュ発光するようになってい
る。
``Prior Art'' As is widely known as a lighting device for photography, a flash light emitting device is equipped with a flash discharge tube as a light source, and this flash discharge tube discharges electrical energy that has been previously stored in a main capacitor. It is designed to emit flash light.

最近では、カメラに内蔵されたフラッシュ発光装置が多
くなった関係で、装置部品の小形化が要請され、閃光放
電管についても小形化と光出力の増大に関する開発が進
められている。
Recently, with the increase in the number of flash emitting devices built into cameras, there has been a demand for miniaturization of device components, and development efforts are underway to miniaturize flash discharge tubes and increase light output.

この種の閃光放電管は第2図(a)〜(e)に示す如く
製造される。
This type of flash discharge tube is manufactured as shown in FIGS. 2(a) to 2(e).

第2図(a)は陰極と陽極を構成するための継導入線1
1.12を示し、これら継導入線11,12は先方部分
11a、12aがタングステン材で。
Figure 2 (a) shows the connecting wire 1 for configuring the cathode and anode.
1.12, and the front portions 11a and 12a of these connecting lead-in wires 11 and 12 are made of tungsten material.

その他の部分がニッケル材で構成されている。Other parts are made of nickel material.

上記継導入線11.12の各々には第2図(b)のよう
に、ビーズ13.14が嵌着され、また、継導入線11
には第2図(c)に示した通り、焼結体15が加締め止
めされている。この焼結体15は焼結加工した基体金属
に易電子放射性物質を含浸させた構成となっており、上
記基体金属としては4族チタン族元素であるチタン(T
i)、ジルコニウム(Zr)、5族バナジン族であるニ
オブ(Nb)、タルタン(Ta) 、6族クロム族であ
るタングステン(W)、S族鉄族である二ッケル(N 
i )などが独立またはこれらの複合で使用されている
。このような基体金属材料は安価で高融点ガス吸着作用
(ゲッター作用)の大きいものが好ましい。
As shown in FIG. 2(b), beads 13, 14 are fitted into each of the connecting wires 11, 12, and the connecting wires 11, 12 are fitted with beads 13, 14.
As shown in FIG. 2(c), the sintered body 15 is crimped. This sintered body 15 has a structure in which a sintered base metal is impregnated with an electron-emitting radioactive substance, and the base metal is titanium (T), which is a group 4 titanium group element.
i), zirconium (Zr), niobium (Nb), which is a group 5 vanadine group, tartan (Ta), tungsten (W), which is a group 6 chromium group, and nickel (N), which is a group S iron group.
i) etc. are used independently or in combination. Such a base metal material is preferably one that is inexpensive and has a large high melting point gas adsorption action (getter action).

また、上記した易電子放射性物質としては、最も仕事関
数の低いセシュウム酸化物が使用され、−般にはクロム
酸セシュウム(CS2Cr O4)の水溶液を基体金属
の焼結体に含浸させ乾燥させる。
Cesium oxide, which has the lowest work function, is used as the above-mentioned electron-emissive substance, and generally, a sintered body of the base metal is impregnated with an aqueous solution of cesium chromate (CS2CrO4) and dried.

上記したところの焼結体15は閃光放電管の起動特性を
低くすることと耐久性を高める上で極めて重要となるが
、この取扱いが難しいために、ガラスパイプ16に対す
る陰極の取り付けには各種の手段が講じられている。す
なわち、陰極を封着させる際に発生する高温不純ガス(
H2O,Go等)がクロム酸セシュウムに影響し、焼結
体15が活性状態を失うことを防ぐためである。なお、
ガラスパイプ16は硼珪酸ガラス或いは石英ガラスなど
で構成されている。
The above-mentioned sintered body 15 is extremely important in lowering the starting characteristics of the flash discharge tube and increasing its durability, but since it is difficult to handle, various methods are required to attach the cathode to the glass pipe 16. Measures are being taken. In other words, high-temperature impurity gas (
This is to prevent the sintered body 15 from losing its active state due to the influence of cesium chromate (H2O, Go, etc.). In addition,
The glass pipe 16 is made of borosilicate glass, quartz glass, or the like.

