JPH01112161A - Immune agglutination determining device - Google Patents

Immune agglutination determining device

Info

Publication number
JPH01112161A
JPH01112161A JP63175014A JP17501488A JPH01112161A JP H01112161 A JPH01112161 A JP H01112161A JP 63175014 A JP63175014 A JP 63175014A JP 17501488 A JP17501488 A JP 17501488A JP H01112161 A JPH01112161 A JP H01112161A
Authority
JP
Japan
Prior art keywords
immunoagglutination
fine particles
antibody
quantitative device
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63175014A
Other languages
Japanese (ja)
Inventor
Kazunari Imai
一成 今井
Daizo Tokinaga
時永 大三
Koichi Yokozawa
宏一 横澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63175014A priority Critical patent/JPH01112161A/en
Publication of JPH01112161A publication Critical patent/JPH01112161A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To measure the degree of agglutination of the agglutinated lumps generated by agglutination by measurement of magnetic intensity with high accuracy by using a magnetic material as fine particles to conjugate antibodies. CONSTITUTION:100mul liquid suspension of the magnetic beads is added to 20mul serum contg. AFP of various concns. and is brought into reaction for 15min at room temp. This reaction liquid is transferred into the liquid to be measured part 2 of a sheath flow cell 1 and while a sheath liquid 3 is passed therein, the agglutinated lumps in the reaction liquid are dispersed and are introduced to a detecting part 4. The fine particles are magnetized by a magnet 5 in the detecting part 4 and the (x), (y), (z) components of magnetic moment are detected by a SQUID fluxmeter 6. The detected signal values are subjected to AD conversion in an A/D converter 11 and the converted signals are guided to a personal computer 12, by which the square root of the sum of the square values of the respective signal values is calculated and the magnitude of the magnetic moment is determined.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、微粒子凝集体の粒度測定法を用いた免疫凝集
定量装置に係り、特に免疫凝集反応を応用した定量法に
好適な、免疫凝集定量装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an immunoagglutination quantitative device using a particle size measurement method for fine particle aggregates, and is particularly suitable for a quantitative method applying an immunoagglutination reaction. Regarding quantitative devices.

〔従来の技術〕[Conventional technology]

従来、ラテックスビーズ等の微粒子表面に抗体を結合さ
せ、これと試料を反応させて、反応により変化する濁度
の差から試料中の抗原の量を測定する方法がある。この
原理は、微粒子表面の抗原が抗原抗体反応を起こし微粒
子を凝集させること及びこの凝集が抗原量に対し定量的
に変化することに基づいており、この方法で各種のタン
パク質等の定量が行われている。しかし、凝集度に分布
をもつ反応液全体を一度に測定するために平均粒度しか
求められず、抗原濃度算出において精度的な問題があっ
た。
Conventionally, there is a method of binding an antibody to the surface of fine particles such as latex beads, reacting the antibody with a sample, and measuring the amount of antigen in the sample from the difference in turbidity that changes due to the reaction. This principle is based on the fact that antigens on the surface of microparticles cause an antigen-antibody reaction and aggregate the microparticles, and that this aggregation changes quantitatively with respect to the amount of antigen.This method is used to quantify various proteins, etc. ing. However, since the entire reaction solution, which has a distribution of degree of aggregation, is measured at once, only the average particle size can be determined, which poses an accuracy problem in calculating the antigen concentration.

これを解決する方法として、例えば反応液をシースフロ
一方式により凝集塊ごとに分散させそれぞれの散乱強度
を測定する方法がある(日本臨床検査自動化学会誌、ニ
ー1,226 (1986))。
As a method to solve this problem, for example, there is a method of dispersing the reaction solution into aggregates using a sheath-flow method and measuring the scattering intensity of each aggregate (Journal of the Japanese Society of Clinical Laboratory Automation, Ni 1, 226 (1986)).

この方法によれば、凝集塊個々の凝集度を測定でき、凝
集度分布も測定できるので、抗原濃度の算出精度を向」
ニさせることができる。
According to this method, the degree of aggregation of individual aggregates can be measured, and the degree of agglutination distribution can also be measured, which improves the accuracy of calculating antigen concentration.
can be made to

しかしながら、この方法においても、凝集度測定を光学
的測定に依っており、試料中に共存する散乱体や色素等
の吸収体の影響は免れず、測定精度に限界があった。
However, even in this method, the degree of aggregation is measured by optical measurement, and the influence of absorbers such as scatterers and dyes that coexist in the sample is inevitable, and the measurement accuracy is limited.

