JPH01111838A - Austenitic alloy having high corrosion resistance in environment where hydrogen sulfide is present - Google Patents

Austenitic alloy having high corrosion resistance in environment where hydrogen sulfide is present

Info

Publication number
JPH01111838A
JPH01111838A JP26821587A JP26821587A JPH01111838A JP H01111838 A JPH01111838 A JP H01111838A JP 26821587 A JP26821587 A JP 26821587A JP 26821587 A JP26821587 A JP 26821587A JP H01111838 A JPH01111838 A JP H01111838A
Authority
JP
Japan
Prior art keywords
less
environment
pitting corrosion
corrosion resistance
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26821587A
Other languages
Japanese (ja)
Other versions
JPH0527702B2 (en
Inventor
Hiroyuki Ogawa
小川 洋之
Akihiro Miyasaka
明博 宮坂
Kozo Denpo
伝宝 幸三
Hidehiro Yasuda
英洋 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26821587A priority Critical patent/JPH01111838A/en
Publication of JPH01111838A publication Critical patent/JPH01111838A/en
Publication of JPH0527702B2 publication Critical patent/JPH0527702B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the material for an oil cell tube having excellent stress corrosion cracking resistance and corrosion resistance in an environment where H2S, CO2 and Cl<-> are present. CONSTITUTION:As the material for a tube of an oil cell used in the manufacture if petroleum, natural gas, etc., the austenitic alloy contg., by weight, <0.03% C, 0.02-1.0% Si, 0.02-1.0% Mn, 19-26% Cr, 40-55% Ni, 3.5-9% Mo, 0.03-0.3% Nb, <0.03% P, <0.01% S, or furthermore contg. one or two kinds among <2% Cu, <1.5% Sn and <0.15% Sb and the balance Fe and having the compsn. satisfying the following formula among the contents of Cr, Ni and Mo: 135>Cr+2Ni+1.5Mo>=120 and Ni+16>=1.5(Cr+Mo) is used. The tube for an oil cell having excellent corrosion resistance and stress corrosion cracking resistance at the temp. of <=200 deg.C in the environment of an oil cell and gaseous cell where H2S, CO2 and Cl<-> are present can be manufactured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は石油、天然ガスを生産する際に使用される油井
用管または、これらを搬送するために使用されるライン
パイプ用のオーステナイト合金に係り、特に、11□S
、CO□、ci−が存在する200℃以下の環境で耐孔
食性を有するオーステナイト合金に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an austenite alloy for oil well pipes used in the production of oil and natural gas, or line pipes used to transport these. Person in charge, especially 11□S
The present invention relates to an austenitic alloy having pitting corrosion resistance in an environment of 200°C or lower in which , CO□, and ci- are present.

(従来の技術) 石油または天然ガスを産出する油井・ガス井の中には、
サワー油井またはサワーガス井と呼ばれる石油または天
然ガスに硫化水素を混入して産出する井戸が多数存在す
る。II 25の存在する高温高圧の環境ではNiを含
有したNi −Cr −Mo −Feオーステナイト合
金が高い耐食性を有することが知られている。例えば、
特開昭57−207149号公報に開示された技術は、
使用環境の温度条件に対応して、耐応力腐食割れ性を付
与せしめるために、有効成分(Ni、Cr、Mo、 W
 )の範囲を設定し、さらに、Cuにoを添加して耐食
性を高めた上に、N、Nb。
(Conventional technology) Some oil and gas wells that produce oil or natural gas include
There are many wells called sour oil wells or sour gas wells that produce oil or natural gas mixed with hydrogen sulfide. It is known that a Ni-Cr-Mo-Fe austenitic alloy containing Ni has high corrosion resistance in a high-temperature, high-pressure environment where II 25 exists. for example,
The technology disclosed in Japanese Patent Application Laid-Open No. 57-207149 is
In order to impart stress corrosion cracking resistance in accordance with the temperature conditions of the usage environment, active ingredients (Ni, Cr, Mo, W
), and furthermore, O is added to Cu to improve corrosion resistance, and N and Nb are added.

■を添加して析出硬化により高強度化を行なったことを
特徴とする合金が開示されている。
An alloy is disclosed in which the strength is increased by precipitation hardening by adding (1).

また、特開昭57−203739号公報に開示された技
術は、特開昭57−207149号公報に開示された技
術と同様に、耐応力腐食割わ性を付与せしめるために、
有効成分(Ni、Cr、Mo、 W )の範囲を設定し
、さらに、Cu、Goを添加して耐食性を高めた上に、
八Q、、 Nb、 Ti、 Ta、 Zr、 Vを添加
して、析出硬化により高強度化を行なったことを特徴と
する合金が開示されている。
Further, the technique disclosed in JP-A-57-203739, similar to the technique disclosed in JP-A-57-207149, provides stress corrosion cracking resistance.
In addition to setting the range of active ingredients (Ni, Cr, Mo, W), and adding Cu and Go to improve corrosion resistance,
An alloy is disclosed in which the strength is increased by precipitation hardening by adding Nb, Ti, Ta, Zr, and V.