従って、陽極については、第2図(d)に示した通り、
縦溝入線12のビーズ14とガラスパイプ16の一端部
とを加熱溶着し、陰極を取り付けるに先き立って封着す
る。
Therefore, regarding the anode, as shown in Figure 2(d),
The bead 14 of the longitudinally grooved wire 12 and one end of the glass pipe 16 are heat-welded and sealed prior to attaching the cathode.

陰極の取り付けには第3図〜第5図に示すような手段が
採られている。
The cathode is attached using the means shown in FIGS. 3 to 5.

第3図に示す手段は、陽極を封着した後、1気圧以下(
5ooト一ル程度)のキセノンガス中で、焼結体15を
設けた縦溝入線11をガラスパイプ16の他端側より挿
入し、このパイプ16の他端部を封止する。
The means shown in FIG.
The vertically grooved wire 11 provided with the sintered body 15 is inserted from the other end side of the glass pipe 16 in xenon gas at a pressure of about 500 mm, and the other end of the pipe 16 is sealed.

次に、陽極側を液体窒素17中に入れて冷却しながら、
バーナーを使用してビーズ13とガラスパイプ16の一
部とを加熱溶着して陰極を封着し。
Next, while cooling the anode side by placing it in liquid nitrogen 17,
The beads 13 and a part of the glass pipe 16 are heated and welded using a burner to seal the cathode.

ガラスパイプ16の延設部分16aを切り取る。Cut out the extended portion 16a of the glass pipe 16.

この手段によれば、液体窒素17の冷却効果によってク
ロム酸セシュウムの分解を押える事が可能である。
According to this means, it is possible to suppress the decomposition of cesium chromate by the cooling effect of liquid nitrogen 17.

第4図に示す手段は、陽極を封着した後、焼結体15を
設けた縦溝入線11をガラスパイプ16の他端部に挿入
してから組立治具18に起立させると共に、この組立治
具18を容器19に入れて密閉する。続いて、1気圧以
上のキセノンガスを上記容器19に充填させた後、ヒー
タ機能を有する上記組立治具18を誘導加熱用コイル2
0を介して給電し陰極を封着させる。この手段では、陰
極は誘導加熱の影響で赤熱しクロム酸セシュウムが熱分
解して蒸気となって飛散し焼結体15には残らないが、
封着時間が短いためクロム酸セシュウムの蒸気が一部ガ
ラスパイプ16内に残る。
The means shown in FIG. 4 involves, after sealing the anode, inserting the vertically grooved wire 11 provided with the sintered body 15 into the other end of the glass pipe 16 and standing it up in the assembly jig 18. The jig 18 is placed in a container 19 and sealed. Subsequently, after filling the container 19 with xenon gas of 1 atm or more, the assembly jig 18 having a heater function is attached to the induction heating coil 2.
0, and the cathode is sealed. In this method, the cathode becomes red hot under the influence of induction heating, and the cesium chromate is thermally decomposed and scattered as vapor, and does not remain in the sintered body 15.
Since the sealing time is short, some of the vapor of cesium chromate remains inside the glass pipe 16.

第5図に示す手段は、陽極を封着した後、焼結体15を
設けた縦溝入線11をガラスパイプ16の他端部に挿入
するようにして組立治具21に起立させる。
In the means shown in FIG. 5, after the anode is sealed, the vertically grooved wire 11 provided with the sintered body 15 is inserted into the other end of the glass pipe 16 to stand up on the assembly jig 21.

この組立治具21は高圧槽22内に入れ、高圧槽22内
に1気圧以上で充填されたキセノンガス中でヒーターと
して機能させて陰極を封着させる。
This assembly jig 21 is placed in a high-pressure tank 22, and the cathode is sealed by functioning as a heater in xenon gas filled in the high-pressure tank 22 at a pressure of 1 atmosphere or more.