上記従来技術は、試料中に共存する散乱体や色素等の吸
収体や蛍光体の影響について配慮されておらず、測定誤
差を生ずる問題があった。
The above-mentioned conventional techniques do not take into account the effects of scatterers, absorbers such as dyes, and fluorescent substances coexisting in the sample, and have the problem of causing measurement errors.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、上記従来技術の有する問題点を解決し、抗原
抗体反応により生じた凝集体の大きさど分布を正確に測
定することができ、抗原濃度を精度良く求めることがで
きる免疫凝集定量装置を堤供することにある。
The present invention solves the problems of the prior art described above, and is capable of accurately measuring the size and distribution of aggregates generated by antigen-antibody reactions, and is capable of determining antigen concentration with high accuracy. The purpose is to provide.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、凝集度の測定を光学的測定によらず、磁気
的測定により行うことにより達成される。
The above object is achieved by measuring the degree of aggregation not by optical measurement but by magnetic measurement.

即ち、微粒子として磁気体を用い、この凝集状態をたと
えばSQUID(超伝導量子干渉素子)のような磁気測
定手段を免疫凝集定量装置に用いることにより達成され
る。
That is, this is achieved by using a magnetic material as the fine particles and using a magnetic measurement means such as a SQUID (superconducting quantum interference device) to measure the aggregation state in an immunoagglutination quantitative apparatus.

本発明は次の如き方法によって、抗原濃度を定量的に測
定するものである。
The present invention quantitatively measures antigen concentration by the following method.

磁化し得る微粒子の表面に抗体を結合させ、この微粒子
を試料中の抗原と反応させる。この抗原・抗体反応に伴
って微粒子の凝集塊が生しる。
Antibodies are bound to the surface of magnetizable microparticles, and the microparticles are reacted with antigens in the sample. Accompanying this antigen-antibody reaction, aggregates of fine particles are formed.

こうして準備した測定用反応液をシースフローセルに移
し、シース液を流しながら、微粒子の凝集塊を分散させ
ると共に、シース液流に従ってこれを移動させる。この
液流中の凝集塊を磁化し、この磁気モーメントを測定す
ることによって抗原濃度を定量測定することが出来る。
The measurement reaction solution prepared in this way is transferred to a sheath flow cell, and while the sheath liquid is flowing, aggregates of fine particles are dispersed and moved along with the flow of the sheath liquid. The antigen concentration can be quantitatively measured by magnetizing the aggregates in this liquid flow and measuring the magnetic moment.

磁化し得る微粒子としては、強磁性体であるFe、Ni
、Co等の金属粒子が代表的な例である。γ−フェライ
ト粒子、マグネタイト粒子が用いるのに容易に材料であ
る。又、こうした磁化し得る材料の被膜をコーティング
した粒子を用いても良い。
Magnetizable fine particles include ferromagnetic materials such as Fe and Ni.
, Co, and other metal particles are typical examples. γ-ferrite particles and magnetite particles are easy materials to use. Alternatively, particles coated with a film of such a magnetizable material may be used.

微粒子の粒径は通常2μm程度以下を用いる。The particle size of the fine particles is usually about 2 μm or less.

更に1μm以下がより好ましい。粒径が余り小さいと凝
集塊が発生する磁束が小さくなるので、粒径の選択は磁
気測定系の感度、SN比等の測定能力を考慮して行なえ
ば良い。
Furthermore, it is more preferably 1 μm or less. If the particle size is too small, the magnetic flux that generates the agglomerates will be small, so the selection of the particle size may be made in consideration of the sensitivity of the magnetic measurement system, the measurement ability such as the SN ratio, etc.

微粒子表面に抗体を結合させるには、これまで知られて
いる次の如き手段を用いることが出来る。
In order to bind antibodies to the surface of microparticles, the following known means can be used.

(1)微粒子表面に抗体を吸着により結合させる。(1) Bind the antibody to the surface of the microparticles by adsorption.

(2)微粒子表面に抗体を吸着させたのち、抗体分子間
を化学的に架橋処理する。架橋反応によって、単なる吸
着の場合より、微粒子と抗体の結合がより強固となる。
(2) After adsorbing the antibody onto the surface of the fine particles, chemically cross-linking the antibody molecules. The crosslinking reaction makes the bond between the fine particles and the antibody stronger than in the case of mere adsorption.

化学的に架橋処理するに用いるに有用な架橋剤の例とし
ては、アルデヒド基、カルボジイミド基。
Examples of useful crosslinking agents for chemical crosslinking include aldehyde groups and carbodiimide groups.

マレイミド基等を有する二官能性物質があげられる。Examples include bifunctional substances having a maleimide group and the like.