(発明が解決しようとする問題点) 11□Sの存在する油井・ガス井の環境条件は、金属材
料の使用環境としては非常に苛酷である。これらの井戸
の環境は、種々の温度、硫化水素分圧を示し、それぞれ
の環境に対応して耐食性の高い油井管の使用が必要であ
る。
(Problems to be Solved by the Invention) The environmental conditions of oil and gas wells where 11□S exists are extremely harsh environments in which metal materials are used. The environments of these wells exhibit various temperatures and hydrogen sulfide partial pressures, and it is necessary to use oil country tubular goods with high corrosion resistance in accordance with each environment.

一方、耐食性を油井管に付与せしめるためには、種々の
合金の添加が必要であるが、環境から要求される必要成
分量より多量の合金成分を含有する合金を使用すること
は、油井管のコストを高くして、実用性を低める。
On the other hand, in order to impart corrosion resistance to OCTG, it is necessary to add various alloys, but using an alloy containing a larger amount of alloying components than the required amount required by the environment may cause damage to OCTG. Increase cost and reduce practicality.

本発明は、lhs、CO2,(:R−の存在する油井、
ガス井の環境で200℃以下の温度に対応して、優れた
耐応力腐食割れ性と耐孔食性を備えたオーステナイト合
金を提供することを目的としている。
The present invention provides an oil well in which lhs, CO2, (:R- exists,
The purpose of the present invention is to provide an austenitic alloy with excellent stress corrosion cracking resistance and pitting corrosion resistance that can withstand temperatures of 200°C or lower in gas well environments.

(問題点を解決するための手段) 本発明は、上記環境において不働態を形成しうるように
基本成分を構成する。しかし、通常の11□5を含有す
る油井・ガス井環境は、Ci−イオンを含有するために
、孔食、応力腐食割れ等の局部腐食を発生する。合金が
上記11□S環境で使用されるためには、応力腐食割れ
の発生を抑制することが必要であるが、本発明者等の研
究結果では、合金に局部腐食を発生する限界環境条件下
においては、応力腐食割れは、孔食を起点として発生す
ることがわかった。すなわち、第1図の概念図で示した
ように、局部腐食を発生′1−る環境の中で、最初に発
生する腐食形態は孔食である。このため、孔食の発生を
抑制することにより、実効的に応力腐食割れの発生を抑
制しつる。
(Means for Solving the Problems) The present invention configures the basic components so that they can form a passive state in the above environment. However, the oil well/gas well environment containing ordinary 11□5 causes local corrosion such as pitting corrosion and stress corrosion cracking because it contains Ci- ions. In order for the alloy to be used in the above 11□S environment, it is necessary to suppress the occurrence of stress corrosion cracking, but the research results of the present inventors have shown that the critical environmental conditions that cause local corrosion in the alloy are It was found that stress corrosion cracking occurs starting from pitting corrosion. That is, as shown in the conceptual diagram of FIG. 1, the first form of corrosion that occurs in an environment where local corrosion occurs is pitting corrosion. Therefore, by suppressing the occurrence of pitting corrosion, the occurrence of stress corrosion cracking can be effectively suppressed.

孔食が発生する条件は、合金の孔食電位が、環境条件で
きまる自然電位、すなわち、合金が環境中におかれたと
きに示す初期の浸漬電位より卑であることである。
The condition for pitting corrosion to occur is that the pitting potential of the alloy is less noble than the natural potential determined by the environmental conditions, that is, the initial immersion potential that the alloy exhibits when placed in the environment.

通常、サワー環境における合金の初期浸漬電位は、11
2Sの酸化還元電位にはゾ等しく、環境中の1125分
圧が、散気圧から数10気圧の間では、](2S分圧、
温度が変化しても、はf−300〜−350mVvs 
SCE (Saturated Ca1oIIIel 
Electrode、飽和[を大電極)である。
Typically, the initial immersion potential of the alloy in a sour environment is 11
The oxidation-reduction potential of 2S is equal to 1125 partial pressure in the environment, but between diffuse pressure and several tens of atmospheres,
Even if the temperature changes, f-300 to -350mV vs.
SCE (Saturated Ca1oIIIel
Electrode is saturated [large electrode].

従って、環境条件(1125分圧、温度)によってきま
る初期浸漬電位は−300mV vs SCEとして、
各環境条件に合金がおかれたとき、その環境における合
金の孔食発生電位が−300mV vs St;Eより
責となるように、合金成分が設定されていれば、孔食を
発生しない。
Therefore, the initial immersion potential determined by the environmental conditions (1125 partial pressure, temperature) is -300 mV vs SCE,
When the alloy is placed in each environmental condition, if the alloy components are set so that the potential for pitting corrosion of the alloy in that environment is greater than -300 mV vs. E, pitting corrosion will not occur.