この手段は第3図に示した手段に比べて加熱時間が長い
ためクロム酸セシュウムが拡散し易い。
Since this means takes a longer heating time than the means shown in FIG. 3, cesium chromate is more likely to diffuse.

上記の如く封着した陰極はビーズ13とガラスパイプ1
6の他端部とが第2図(c)に示した如く加熱溶着され
る。
The cathode sealed as above is the bead 13 and the glass pipe 1.
6 and the other end thereof are heat-welded as shown in FIG. 2(c).

「発明が解決しようとする問題点」 小型で光出力の高い閃光放電管を製造するためにはアー
ク長が長く、ガス圧が高く、起動特性上昇を防止する必
要があるため、陰極内に含浸したセシュウム酸化物を良
好な活性状態に保つ必要があった。
``Problem to be solved by the invention'' In order to manufacture a compact flash discharge tube with high light output, the arc length is long and the gas pressure is high, and it is necessary to prevent the starting characteristics from increasing. It was necessary to keep the cesium oxide in a good active state.

アーク長を長くするため、封着寸法を出来るだけ短縮す
る必要があり、封着加熱を行なう場合昇温冷却は時間を
かけ除々に行なう必要があった。
In order to increase the arc length, it is necessary to shorten the sealing dimensions as much as possible, and when sealing heating is performed, it is necessary to gradually raise and cool the temperature over time.

従来の製造方法では封着温度より易電子放射物質の分解
温度が低いため、封着の際発生する熱的影響を少なくす
るため封着時間を出来るだけ¥rL縮するか、封着部と
陰極の寸法を大きく取って、封着加熱の際発生する熱的
影響を除去する必要があり封着寸法の短縮、封着部と陰
極寸法の短縮は困難の状況であった。
In conventional manufacturing methods, the decomposition temperature of the electron-emissive material is lower than the sealing temperature, so in order to reduce the thermal influence that occurs during sealing, the sealing time should be shortened as much as possible, or the sealing part and cathode should be It was necessary to increase the size of the sealing part to eliminate the thermal influence that occurs during sealing heating, making it difficult to shorten the sealing size and the dimensions of the sealing part and the cathode.

第3図に示した第1の従来例の場合、液体窒素17の冷
却結果でクロム酸セシュウムを分解させずに陰極封着が
可能であるが、バーナーによって封着するため歪が残る
と共に封着寸法が長くなって小形化が難かしく、その上
、クロム酸セシュウムが加熱による不純ガスの影響を受
は活性状態が悪くなる。
In the case of the first conventional example shown in FIG. 3, cathode sealing is possible without decomposing the cesium chromate as a result of cooling with liquid nitrogen 17, but since the sealing is performed using a burner, distortion remains and the sealing The dimensions become long, making it difficult to downsize, and in addition, the activation state of cesium chromate deteriorates due to the influence of impure gases caused by heating.

また、バーナーを使って封着するため生産能率が低いば
かりでなく、ガラスパイプ16を長く必要とし、液体窒
素17を使用する関係でコスト高の製品となる。
Furthermore, since sealing is performed using a burner, not only is production efficiency low, but the glass pipe 16 is long and liquid nitrogen 17 is used, resulting in a high-cost product.

第4図に示した第2の従来例の場合、1回の封着作用で
4本〜10本程度の陰極封着が可能であり、また、陰極
の封着寸法が第3図の方法より短くアーク長を長くでき
て有利であるが、クロム酸セシュウムが焼結体15に残
らないため耐久性の悪い製品となる。
In the case of the second conventional example shown in Fig. 4, it is possible to seal approximately 4 to 10 cathodes in one sealing action, and the sealing dimensions of the cathodes are smaller than those of the method shown in Fig. 3. Although it is advantageous because the arc length can be made shorter, the product has poor durability because cesium chromate does not remain in the sintered body 15.