(3)微粒子表面に抗体を化学的に結合させる。(3) Chemically bond the antibody to the surface of the microparticles.

(4)微粒子表面に官能基を有する有機高分子材料を被
覆させ、この官能基を用いて抗体を共有結合させる。
(4) The surface of the fine particles is coated with an organic polymer material having a functional group, and the antibody is covalently bonded using this functional group.

、  官能基を有する有機高分子材料としては、例えば
メタクリル酸ポリマー等が通常用いられる。
As the organic polymer material having a functional group, for example, methacrylic acid polymer or the like is usually used.

化学的に架橋処理するのに用いられる架橋剤としては、
アルデヒド基、カルボジイミド基、マレイミド基等を有
する二官能性物質が有効な例である。
Crosslinking agents used for chemical crosslinking treatment include:
Bifunctional substances having an aldehyde group, a carbodiimide group, a maleimide group, etc. are effective examples.

官能基としてはアミノ基、カルボキシル基、エポキシ基
、水酸基等が好ましい例である。
Preferred examples of the functional group include an amino group, a carboxyl group, an epoxy group, and a hydroxyl group.

シースフローセルは通常の形態のもの、たとえばフロー
サイ1〜メータに適用されている機構と同等のもので良
い。
The sheath flow cell may be of a normal type, for example, a mechanism equivalent to that used in flow cytometers.

検出部分は微粒子を磁化させる磁石と、磁気強度を測定
する磁束計から構成されており、磁束計としてはSQU
ID磁束計を用いることが望ましい。
The detection part consists of a magnet that magnetizes particles and a magnetometer that measures magnetic strength.
It is preferable to use an ID flux meter.

磁束計は検出コイルを互いに直交する2ないし3方向に
配置した構成にすると特に精密な測定が可能となる。
A magnetometer can perform particularly precise measurements when the detection coils are arranged in two or three directions orthogonal to each other.

本発明が適用できる抗原の例としては、ヒトα−フェト
プロティン(AFP)、癌胎児性抗原(CEA)、フェ
リチン、β2マイクログロブリン(β2−m)、ヒト絨
毛性ゴナド1−ロピン(HCG)、C反応性蛋白(CR
P)、リウマチ因子等がある。
Examples of antigens to which the present invention can be applied include human α-fetoprotein (AFP), carcinoembryonic antigen (CEA), ferritin, β2 microglobulin (β2-m), human chorionic gonado 1-lopin (HCG), C-reactive protein (CR
P), rheumatoid factor, etc.

〔作用〕[Effect]

抗体を結合させる微粒子として磁気体を用いれば、凝集
により生ずる凝集塊の凝集度は、磁気強度の測定により
可能となる。この場合、光学的測定における上述した影
響因子が問題とならないため、高精度で測定することが
可能となる。
If a magnetic material is used as the fine particles to which antibodies are bound, the degree of aggregation of aggregates produced by aggregation can be determined by measuring the magnetic intensity. In this case, since the above-mentioned influencing factors in optical measurement do not matter, highly accurate measurement is possible.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

球形のγ−フェライト粒子(平均粒径0.75μm)の
表面に、抗ヒトαフェトプロティン抗体(抗ヒトAFP
抗体)を吸着させ、さらにグルタルアルデヒドを使用し
て抗体分子間を架橋処理し、固定化抗体磁気ピースを得
た。固定化の方法は、従来知られている方法で良く、た
とえば、[タンパク質ハイブリッド」稲田祐二編、p1
99−122、共立出版(東京)1987年などに記載
されている。
Anti-human α-fetoprotein antibody (anti-human AFP) was coated on the surface of spherical γ-ferrite particles (average particle size 0.75 μm).
An immobilized antibody magnetic piece was obtained by adsorbing antibodies) and cross-linking the antibody molecules using glutaraldehyde. The immobilization method may be a conventionally known method, for example, [Protein Hybrid] edited by Yuji Inada, p1
99-122, Kyoritsu Shuppan (Tokyo), 1987, etc.

各種濃度のAFPを含む血清20μQに上記磁気ビーズ
懸濁液100μQを加え室温で15分間反応させた。
100 μQ of the above magnetic bead suspension was added to 20 μQ of serum containing various concentrations of AFP and allowed to react at room temperature for 15 minutes.