次に、合金は不可避不純物として、C,Nを含有してい
る。金属組織に固溶しうるC含有量およびN含有量に相
当する以上のC,Nは、粒界に析出してCr、 Moと
炭窒化物を形成し、粒界に(:r、 M。
Next, the alloy contains C and N as inevitable impurities. C and N in an amount corresponding to the C content and N content that can be dissolved in the metal structure precipitate at the grain boundaries, form carbonitrides with Cr and Mo, and form (:r, M) at the grain boundaries.

の欠乏層を形成する。このため、Cr、 Moの欠乏部
分に孔食を発生する。Cr、 Moの欠乏層の形成を抑
制するためには、Cr、 Moより強力な炭窒化物形成
元素を添加することが必要である。この目的で本発明に
おいては、Nbが添加される。しかし、Nbは多量に添
加されると、Nb −Fe −C系の低融点化合物を形
成するために、熱間加工時において、溶融部分が破断す
ることにより、熱間割れを発生する。従って、Nb添加
量は熱間加工性の低下を抑制するために添加量が制限さ
れる。
form a deficient layer. For this reason, pitting corrosion occurs in areas deficient in Cr and Mo. In order to suppress the formation of a Cr and Mo depletion layer, it is necessary to add a carbonitride-forming element stronger than Cr and Mo. For this purpose, Nb is added in the present invention. However, when a large amount of Nb is added, it forms a Nb-Fe-C-based low melting point compound, which causes hot cracking to occur due to rupture of the molten portion during hot working. Therefore, the amount of Nb added is limited in order to suppress deterioration of hot workability.

さらに、112Sの存在する環境においては、オーステ
ナイト組織凝固時に形成される微細なフェライト組織(
δ−フェライト)は、相対的に耐孔食性が低く、孔食の
起点になる。このため、δ−フェライトの形成を抑制す
ることが必要である。
Furthermore, in an environment where 112S exists, a fine ferrite structure (
δ-ferrite) has relatively low pitting corrosion resistance and becomes the starting point of pitting corrosion. Therefore, it is necessary to suppress the formation of δ-ferrite.

また、油井管は、その使用形態において、石油等の生産
を円滑ならしめるために、アシダイジングと称せられる
、濃厚な酸を注入して、油層の一部を溶解する処理を行
なうことがある。このため濃厚な酸に対して耐食性を高
めるために、本発明においてはCu、 Sn、 Sbの
添加を行なう。
Furthermore, in order to smooth the production of oil and the like, oil country tubular goods are sometimes subjected to a process called acidizing, in which concentrated acid is injected to dissolve a portion of the oil layer. Therefore, in the present invention, Cu, Sn, and Sb are added to improve the corrosion resistance against concentrated acids.

以上に述べた知見に基づいて、本発明の要旨は、以下の
通りである。
Based on the knowledge described above, the gist of the present invention is as follows.

すなわち、重量tで、C: 0.03$以下、Si :
 0゜02〜1.0%、Mn : 0.02〜1.0%
%Cr : 19〜26!426!Ni:40〜55%
未満、Mo:3.5〜99%未満、Nb : 0.03
〜0.3!k 、S : 0.01%以下、P : 0
.03!6以下、またはこれに必要に応じて、Cu 2
!!以下、 Sn 0.15%以下、 Sb 0.15
%以下のうち1種または2種を含有し、その他脱酸剤と
不可避不純物、残部鉄よりなり、かつ、下記の各式の条
件を満足することを特徴とする、硫化水素の存在する環
境で高い耐孔食性を有するオーステナイト合金にある。
That is, weight t, C: 0.03 $ or less, Si:
0°02~1.0%, Mn: 0.02~1.0%
%Cr: 19~26!426! Ni: 40-55%
Mo: 3.5 to less than 99%, Nb: 0.03
~0.3! k, S: 0.01% or less, P: 0
.. 03!6 or less, or as required for this, Cu 2
! ! Below, Sn 0.15% or less, Sb 0.15
% or less, other deoxidizing agents, unavoidable impurities, and the balance iron, and satisfying the conditions of each formula below, in an environment where hydrogen sulfide exists. It is an austenitic alloy with high pitting corrosion resistance.

11□Sの存在する環境において、環境温度Teが、T
e(200℃の場合、 135 >Cr+ 2Ni + 1.5Mo > 12
ONi+ 16) 1.5 (Cr+ Mo)以下に本
発明の詳細について説明する。
11 In an environment where S exists, the environmental temperature Te is T
e (at 200°C, 135 > Cr+ 2Ni + 1.5Mo > 12
ONi+ 16) 1.5 (Cr+ Mo) The details of the present invention will be explained below.