したがって、焼結体15と陰極封若部との間の距離を大
きくする必要がある。
Therefore, it is necessary to increase the distance between the sintered body 15 and the cathode sealing part.

第5図に示した第3の従来例の場合、1回の封着作業で
500本〜600本の陰極封着ができ、その上、封着歪
も少なく最も量産に適した手段であるが、加熱時間が第
3図、第4図の方法と比較し長いため焼結体15にはク
ロム酸セシュウムが最も残らないため、起動特性が高く
耐久性に劣る製品となる。
In the case of the third conventional example shown in Fig. 5, 500 to 600 wires can be cathode-sealed in one sealing operation, and it also has less sealing distortion and is the most suitable method for mass production. Since the heating time is longer than in the methods shown in FIGS. 3 and 4, the least amount of cesium chromate remains in the sintered body 15, resulting in a product with high starting characteristics and poor durability.

r問題点を解決するための手段」 本発明は上記した問題点にかんがみ開発したものである
"Means for Solving Problems" The present invention has been developed in view of the above-mentioned problems.

本発明に係る閃光放電管の製造方法は、先ず、第1工程
として、基体金属の焼結体を備えた陰極をガラスパイプ
の一端部に封着する。
In the method for manufacturing a flash discharge tube according to the present invention, first, as a first step, a cathode provided with a sintered body of a base metal is sealed to one end of a glass pipe.

第2工程として、ガラスパイプの他端から易電子放射性
物質の水溶液を上記焼結体に適下する。
As a second step, an aqueous solution of an electron-emitting radioactive substance is dripped onto the sintered body from the other end of the glass pipe.

第3工程として、上記のように封着した陰極とガラスパ
イプとを乾燥させる。
As a third step, the cathode and glass pipe sealed as described above are dried.

第4工程として、稀ガスを封入した後、ガラスパイプの
他端部に陽極を封着する。
As a fourth step, after filling the rare gas, an anode is sealed to the other end of the glass pipe.

「実施例」 次に1本発明の実施例について図面に沿って説明する。"Example" Next, an embodiment of the present invention will be described with reference to the drawings.

第1図(a)〜(d)は閃光放電管の製造工程を示す図
である。
FIGS. 1(a) to 1(d) are diagrams showing the manufacturing process of a flash discharge tube.

基体金属の焼結体15はクロム酸セシュウムを含浸させ
ずに縦溝入線11に加締め止めする。
The sintered body 15 of the base metal is crimped onto the vertically grooved wire 11 without being impregnated with cesium chromate.

このように構成した陰極はガラスパイプ16の一端から
差し込み、ビーズ13とパイプ一端部とを加熱溶着して
封着する。
The cathode thus configured is inserted into one end of the glass pipe 16, and the beads 13 and one end of the pipe are heat welded and sealed.

上記の如く、封着した陰極の焼結体15には第1図(b
)に示す如く、ガラスパイプ16の他端よりデイスペン
サーなどの注入器具23を差し入れて、この注入器具2
3より適量のクロム酸セシュウム24を適下する。
As described above, the sealed cathode sintered body 15 is shown in FIG.
), insert an injection device 23 such as a dispenser into the other end of the glass pipe 16, and insert the injection device 23 into the glass pipe 16.
Drop an appropriate amount of cesium chromate 24 from 3.

続いて、第1図(c)のように、陰極が封着されたガラ
スパイプ16を充分に真空乾燥させて水分を取り除く。
Subsequently, as shown in FIG. 1(c), the glass pipe 16 with the cathode sealed thereon is sufficiently vacuum-dried to remove moisture.

次に、ガラスパイプ16の他端より縦溝入線12を差し
込み、このパイプ16の他端部とこのビーズ14とを加
熱溶着し、第1図(d)に示すように陽極を封着する。
Next, the vertically grooved wire 12 is inserted from the other end of the glass pipe 16, and the other end of the pipe 16 and the bead 14 are welded together by heating, thereby sealing the anode as shown in FIG. 1(d).