この反応液をシースフローセル1の被検液部2に移し、
シース液3を流しながら、反応液中の凝集塊を分散させ
て検出部4に導く。シース液として生理食塩水を用いた
が、適当な緩衝液あるいは水でも良い。用いたシースフ
ローセルは、たとえばフローサイトメータに応用されて
いる機構と同等のものである。シースフローセルの流路
部は内径100μmとし、流速10 m / s程度と
なるように、シース液流量および試料とシース液の圧力
差を設定して用いた。
Transfer this reaction liquid to the test liquid part 2 of the sheath flow cell 1,
While flowing the sheath liquid 3, aggregates in the reaction liquid are dispersed and guided to the detection section 4. Although physiological saline was used as the sheath fluid, an appropriate buffer solution or water may be used. The sheath flow cell used is equivalent to the mechanism applied to, for example, a flow cytometer. The flow path portion of the sheath flow cell had an inner diameter of 100 μm, and the sheath liquid flow rate and the pressure difference between the sample and sheath liquid were set so that the flow rate was approximately 10 m/s.

分散された凝集塊は流れに従って検出部4に導かれる。The dispersed aggregates are guided to the detection section 4 according to the flow.

検出部4は、磁化用の磁石5とSQUID磁束計6によ
り構成されている。
The detection unit 4 includes a magnet 5 for magnetization and a SQUID magnetometer 6.

磁石5は、微粒子を磁化させるもので、リング状の電磁
石を用いることにより流れの方向に沿った一方向に磁化
方向を配向させて磁化させることができる。磁化方向の
例を矢印7で示す。
The magnet 5 magnetizes the particles, and by using a ring-shaped electromagnet, the magnetization can be oriented in one direction along the flow direction. An example of the magnetization direction is shown by arrow 7.

磁束計6は、SQUID磁束計であり、3対の検出コイ
ルを互いに直交する方向に配置して構成した。つまり第
5図にこの状態を示す。第6図は第5図のAA’断面を
示す。シースフローセル流路部1の側面に2対(81,
82) 、流れの方向に直交する方向に1対(83)設
けて、磁気モーメントのX+V+Z成分をそれぞれ検出
できるようにした。
The magnetometer 6 is a SQUID magnetometer, and is configured by arranging three pairs of detection coils in mutually orthogonal directions. That is, this state is shown in FIG. FIG. 6 shows a cross section taken along line AA' in FIG. Two pairs (81,
82) A pair (83) were provided in the direction perpendicular to the flow direction so that the X+V+Z components of the magnetic moment could be detected.

検出した信号値は、A/D変換器にてAD変換し、パソ
ナルコンピュータ12に導き、各信号値の2乗値の和の
平方根を算出して、磁気モーメントの大きさを求めた。
The detected signal values were AD converted by an A/D converter and led to the personal computer 12, and the square root of the sum of the square values of each signal value was calculated to determine the magnitude of the magnetic moment.

この処理によって、測定対象の微粒子塊が回転すること
により磁気モーメントの一方向成分の検出だけでは測定
値に誤差を生じることを回避した。
This process avoids the occurrence of errors in measured values due to the rotation of the particle mass to be measured, which would occur if only the unidirectional component of the magnetic moment was detected.

なお、装置の簡略化のために一方向のみ、または二方向
のみに検出コイルを配置して測定することも可能である
In addition, in order to simplify the apparatus, it is also possible to arrange the detection coils in only one direction or only in two directions for measurement.

第7図はi略構成のコイルの配置状態の1例を示す。第
8図は第7図のAA’断面を示す断面図である。この図
では1個1組の検出コイルを用いる場合で示しである。
FIG. 7 shows an example of the arrangement of coils having a substantially i configuration. FIG. 8 is a sectional view taken along the line AA' in FIG. 7. This figure shows a case where one set of detection coils is used.

この際、微粒子塊が回転しないように配慮することが必
要であり、回転による誤差を考慮する必要がある。
At this time, it is necessary to take care not to rotate the fine particle mass, and it is necessary to take into account errors caused by rotation.

ところでSQUIDに用いる超伝導体材料として例えば
酸化物超電導体を用いることも可能である。例えば(R
Tl:1.−X 2 Mx 2 xuo3−X等の一般
式で表わされる酸素欠損型ペロブスカイト構造若しくは
に2NiF、型構造の高温超伝導材を用いても良い。
Incidentally, it is also possible to use, for example, an oxide superconductor as the superconductor material used in the SQUID. For example (R
Tl:1. A high temperature superconducting material having an oxygen-deficient perovskite structure represented by a general formula such as -X 2 Mx 2 xuo3-X or a 2NiF type structure may be used.

上記一般式においてREはLa、Y、Sr。In the above general formula, RE is La, Y, Sr.

Yb、Lu、Tm、Dy、Sc、Ce、Pr。Yb, Lu, Tm, Dy, Sc, Ce, Pr.