(作用) 第2図は、孔食発生電位、Vcと合金元素の関係を示し
ている。
(Function) FIG. 2 shows the relationship between the pitting corrosion occurrence potential, Vc, and alloying elements.

第2図においてEcが合金の初期浸漬電位で、Ecより
孔食発生電位が責であれば、孔食を発生しない。従って
、200℃以下の温度において必要とされる合金量は、
200℃以下の温度に対応する孔食発生電位と合金元素
量の関係を示す直線Aと初期浸漬電位Ecとの交点を求
めることで決定することができる。
In FIG. 2, Ec is the initial immersion potential of the alloy, and if the potential for pitting corrosion is greater than Ec, pitting corrosion will not occur. Therefore, the amount of alloy required at temperatures below 200°C is
It can be determined by finding the intersection of the initial immersion potential Ec and a straight line A indicating the relationship between the pitting corrosion occurrence potential and the amount of alloying elements corresponding to a temperature of 200° C. or lower.

孔食発生電位は環境温度の上昇とともに卑になるので、
AとEcとの交点に対応するPの値、すなわち合金元素
量、より高いPの値となる合金元素量を含有していれば
、その環境温度より低い環境温度では孔食な発生しない
Since the potential for pitting corrosion becomes more base as the environmental temperature rises,
If the alloy contains the value of P corresponding to the intersection of A and Ec, that is, the amount of alloying elements that results in a higher value of P, pitting corrosion will not occur at an environmental temperature lower than that environmental temperature.

従って、環境温度が200℃以下では、P = Cr+
 2Ni + 1.5Moン120を満足すれば、孔食
を発生しない。
Therefore, when the environmental temperature is below 200°C, P = Cr+
If 2Ni + 1.5Mon120 is satisfied, pitting corrosion will not occur.

第3図は、本発明の合金を600℃X60m1nの時効
を行なった後に、測定した孔食発生電位と時効しない状
態で測定した孔食発生電位との差ΔVc=焼鈍まシの合
金の孔食発生電位−時効後の合金の孔食発生電位 とNb/ (C+0.8 N )の関係を示している。
Figure 3 shows the difference ΔVc between the pitting corrosion potential measured after the alloy of the present invention was aged at 600°C x 60 ml and the pitting corrosion potential measured without aging = pitting corrosion of the annealed alloy. It shows the relationship between the pitting corrosion occurrence potential of the alloy after aging and Nb/(C+0.8 N).

第3図の結果から、孔食発生電位の値は通常10mV 
(±5mV) vs SCEのばらつきは存在するので
、Nb/ (C+0.8N)が2以上であれば、Nb添
加によって、耐孔食性の劣化は抑制しうる。
From the results shown in Figure 3, the value of the potential for pitting corrosion is usually 10 mV.
(±5 mV) vs. SCE exists, so if Nb/(C+0.8N) is 2 or more, deterioration of pitting corrosion resistance can be suppressed by adding Nb.

次に、第4図は、Nbを添加した場合のNb含有量と熱
間加工性の劣化の関係を示している。熱間押出、圧延等
により、油井管を造管するとき、グリ−プル試験の断面
絞り値が80%を越えていれば、造管するために必要な
熱間加工性を保有している。従って、第4図から、Nb
含有量が0.3*を越えなければ、熱間加工性は劣化し
ない。
Next, FIG. 4 shows the relationship between Nb content and deterioration of hot workability when Nb is added. When producing oil country tubular goods by hot extrusion, rolling, etc., if the cross-sectional area of area in the Grieple test exceeds 80%, it has the hot workability necessary for pipe production. Therefore, from Fig. 4, it can be seen that Nb
If the content does not exceed 0.3*, hot workability will not deteriorate.

第5図は、微細なδ−フェライトの析出による耐孔食性
の劣化を抑制するために、((:r+Mo)含有量に対
して必要なNi添加量の関係を示している。
FIG. 5 shows the relationship between the ((:r+Mo) content and the necessary amount of Ni added in order to suppress the deterioration of pitting corrosion resistance due to the precipitation of fine δ-ferrite.

第5図から、Ni添加量と(Cr+Mo)含有量の関係
は、 Ni+16)  1.5(Cr+Mo)である。
From FIG. 5, the relationship between the amount of Ni added and the (Cr+Mo) content is: Ni+16) 1.5 (Cr+Mo).

次に、各成分限定の理由を以下に示す。Next, the reasons for limiting each component are shown below.