上記のように実施すれば、陰極の封着の際にクロム酸セ
シュウムが焼結体15に含浸されていないので、このセ
シュウムが陰極封着のための加熱によって発生した不純
ガスの影響を受けることがない。
If carried out as described above, cesium chromate is not impregnated into the sintered body 15 during cathode sealing, so that this cesium will not be affected by impurity gas generated by heating for cathode sealing. There is no.

また、図示するような細長い注入器具23を使用するこ
とによって、ガラスパイプ16の内面にクロム酸セシュ
ウムを付着させずに焼結体15に含浸させることができ
る。
Further, by using the illustrated elongated injection device 23, it is possible to impregnate the sintered body 15 with cesium chromate without adhering it to the inner surface of the glass pipe 16.

陽極を封着する際にはその加熱溶着部と陰極との間に所
定の距離があるので、この加熱によって発生した不純ガ
スは焼結体15のクロム酸セシュウムに対してほとんど
影響しない。
When sealing the anode, there is a predetermined distance between the heat-welded portion and the cathode, so impurity gas generated by this heating has little effect on the cesium chromate in the sintered body 15.

「発明の効果」 上記した通り、本発明に係る製造方法では、焼結体に易
電子放射性物質を含浸する前に陰極を封着すると共に、
その後、焼結体に適量の易電子放射性物質を含浸させる
と共に、この焼結体からにれだ位置で陽極を封着するた
め、陰極及び陽極の加熱封着によって発生する不純ガス
が易電子放射性物質にほとんど影響せず、活性状態のセ
シュウムを確実に残すことができ不純ガスの影響がない
ことから耐久性と起動特性の優れた閃光放電管の量産が
可能になると共に、封着寸法及び陰極と封着部の寸法を
短縮させたアーク長の長い閃光放電管が製造でき、従来
製品に比べ光出力を増加させ、また、従来製品と同様の
アーク長に設計することにより閃光放電管の小形化が可
能になる。
"Effects of the Invention" As described above, in the manufacturing method according to the present invention, before impregnating the sintered body with the electron-emissive substance, the cathode is sealed, and
After that, the sintered body is impregnated with an appropriate amount of electron-emissive material, and the anode is sealed at a position protruding from the sintered body, so that the impurity gas generated by heat sealing of the cathode and anode becomes electron-emissive. Since it has almost no effect on the substance, cesium can be reliably left in an active state, and there is no influence from impurity gases, it is possible to mass produce flash discharge tubes with excellent durability and starting characteristics, and the sealing dimensions and cathode It is possible to manufacture a flash discharge tube with a long arc length by shortening the dimensions of the sealed part, increasing the light output compared to conventional products.In addition, by designing the arc length to be the same as conventional products, the flash discharge tube can be made smaller. becomes possible.

特に−度で500〜600本も封着するバッチ方式の場
合封着時間を長く取る事が可能のため封着むらが少なく
生産性の高い方式である。
In particular, in the case of a batch method in which 500 to 600 pieces are sealed at -degrees, the sealing time can be extended, resulting in less uneven sealing and high productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は本発明の一実施例である閃光放
電管の製造工程を示す図、第2図(a)〜(e)は従来
例の閃光放電管の製造工程を示す図、第3図〜第5図は
陰極封着の従来手段を示す簡略図である。 11.12・・・・縦溝入線 13.14・・・・ビーズ 15・・・・焼結体 16・・・・ガラスパイプ 23・・・・注入器具 24・・・・クロム酸セシュウム 11FIA (a)              (bン     
     (C)            (d)第2
図 (dン (e) 第 3 図
Figures 1(a) to (d) are diagrams showing the manufacturing process of a flashlight discharge tube according to an embodiment of the present invention, and Figures 2(a) to (e) are diagrams showing the manufacturing process of a conventional flashlight discharge tube. The figures shown, FIGS. 3 to 5, are simplified diagrams showing conventional means of cathodic sealing. 11.12... Vertical groove line 13.14... Beads 15... Sintered body 16... Glass pipe 23... Injection device 24... Cesium chromate 11FIA ( a) (b)
(C) (d) Second
Figure (d) (e) Figure 3