Nd、Sm、Eu、Gd、Tb、Ho、Er等の元素を
表わし、MはBa、Sr、Ca、に等の元素を表わす。
It represents an element such as Nd, Sm, Eu, Gd, Tb, Ho, Er, etc., and M represents an element such as Ba, Sr, Ca, etc.

本実施例においては、超伝導状態を得るためにSQUI
D(検出コイルならびにSQUID素子)を液体窒素に
て冷却して用い、フローセル部の凍結を防ぐために、検
出コイルとフローセル間に、透磁性の良好な断熱材13
を配置した。
In this example, in order to obtain a superconducting state, SQUI
D (detection coil and SQUID element) is cooled with liquid nitrogen, and in order to prevent the flow cell from freezing, a heat insulating material 13 with good magnetic permeability is installed between the detection coil and the flow cell.
was placed.

上記の高温超伝導材を用いれば、このような冷却および
断熱が簡略化でき、あるいは排除可能となる。
Using the high temperature superconducting materials described above, such cooling and insulation can be simplified or eliminated.

この磁束計6を用いて、凝集塊の磁気強度を測定するこ
とにより、それぞれの凝集塊に含まれる微粒子数(凝集
度)が容易に求められる。同時に凝集度の分布も求めら
れる。測定結果を第2図及び第3図に示す。第2図にみ
られる如く、凝集塊に集められる粒子数によって出力信
号に大小が生ずる。
By measuring the magnetic intensity of the agglomerates using the magnetometer 6, the number of particles (agglomeration degree) contained in each agglomerate can be easily determined. At the same time, the distribution of agglomeration degree is also determined. The measurement results are shown in FIGS. 2 and 3. As seen in FIG. 2, the output signal varies in size depending on the number of particles collected in the aggregate.

この凝集度の分布から、2個以上の微粒子から成る凝集
塊の割合を算出して凝集比を求める。
From this distribution of the degree of aggregation, the proportion of agglomerates consisting of two or more fine particles is calculated to determine the aggregation ratio.

求められた凝集比をAFPa度に対してプロットすると
第4図のような相関が得られた。
When the determined aggregation ratio was plotted against the degree of AFPa, a correlation as shown in FIG. 4 was obtained.

同様にヘパリン処理した血液(赤血球等を含む)中のA
FP測定を行ったが、問題なく凝集塊の大きさを正確に
測定でき血清の場合と同様な相関曲線が得られた。
Similarly, A in heparin-treated blood (including red blood cells, etc.)
FP measurement was performed, and the size of the aggregate could be accurately measured without any problems, and a correlation curve similar to that for serum was obtained.

したがって、本実施例によれば、試料中に共存する光散
乱体及び色素等の吸収体2発光体の影響を受けることな
く、抗原抗体反応による微粒子の凝集状態を計測するこ
とができる。
Therefore, according to this example, the state of aggregation of microparticles due to antigen-antibody reaction can be measured without being affected by light scatterers and absorbers and two light emitters such as dyes that coexist in the sample.

同様に溶血試料、乳び血清試料の測定にも有効である。It is also effective for measuring hemolyzed samples and chyle serum samples.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、試料中に含まれるタンパク質や血球等
の光散乱体や色素等の吸収体や蛍光体の影響なく正確に
抗原抗体反応により生じた凝集体の大きさと分布を測定
できるので、精度良く、抗原濃度を測定できる効果があ
る。
According to the present invention, it is possible to accurately measure the size and distribution of aggregates generated by antigen-antibody reactions without being affected by light scatterers such as proteins and blood cells, absorbers such as dyes, and fluorophores contained in the sample. It is effective in measuring antigen concentration with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の装置構成の概念図、第2図
は検出信号の一例を示す図、第3図は粒度分布の測定例
、第4図はA F P ?1III定例を示す図、第5
図は磁気測定部の構成を示す図、第6図は第5図の磁気
測定部の一部断面図、第7図は磁気3+’]定部の別な
構成を示す図、第8図は第7図の磁気測定部の一部断面
図である。 1・・・シースフローセル、 2・・・被検液部、 3・・・シース液の流れを示す矢印、 4・・・磁気検出部、 5・・磁石、 6・SQUID磁束計、 7・・・磁化方向を示す矢印、 8 (81,82,83)・・・検出コイル、9・・・
SQUID素子、 10・・信号処理回路、 11・・・A/D変換器、 12・・・パーソナルコンピュータ、 13・・断熱材。 第3国 / づyし算しり$25たソのメmllが〔第7月
FIG. 1 is a conceptual diagram of the configuration of an apparatus according to an embodiment of the present invention, FIG. 2 is a diagram showing an example of a detection signal, FIG. 3 is an example of measurement of particle size distribution, and FIG. 4 is A F P ? 1III Diagram showing the regular rules, No. 5
The figure shows the configuration of the magnetic measuring section, FIG. 6 is a partial cross-sectional view of the magnetic measuring section of FIG. 5, FIG. 8 is a partial cross-sectional view of the magnetic measurement section of FIG. 7. FIG. DESCRIPTION OF SYMBOLS 1... Sheath flow cell, 2... Test liquid part, 3... Arrow showing the flow of sheath liquid, 4... Magnetic detection part, 5... Magnet, 6... SQUID magnetometer, 7...・Arrow indicating magnetization direction, 8 (81, 82, 83)...Detection coil, 9...
SQUID element, 10... Signal processing circuit, 11... A/D converter, 12... Personal computer, 13... Heat insulating material. 3rd country/The total cost was $25 [7th month]