C:粒界に炭化物を析出して、(Cr、 Mo)欠乏層
を形成するために、孔食の起点となる。本発明では、C
r、 MoよりCに対して炭化物を優先的に形成するN
bを添加しているが、過剰のCはNb炭化物以外に、(
Cr、 Mo)炭化物を形成する可能性があるので、0
.03!6を限界として、製造時に低減する。
C: Precipitates carbides at grain boundaries and forms a (Cr, Mo)-depleted layer, which becomes the starting point for pitting corrosion. In the present invention, C
r, N forms carbides preferentially with respect to C over Mo;
b is added, but the excess C causes other than Nb carbide (
Cr, Mo) may form carbides, so 0
.. 03!6 is the limit and will be reduced during manufacturing.

Si : Siは脱酸成分として必要であるが、0.0
2%未満では効果が低い。また、1%超では脱酸効果が
飽和するので、添加量は0.02%以上、1を以下とし
た。
Si: Si is necessary as a deoxidizing component, but 0.0
If it is less than 2%, the effect is low. Moreover, since the deoxidizing effect becomes saturated if it exceeds 1%, the addition amount is set to be 0.02% or more and 1 or less.

Mn:脱酸剤として添加される。0.02%未満では効
果が低く、1%Mでは脱酸効果が飽和するので、0.0
2%以上、1七以下とした。
Mn: Added as a deoxidizing agent. If it is less than 0.02%, the effect is low, and if it is 1%M, the deoxidizing effect is saturated, so 0.0
2% or more and 17 or less.

Cr:合金に不働態皮膜を形成して耐孔食性を付与せし
める主要成分の一つで、第2図のP値において、孔食発
生電位とPの関係を成立せしめるCr含有量の下限は1
9木である。また、26%以上添加されると、P値に対
するCrの貢献度は減少しくCrの係数値は1より小さ
くなる)、耐孔食性に対する効果は飽和する。一方、第
5図に示されるδ−フェライトを形成させないために必
要な(Cr+Mo)含有量に対するNi含有量はCr含
有量に対して変化せず、従って、過剰のCr添加は、同
時にNi添加量を増加せしめることになる。このため、
C「含有量はI99%以上、26を未満とした。
Cr: One of the main components that forms a passive film on the alloy and imparts pitting corrosion resistance. In the P value shown in Figure 2, the lower limit of the Cr content that establishes the relationship between the pitting corrosion occurrence potential and P is 1.
It is 9 trees. Furthermore, when 26% or more is added, the contribution of Cr to the P value decreases and the coefficient value of Cr becomes smaller than 1), and the effect on pitting corrosion resistance is saturated. On the other hand, the Ni content with respect to the (Cr+Mo) content required to prevent the formation of δ-ferrite shown in FIG. 5 does not change with respect to the Cr content. This will result in an increase in For this reason,
C: The content of I was 99% or more and less than 26.

Ni、 Mo : It□Sの存在する環境ではC「と
ともに、不働態皮膜を形成し、合金に耐孔食性を付与す
る。Ni含有量の上下限は、第2図の孔食発生電位とP
値の関係を成立せしめる環境温度および第5図の関係に
よって、(Cr+Mo)含有量に対応して変化する。
Ni, Mo: In an environment where It□S exists, together with C, it forms a passive film and imparts pitting corrosion resistance to the alloy.The upper and lower limits of the Ni content are determined by the pitting corrosion generation potential and P
The value changes depending on the environmental temperature that establishes the value relationship and the relationship shown in FIG. 5, depending on the (Cr+Mo) content.

また、Moは環境温度に対応して下限および上限がきま
る。従って、Ni、 Moは環境温度に対応して、成分
量が限定される。
Further, the lower limit and upper limit of Mo are determined depending on the environmental temperature. Therefore, the amounts of Ni and Mo are limited depending on the environmental temperature.

環境温度=200℃以下の場合 第2図のP値において、孔食発生電位とP値の関係を成
立せしめるMoの下限は3.5tである。また、9tを
越えて添加されると、P値に対する貢献度は減少しくM
oの係数値は1.5より小さくなる)、耐孔食性に対す
る効果は飽和する。このため、Mo含有量は3.5!6
以上、99%未満とした。
In the P value shown in FIG. 2 when the environmental temperature is 200° C. or less, the lower limit of Mo that establishes the relationship between the pitting corrosion generation potential and the P value is 3.5 t. Furthermore, if more than 9t is added, the contribution to the P value decreases and M
The coefficient value of o becomes smaller than 1.5), the effect on pitting corrosion resistance is saturated. Therefore, the Mo content is 3.5!6
Above, it was set as less than 99%.

第2図のP値を成立せしめるNi含有量の下限は40%
である。また、55木以上添加されるとP値に対する貢
献度が減少するので、Niは下限40%、上限は55木
未満とした。
The lower limit of Ni content that satisfies the P value shown in Figure 2 is 40%.
It is. Furthermore, if 55 or more wood is added, the contribution to the P value decreases, so the lower limit of Ni was set at 40% and the upper limit was set at less than 55 wood.