Claims (1)

【特許請求の範囲】[Claims] 基体金属の焼結体を備えた陰極をガラスパイプの一端部
に封着した後、上記焼結体に対してガラスパイプの他端
より易電子放射性物質の水溶液を適下し、続いて上記陰
極及びガラスパイプを乾燥させた後、稀ガスを封入しガ
ラスパイプの他端部に陽極を封着することを特徴とする
閃光放電管の製造方法。
After sealing a cathode with a sintered body of the base metal to one end of a glass pipe, an aqueous solution of an electron-emissive substance is dripped onto the sintered body from the other end of the glass pipe, and then the cathode is sealed. and a method for manufacturing a flash discharge tube, which comprises drying the glass pipe, filling it with a rare gas, and sealing an anode at the other end of the glass pipe.
JP26921487A 1987-10-27 1987-10-27 Manufacture of flashing discharge tube Granted JPH01112634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26921487A JPH01112634A (en) 1987-10-27 1987-10-27 Manufacture of flashing discharge tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26921487A JPH01112634A (en) 1987-10-27 1987-10-27 Manufacture of flashing discharge tube

Publications (2)

Publication Number Publication Date
JPH01112634A true JPH01112634A (en) 1989-05-01
JPH0459733B2 JPH0459733B2 (en) 1992-09-24

Family

ID=17469259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26921487A Granted JPH01112634A (en) 1987-10-27 1987-10-27 Manufacture of flashing discharge tube

Country Status (1)

Country Link
JP (1) JPH01112634A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193831A (en) * 2008-02-15 2009-08-27 Koito Mfg Co Ltd Secondary sealing method of ceramic arc tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193831A (en) * 2008-02-15 2009-08-27 Koito Mfg Co Ltd Secondary sealing method of ceramic arc tube

Also Published As

Publication number Publication date
JPH0459733B2 (en) 1992-09-24

Similar Documents

Publication Publication Date Title
EP0081263B1 (en) Method of producing a low-pressure mercury vapour discharge lamp
US7852006B2 (en) Ceramic lamp having molybdenum-rhenium end cap and systems and methods therewith
US5709578A (en) Process of making cold cathode fluorescent tube
US2845557A (en) Arc tube mounting
JPH01112634A (en) Manufacture of flashing discharge tube
JPH11176385A (en) Short arc type extra high pressure discharge lamp
US4975620A (en) Metal vapor discharge lamp and method of producing the same
US6547619B1 (en) ARC tube for discharge lamp unit and method of manufacturing same
US3728004A (en) Method of employing mercury-dispensing getters in fluorescent lamps
EP1150334B1 (en) Electrode for discharge tube and discharge tube using it
US4827190A (en) Metal vapor discharge lamp and method of producing the same
US3759601A (en) Lamp assembly and method of making high silica lamps
US2312245A (en) Electrode for discharge devices
JPH01128334A (en) Manufacture of photoflash discharge tube
US5834897A (en) Lamp with centered electrode or in-lead
JP2871499B2 (en) Manufacturing method of cold cathode fluorescent lamp
JPS6191849A (en) Hermetic sealing mercury sealed fluorescent discharge tube
JPH06140000A (en) Low pressure electric discharge lamp and manufacture thereof
JPH01243339A (en) Manufacture of fluorescent lamp
JPH0539565Y2 (en)
JPH05343031A (en) Discharge tube and manufacture thereof
JPS63164142A (en) Manufacture of chipless fluorescent lamp and device therefor
JPS59169037A (en) Method of producing light emitting tube
JPH09180636A (en) Manufacture of metal halide lamp
JPS58209856A (en) Electrode-supporting tube for high pressure sodium lamp