Claims (1)

【特許請求の範囲】 1、微粒子表面に抗体を結合させ、これと試料とを反応
させて生ずる微粒子の凝集を計測して、試料中の抗原濃
度を測定する免疫凝集定量装置において、上記反応によ
り生じた微粒子の凝集塊を凝集塊ごとに分散させ、液流
に従って移動させる手段と、液流中の凝集塊の大きさを
磁気測定により計測する検出手段とを有することを特徴
とする免疫凝集定量装置。 2、微粒子表面に抗体を吸着により結合させることを特
徴とする特許請求の範囲第1項記載の免疫凝集定量装置
。 3、微粒子表面に抗体を吸着させたのち、抗体分子間を
化学的に架橋処理することにより結合させることを特徴
とする特許請求の範囲第1項記載の免疫凝集定量装置。 4、微粒子表面に抗体を化学的に結合させることを特徴
とする特許請求の範囲第1項記載の免疫凝集定量装置。 5、微粒子表面に官能基を有する有機高分子を被覆させ
、この官能基を用いて抗体を共有結合させることを特徴
とする特許請求の範囲第1項記載の免疫凝集定量装置。 6、微粒子は磁化しうる物質からなることを特徴とする
特許請求の範囲第1項記載の免疫凝集定量装置。 7、磁化しうる物質が強磁性体であることを特徴とする
特許請求の範囲第6項記載の免疫凝集定量装置。 8、磁化しうる物質が金属であることを特徴とする特許
請求の範囲第6項記載の免疫凝集定量装置。 9、検出部分は微粒子を磁化させる磁石と、磁気強度を
測定する磁束計から構成されていることを特徴とする特
許請求の範囲第1項記載の免疫凝集定量装置。 10、磁束計はSQUID磁束計であることを特徴とす
る特許請求の範囲第9項記載の免疫凝集定量装置。 11、磁束計は検出コイルを互いに直交する2ないし3
方向に配置して構成したことを特徴とする特許請求の範
囲第10項記載の免疫凝集定量装置。
[Claims] 1. In an immunoagglutination quantitative device that measures the antigen concentration in a sample by binding an antibody to the surface of fine particles and reacting the antibody with a sample to measure the aggregation of the fine particles, Immunoaggregation quantification characterized by having means for dispersing the generated fine particle aggregates into aggregates and moving them according to the liquid flow, and a detection means for measuring the size of the aggregates in the liquid flow by magnetic measurement. Device. 2. The immunoagglutination quantitative device according to claim 1, wherein the antibody is bound to the surface of the fine particles by adsorption. 3. The immunoagglutination quantitative device according to claim 1, wherein the antibody is adsorbed onto the surface of the fine particles, and then the antibody molecules are bonded by chemical crosslinking treatment. 4. The immunoagglutination quantitative device according to claim 1, characterized in that an antibody is chemically bonded to the surface of the fine particles. 5. The immunoagglutination quantitative device according to claim 1, characterized in that the surface of the fine particles is coated with an organic polymer having a functional group, and the antibody is covalently bonded using this functional group. 6. The immunoagglutination quantitative device according to claim 1, wherein the fine particles are made of a magnetizable substance. 7. The immunoagglutination quantitative device according to claim 6, wherein the magnetizable substance is a ferromagnetic substance. 8. The immunoagglutination quantitative device according to claim 6, wherein the magnetizable substance is a metal. 9. The immunoagglutination quantification device according to claim 1, wherein the detection portion comprises a magnet that magnetizes the fine particles and a magnetometer that measures magnetic intensity. 10. The immunoagglutination quantitative device according to claim 9, wherein the magnetometer is a SQUID magnetometer. 11. The magnetometer has two or three detection coils orthogonal to each other.
11. The immunoagglutination quantitative device according to claim 10, characterized in that the immunoagglutination quantitative device is configured to be arranged in a direction.
JP63175014A 1987-07-20 1988-07-15 Immune agglutination determining device Pending JPH01112161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63175014A JPH01112161A (en) 1987-07-20 1988-07-15 Immune agglutination determining device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP17889587 1987-07-20
JP62-178895 1987-07-20
JP63175014A JPH01112161A (en) 1987-07-20 1988-07-15 Immune agglutination determining device