Nb:第3図は孔食発生電位におよぼすNb添加の効果
により、 Nb/ (C+0.8 N ) > 2また、第4図に
示した熱間加工性の劣化に基づく制限により、Nb含有
量の上限は0.3tである。さらに、本発明において、
0.03%未満のNbの添加は、C,N含有量において
、炭窒化物の形成が認められない。このため、下限は0
.03%とした。
Nb: Figure 3 shows that due to the effect of Nb addition on the pitting corrosion potential, Nb/(C+0.8N) > 2.Also, due to the restriction based on the deterioration of hot workability shown in Figure 4, the Nb content The upper limit of is 0.3t. Furthermore, in the present invention,
When less than 0.03% of Nb is added, no formation of carbonitrides is observed in the C and N contents. Therefore, the lower limit is 0
.. 03%.

Cu、 Sn、 Sb:これらの1種または2種を添加
することにより、本発明合金の濃厚な酸に対する耐食性
が改善されることが認められた。しかし、その効果は、
(:u: 2% 、 Sn: 0.15!l; 、 S
b: 0.15%以上添加すると飽和するので、それぞ
れの上限を、Cu: 2% 、 Sn: 0.+5!k
 、 Sb: 0.1!d;とした。
Cu, Sn, Sb: It was found that the corrosion resistance of the alloy of the present invention to concentrated acids was improved by adding one or two of these. However, the effect is
(:u: 2%, Sn: 0.15!l;, S
b: If 0.15% or more is added, it will become saturated, so the respective upper limits are set to Cu: 2%, Sn: 0. +5! k
, Sb: 0.1! d;

この他に、不可避不純物としてのP、Sは、それぞれ耐
孔食性を劣化せしめるので、その上限をP : 0.0
3% 、 S : 0.0+木とした。また、脱酸剤と
して、八l 0.1%以下、 Ca 0.03*以下、
必要に応じてLa 0.lJ以下、 Mg 0.I’1
以下が添加される。さらに炭窒化物を形成せしめるNb
の効果は、Ti。
In addition, P and S as unavoidable impurities each degrade pitting corrosion resistance, so the upper limit is set to P: 0.0.
3%, S: 0.0+wood. In addition, as a deoxidizing agent, 8L 0.1% or less, Ca 0.03* or less,
La 0. if necessary. lJ or less, Mg 0. I'1
The following is added: Nb further forms carbonitrides.
The effect of Ti.

Zr、 Vでも代替可能であるが、巨大介在物を生成し
て材質を劣化せしめる等の不都合が生ずるので、本発明
には含めなかった。
Although Zr and V can be substituted, they are not included in the present invention because they cause problems such as formation of giant inclusions and deterioration of the material.

本発明の合金は、油井管として使用される場合には、強
度を付与することが要求される。通常、強度を付与する
方法として、加工硬化、析出硬化、固溶硬化等の方法が
用いられるが、本発明では加工硬化により、強度を付与
する。過大な加工硬化は耐孔食性を劣化するが、3Hま
での冷間加工によっては耐孔食性は劣化しないので、本
発明では、最終焼鈍後に、30を以下の冷間加工を行な
う。
The alloy of the present invention is required to have strength when used as oil country tubular goods. Normally, methods such as work hardening, precipitation hardening, and solid solution hardening are used to impart strength, but in the present invention, strength is imparted by work hardening. Excessive work hardening deteriorates pitting corrosion resistance, but pitting corrosion resistance does not deteriorate by cold working up to 3H, so in the present invention, cold working of 30 or less is performed after final annealing.

(実施例) 第1表に実施例を示した。実施例の合金管は、製造法の
一例である真空溶解−熱間押出製管一溶体化一冷間加工
の工程により製造した。
(Example) Table 1 shows examples. The alloy tube of the example was manufactured by a process of vacuum melting, hot extrusion, solution formation, and cold working, which is an example of a manufacturing method.

熱間加工性はグリ−プル試験により評価したが、試験片
は鋳塊から加工した。耐孔食性は、製管後の製品管から
採取した試験片を用いて、分圧5気圧の1125ガスと
平衡している20!k NaC1溶液中において、種々
の温度で孔食電位を測定することにより評価した。本発
明は、合金成分によって孔食発生電位が一3Q mV 
vs SCHに達する温度がきめられており、目標温度
がα欄、評価結果がX欄に示されている。
Hot workability was evaluated by the Gripple test, and test pieces were worked from ingots. Pitting corrosion resistance was measured using a test piece taken from a product pipe after pipe making, and was found to be in equilibrium with 1125 gas at a partial pressure of 5 atm (20!). It was evaluated by measuring the pitting potential at various temperatures in k NaCl solution. The present invention has a pitting corrosion potential of 13Q mV depending on the alloy components.
The temperature at which vs SCH is reached is determined, the target temperature is shown in the α column, and the evaluation result is shown in the X column.