Publications (1)

Publication Number Publication Date
JPH01112161A true JPH01112161A (en) 1989-04-28

Family

ID=26496408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63175014A Pending JPH01112161A (en) 1987-07-20 1988-07-15 Immune agglutination determining device

Country Status (1)

Country Link
JP (1) JPH01112161A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373824A (en) * 1989-08-16 1991-03-28 Tdk Corp Measurement of particle size of magnetic powder
JP2008508520A (en) * 2004-07-29 2008-03-21 ロスアラモス ナショナル セキュリティ,エルエルシー Aggregation of analytes by ultrasound and application of flow cytometry
JP2008196927A (en) * 2007-02-13 2008-08-28 Fujifilm Corp Detection method of object material accompanied by removal of probe
EP2095091A1 (en) * 2006-12-19 2009-09-02 Koninklijke Philips Electronics N.V. Measuring agglutination parameters
US8846408B2 (en) 2007-04-02 2014-09-30 Life Technologies Corporation Particle analyzing systems and methods using acoustic radiation pressure
US8863958B2 (en) 2007-04-09 2014-10-21 Los Alamos National Security, Llc Apparatus for separating particles utilizing engineered acoustic contrast capture particles
US8932520B2 (en) 2007-10-24 2015-01-13 Los Alamos National Security, Llc Method for non-contact particle manipulation and control of particle spacing along an axis
US9038467B2 (en) 2007-12-19 2015-05-26 Los Alamos National Security, Llc Particle analysis in an acoustic cytometer
US9494509B2 (en) 2006-11-03 2016-11-15 Los Alamos National Security, Llc System and method for measuring particles in a sample stream of a flow cytometer using low-power laser source
US9733171B2 (en) 2007-04-09 2017-08-15 Los Alamos National Security, Llc Acoustic concentration of particles in fluid flow
US10976234B2 (en) 2008-01-16 2021-04-13 Life Technologies Corporation System and method for acoustic focusing hardware and implementations
EP2729256B1 (en) * 2011-07-07 2024-05-22 University College Dublin National University Of Ireland, Dublin Magnetic bead aggregation assay system and method for analysing and characterising magnetic bead aggregation and detection of target analytes

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0373824A (en) * 1989-08-16 1991-03-28 Tdk Corp Measurement of particle size of magnetic powder
US9074979B2 (en) 2004-07-29 2015-07-07 Los Alamos National Security, Llc Ultrasonic analyte concentration and application in flow cytometry
JP2008508520A (en) * 2004-07-29 2008-03-21 ロスアラモス ナショナル セキュリティ,エルエルシー Aggregation of analytes by ultrasound and application of flow cytometry
JP2012230121A (en) * 2004-07-29 2012-11-22 Los Alamos National Security Llc Ultrasonic analysis object concentration and application in flow cytometry
US10537831B2 (en) 2004-07-29 2020-01-21 Triad National Security, Llc Ultrasonic analyte concentration and application in flow cytometry
US9494509B2 (en) 2006-11-03 2016-11-15 Los Alamos National Security, Llc System and method for measuring particles in a sample stream of a flow cytometer using low-power laser source
EP2095091A1 (en) * 2006-12-19 2009-09-02 Koninklijke Philips Electronics N.V. Measuring agglutination parameters
JP2010513913A (en) * 2006-12-19 2010-04-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Aggregation parameter measurement
JP2008196927A (en) * 2007-02-13 2008-08-28 Fujifilm Corp Detection method of object material accompanied by removal of probe
US9134271B2 (en) 2007-04-02 2015-09-15 Life Technologies Corporation Particle quantifying systems and methods using acoustic radiation pressure
US8846408B2 (en) 2007-04-02 2014-09-30 Life Technologies Corporation Particle analyzing systems and methods using acoustic radiation pressure
US10969325B2 (en) 2007-04-02 2021-04-06 Life Technologies Corporation Particle analyzing systems and methods using acoustic radiation pressure
US8900870B2 (en) 2007-04-02 2014-12-02 Life Technologies Corporation Methods for fusing cells using acoustic radiation pressure
US8873051B2 (en) 2007-04-02 2014-10-28 Life Technologies Corporation Methods and systems for controlling the flow of particles for detection
US10254212B2 (en) 2007-04-02 2019-04-09 Life Technologies Corporation Particle analyzing systems and methods using acoustic radiation pressure
US8865476B2 (en) 2007-04-02 2014-10-21 Life Technologies Corporation Particle switching systems and methods using acoustic radiation pressure
US9457139B2 (en) 2007-04-02 2016-10-04 Life Technologies Corporation Kits for systems and methods using acoustic radiation pressure
US9476855B2 (en) 2007-04-02 2016-10-25 Life Technologies Corporation Particle analyzing systems and methods using acoustic radiation pressure
US9339744B2 (en) 2007-04-09 2016-05-17 Los Alamos National Security, Llc Apparatus for separating particles utilizing engineered acoustic contrast capture particles
US9733171B2 (en) 2007-04-09 2017-08-15 Los Alamos National Security, Llc Acoustic concentration of particles in fluid flow
US9909117B2 (en) 2007-04-09 2018-03-06 Los Alamos National Security, Llc Systems and methods for separating particles utilizing engineered acoustic contrast capture particles
US8863958B2 (en) 2007-04-09 2014-10-21 Los Alamos National Security, Llc Apparatus for separating particles utilizing engineered acoustic contrast capture particles
US8932520B2 (en) 2007-10-24 2015-01-13 Los Alamos National Security, Llc Method for non-contact particle manipulation and control of particle spacing along an axis
US9038467B2 (en) 2007-12-19 2015-05-26 Los Alamos National Security, Llc Particle analysis in an acoustic cytometer
US11287362B2 (en) 2007-12-19 2022-03-29 Triad National Security, Llc Particle analysis in an acoustic cytometer
US11287363B2 (en) 2007-12-19 2022-03-29 Triad National Security, Llc Particle analysis in an acoustic cytometer
US10976234B2 (en) 2008-01-16 2021-04-13 Life Technologies Corporation System and method for acoustic focusing hardware and implementations
EP2729256B1 (en) * 2011-07-07 2024-05-22 University College Dublin National University Of Ireland, Dublin Magnetic bead aggregation assay system and method for analysing and characterising magnetic bead aggregation and detection of target analytes

Similar Documents

Publication Publication Date Title
US4913883A (en) Particle agglutination immunoassay apparatus
JP4806457B2 (en) Magnetically assisted binding assay using magnetically responsive reagents
RU2460058C2 (en) Measuring agglutination parameters
JP3607297B2 (en) Methods and compounds for the detection of analytes in magnetic relaxation measurements and their use
JP4657552B2 (en) Method and apparatus for measuring accumulation of magnetic particles
US7018849B2 (en) Process for (A) separating biological/ligands from dilute solutions and (B) conducting an immunochromatographic assay thereof employing superparamagnetic particles throughtout
JP2005517899A (en) Analyte detection method using colloidal magnetic particles
JP2001033455A (en) Method and apparatus for immunoassay by magnetic material label
JPH01112161A (en) Immune agglutination determining device
US5238811A (en) Laser magnetic immunoassay method and apparatus therefor and superparamagnetic material-labeled body and method for the manufacture of same
JP2009020097A (en) Method for biochemical analysis
Tsukada et al. Using magnetic field gradients to shorten the antigen-antibody reaction time for a magnetic immunoassay
Gella et al. Latex agglutination procedures in immunodiagnosis
JPS5912139B2 (en) Immunological test method
EP0339623B1 (en) Laser magnetic immunoassay method and apparatus therefor
EP1936350A1 (en) A method for quantitatively measuring agglutination parameters
US20030124745A1 (en) Process for detecting or quantifying a biological reaction using superparamagnetic label
US20020123079A1 (en) Process for detecting or quantifying a biological rreaction using superparamagnetic label
WO1996005326A1 (en) Method and apparatus for magnetically detecting proteins and nucleic acids
JPH02107968A (en) Immunoassay using magnetic particle
JP2005043049A (en) Method for detecting or determining quantitatively biological reaction using superparamagnetic labeling
Mizoguchi et al. Development of Liquid-Phase Bioassay Using AC Susceptibility Measurement of Magnetic Nanoparticles
JP2764618B2 (en) Particle size measurement method of magnetic powder
JP2023134959A (en) Antigen detection device and antigen detection method
JPH04348277A (en) Method and apparatus for measuring in-vivo substance