また、熱間加工性の評価はグリ−プル試験の断面絞り値
で行なわれるが、目標値はすべての合金グループについ
て、80tが最低限界値であり、評価結果はY欄に示さ
れている。
Furthermore, hot workability is evaluated using the cross-sectional area of reduction in the Grieple test, and the target value is 80t, which is the lowest limit value for all alloy groups, and the evaluation results are shown in column Y.

(発明の効果) 本発明は、高温の1125環境において、優れた耐孔食
性を有する合金を提供することを可能にしたものであり
、産業の発展に貢献すること極めて大である。
(Effects of the Invention) The present invention makes it possible to provide an alloy having excellent pitting corrosion resistance in a high-temperature 1125 environment, and thus greatly contributes to the development of industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は合金に発生する腐食形態と環境条件の関係を示
す概念図、第2図は孔食発生電位(Vc)におよぼす環
境温度と合金元素量の影響を示すグラフ、第3図は孔食
発生電位におよぼすNb添加の効果を示すグラフ、第4
図は1200℃における絞り値におよぼすNbの影響を
示すグラフ、第5図はδ−フェライトを起点とする孔食
発生におよぼす合金元素の影響を示すグラフである。
Figure 1 is a conceptual diagram showing the relationship between the corrosion forms that occur in alloys and environmental conditions, Figure 2 is a graph showing the influence of environmental temperature and alloying element content on pitting corrosion potential (Vc), and Figure 3 is a graph showing the effect of pitting corrosion occurrence potential (Vc) on the amount of alloying elements. Graph showing the effect of Nb addition on the corrosion potential, 4th
The figure is a graph showing the effect of Nb on the aperture value at 1200°C, and FIG. 5 is a graph showing the effect of alloying elements on the occurrence of pitting corrosion starting from δ-ferrite.

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で C:0.03%以下 Si:0.02%以上、1.0%以下 Mn:0.02%以上、1.0%以下 Cr:19%以上、26%未満 Ni:40%以上、55%未満 Mo:3.5%以上、9%未満 Nb:0.03%以上、0.3%未満 P:0.03%以下 S:0.01%以下 その他、脱酸剤等の不可避不純物と残部鉄よりなり、か
つ、下記各式の条件を満足することを特徴とする、硫化
水素の存在する環境で高耐孔食性を有するオーステナイ
ト合金。 135>Cr+2Ni+1.5Mo≧120 Ni+16≧1.5(Cr+Mo)
(1) In weight% C: 0.03% or less Si: 0.02% or more, 1.0% or less Mn: 0.02% or more, 1.0% or less Cr: 19% or more, less than 26% Ni: 40% or more, less than 55% Mo: 3.5% or more, less than 9% Nb: 0.03% or more, less than 0.3% P: 0.03% or less S: 0.01% or less Other, deoxidizer An austenite alloy having high pitting corrosion resistance in an environment where hydrogen sulfide exists, which is characterized by comprising unavoidable impurities such as and the balance iron, and satisfying the conditions of each formula below. 135>Cr+2Ni+1.5Mo≧120 Ni+16≧1.5(Cr+Mo)
(2)重量%で C:0.03%以下 Si:0.02%以上、1.0%以下 Mn:0.02%以上、1.0%以下 Cr:19%以上、26%未満 Ni:40%以上、55%未満 Mo:3.5%以上、99%未満 Nb:0.03%以上、0.3%未満 P:0.03%以下 S:0.01%以下 さらに、Cu2%以下、Sn0.15%以下、Sb0.
15%以下のうち、1種または2種を添加し、その他、
脱酸剤等の不可避不純物と残部鉄よりなり、かつ、下記
各式の条件を満足することを特徴とする、硫化水素の存
在する環境で高耐孔食性を有するオーステナイト合金。 135>Cr+2Ni+1.5Mo≧120 Ni+16≧1.5(Cr+Mo)
(2) In weight% C: 0.03% or less Si: 0.02% or more, 1.0% or less Mn: 0.02% or more, 1.0% or less Cr: 19% or more, less than 26% Ni: 40% or more, less than 55% Mo: 3.5% or more, less than 99% Nb: 0.03% or more, less than 0.3% P: 0.03% or less S: 0.01% or less, and Cu 2% or less , Sn0.15% or less, Sb0.
Adding one or two of 15% or less, others,
An austenitic alloy comprising unavoidable impurities such as deoxidizers and the balance iron, and having high pitting corrosion resistance in an environment where hydrogen sulfide is present, which satisfies the conditions of the following formulas. 135>Cr+2Ni+1.5Mo≧120 Ni+16≧1.5(Cr+Mo)
JP26821587A 1987-10-26 1987-10-26 Austenitic alloy having high corrosion resistance in environment where hydrogen sulfide is present Granted JPH01111838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26821587A JPH01111838A (en) 1987-10-26 1987-10-26 Austenitic alloy having high corrosion resistance in environment where hydrogen sulfide is present

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26821587A JPH01111838A (en) 1987-10-26 1987-10-26 Austenitic alloy having high corrosion resistance in environment where hydrogen sulfide is present

Publications (2)

Publication Number Publication Date
JPH01111838A true JPH01111838A (en) 1989-04-28
JPH0527702B2 JPH0527702B2 (en) 1993-04-22

Family

ID=17455513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26821587A Granted JPH01111838A (en) 1987-10-26 1987-10-26 Austenitic alloy having high corrosion resistance in environment where hydrogen sulfide is present

Country Status (1)

Country Link
JP (1) JPH01111838A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0819775A1 (en) * 1996-07-15 1998-01-21 Sumitomo Metal Industries, Ltd. A nickel-based alloy excellent in corrosion resistance and workability
JP2007332431A (en) * 2006-06-16 2007-12-27 Jfe Steel Kk Stainless steel pipe for oil well having excellent pipe expansibility

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57203740A (en) * 1981-06-11 1982-12-14 Sumitomo Metal Ind Ltd Precipitation hardening alloy of high stress corrosion cracking resistance for high strength oil well pipe
JPS6199660A (en) * 1984-10-22 1986-05-17 Sumitomo Metal Ind Ltd High strength welded steel pipe for line pipe
JPS62158848A (en) * 1986-01-07 1987-07-14 Sumitomo Metal Ind Ltd High-strength ni-base alloy excellent in corrosion resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57203740A (en) * 1981-06-11 1982-12-14 Sumitomo Metal Ind Ltd Precipitation hardening alloy of high stress corrosion cracking resistance for high strength oil well pipe
JPS6199660A (en) * 1984-10-22 1986-05-17 Sumitomo Metal Ind Ltd High strength welded steel pipe for line pipe
JPS62158848A (en) * 1986-01-07 1987-07-14 Sumitomo Metal Ind Ltd High-strength ni-base alloy excellent in corrosion resistance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0819775A1 (en) * 1996-07-15 1998-01-21 Sumitomo Metal Industries, Ltd. A nickel-based alloy excellent in corrosion resistance and workability
US5879818A (en) * 1996-07-15 1999-03-09 Sumitomo Metal Industries, Ltd. Nickel-based alloy excellent in corrosion resistance and workability
JP2007332431A (en) * 2006-06-16 2007-12-27 Jfe Steel Kk Stainless steel pipe for oil well having excellent pipe expansibility

Also Published As

Publication number Publication date
JPH0527702B2 (en) 1993-04-22

Similar Documents

Publication Publication Date Title
EP0545753B1 (en) Duplex stainless steel having improved strength and corrosion resistance
KR100658253B1 (en) Corrosion resistant austenitic stainless steel
US3201233A (en) Crack resistant stainless steel alloys
US3736131A (en) Ferritic-austenitic stainless steel
CA1100789A (en) High strength, austenitic, non-magnetic alloy
US7347903B2 (en) Duplex stainless steel for urea manufacturing plants
SE525252C2 (en) Super austenitic stainless steel and the use of this steel
CN106893945B (en) Austenitic stainless steel for low temperature, casting thereof and manufacturing method of casting
JP2533481B2 (en) Non-magnetic high strength stainless steel and method for producing the same
JPH01275739A (en) Low si high strength and heat-resistant steel tube having excellent ductility and toughness
EP1705260B1 (en) Steel
JPH01111841A (en) Austenitic alloy having high corrosion resistance in environment where hydrogen sulfide is present
JPS6145697B2 (en)
JPS5950437B2 (en) Covered arc welding rod for Cr-Mo based low alloy steel
JPH0726350A (en) Austenitic stainless steel excellent in pitting corrosion resistance and its production
JPH01111838A (en) Austenitic alloy having high corrosion resistance in environment where hydrogen sulfide is present
JP2668113B2 (en) Method for producing high-strength non-magnetic stainless steel material with excellent workability
JPS61113749A (en) High corrosion resistance alloy for oil well
JPS63274743A (en) Austenitic alloy having high cracking resistance under hydrogen sulfide-containing environment
JPH0215148A (en) High mn nonmagnetic steel having excellent corrosion resistance
JPH01111839A (en) Austenitic alloy having high corrosion resistance in environment where hydrogen sulfide is present
JPH01111847A (en) Austenitic alloy having high pitting corrosion resistance in hydrogen sulfide-containing environment
JP2001246495A (en) Welding material and method for producing welded joint
JPH05255784A (en) Ni-base alloy for oil well excellent in corrosion resistance
JPH01225752A (en) Austenitic alloy having superior corrosion resistance under environment containing hydrogen sulfide