JPH01111070A - Dark color fiber structure and its production - Google Patents

Dark color fiber structure and its production

Info

Publication number
JPH01111070A
JPH01111070A JP62263262A JP26326287A JPH01111070A JP H01111070 A JPH01111070 A JP H01111070A JP 62263262 A JP62263262 A JP 62263262A JP 26326287 A JP26326287 A JP 26326287A JP H01111070 A JPH01111070 A JP H01111070A
Authority
JP
Japan
Prior art keywords
resin
fiber structure
mixed resin
mixed
deep
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62263262A
Other languages
Japanese (ja)
Other versions
JP2599113B2 (en
Inventor
Yoshikazu Kondo
義和 近藤
Toshihiro Yamamoto
俊博 山本
Toshiya Ida
井田 俊也
Atsushi Yamamoto
山本 惇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP62263262A priority Critical patent/JP2599113B2/en
Priority to US07/160,584 priority patent/US4900625A/en
Priority to DE3850144T priority patent/DE3850144T2/en
Priority to EP88103063A priority patent/EP0281066B1/en
Priority to KR8802221A priority patent/KR910003682B1/en
Publication of JPH01111070A publication Critical patent/JPH01111070A/en
Priority to US07/435,941 priority patent/US4997519A/en
Application granted granted Critical
Publication of JP2599113B2 publication Critical patent/JP2599113B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coloring (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE: To obtain a fiber structure having rich light resistance and having excellent deep dyeability by forming the coating film of a mixture of mutually incompatible resins each having different solvent solubility on a fiber structure and subsequently dissolving a part of the mixed resin coating film to form depressions and/or depressions and projections in the resin coating films. CONSTITUTION: This deep-dyeable fiber structure is obtained by imparting a mixed resin component comprising mutually incompatible each resins having different solubility in solvents to a natural or synthetic fiber structure, especially a slightly dyeable fiber structure, in an amount of 0.2-10 wt.% owf, thermally treating the treated fiber structure to form the coating film of the resin, and subsequently dissolving a part of the mixed resin component in a solvent to form depressions and/or depressions and projections in the coating film. The mixed resin component comprises, for example, (A) a silicone-based resin as a component having a small solubility in the solvents and (B) a water-soluble or alkali-soluble natural polymer as a component having a large solubility in the solvents in an A/B weight ratio of 95/5 to 10/90. The obtained fiber structure has excellent deep dyeability and excellent fastness such as excellent washing resistance and excellent abrasion resistance.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は深色化繊維構造物、特に耐久性の良好な深色化
繊維構造物及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a deep-colored fiber structure, particularly a deep-colored fiber structure with good durability, and a method for producing the same.

(従来の技術) 合成繊維或いは天然繊維において、鮮明で色の深みを有
する繊維の検討が従来から行なわれており、“カラスの
濡れ現色”を目的とした改良の提案がなされてきている
(Prior Art) In the field of synthetic fibers and natural fibers, studies have been carried out on fibers with vivid and deep colors, and improvements have been proposed for the purpose of "crow's wet color development".

繊維工学Vo1.22(No、5)P860〜368(
Mayll 969 )及び特公昭46−26887号
公報には早くも、繊維表面を適当な疎さで凹凸化(疎面
化)する事により光学的な改質ができる事を示しており
、又特開昭52−99400号公報には特定の凹凸形状
を有する深色化繊維が提案されている。しかし、この方
法では繊維表面自体をエツチングする為に、処理速度が
遅い、染料の分解、染色堅牢度の低下、エツチング状態
のコントロールが困難等の問題がある。又繊維表面の屈
折率については素材繊維と同一か或いは密度アップの為
に屈折率の増大があり深色効果の発現性も小さい等、実
用上の問題は多い。一方、従来からフッ素系処理剤、シ
リコーン系処理剤、ポリウレタン系処理剤等低屈折率表
面を形成する各皿処理剤で処理する濃染化加工が行なわ
れている。この方法は簡便であり、特別な装置も不用な
事より工業的には有利であるが、繊維表面への加工剤の
均一付着の困難さ、風合の変化や色調の変化、染料の堅
牢度の低下等が避けられず、又深色性能においても処理
剤の低屈折率による反射防止の効果しかないのマ十分で
ない等の問題がある。
Textile Engineering Vo1.22 (No, 5) P860-368 (
As early as Mayll 969) and Japanese Patent Publication No. 46-26887, it has been shown that optical modification can be achieved by making the fiber surface uneven (roughening) to an appropriate degree of roughness, and Japanese Patent Application Publication No. 46-26887 Publication No. 52-99400 proposes a deep-colored fiber having a specific uneven shape. However, since this method etches the fiber surface itself, there are problems such as slow processing speed, decomposition of the dye, decrease in color fastness, and difficulty in controlling the etching state. Furthermore, the refractive index of the fiber surface is either the same as that of the raw material fiber, or increases due to increased density, and there are many practical problems, such as the possibility of producing a bathochromic effect. On the other hand, deep dyeing processing has conventionally been carried out by treating with various dish processing agents that form a low refractive index surface, such as fluorine-based processing agents, silicone-based processing agents, and polyurethane-based processing agents. This method is easy and industrially advantageous because it does not require special equipment, but it is difficult to uniformly adhere the processing agent to the fiber surface, changes in texture and color, and the fastness of the dye. In addition, there are problems in the deep color performance, such as the fact that the antireflection effect due to the low refractive index of the processing agent is insufficient.

特開昭55−107512号公報では、ポリエステル繊
維そのものにアルカリ可溶の微粒子(例えばシリカ微粒
子)を混合し、紡糸後にアルカリ溶液で該粒子を溶出し
繊維にくぼみを形成させようとするものである。ここで
は微粒子が小さくかつ均一に分散している為に溶解が繊
維表面の極めて多数の極めて隣接した個所から同時進行
する為に微小な凹凸が多数形成されるにとどまり、明確
なかつ鋭角のエツジを有する凹凸を形成させる事は不可
能である。この為に深色化効果は十分でなかった。
In JP-A-55-107512, a method is proposed in which alkali-soluble fine particles (for example, silica fine particles) are mixed with the polyester fiber itself, and after spinning, the particles are eluted with an alkaline solution to form depressions in the fiber. . In this case, since the fine particles are small and uniformly dispersed, dissolution proceeds simultaneously from a large number of very adjacent locations on the fiber surface, resulting in only a large number of minute irregularities and sharp edges. It is impossible to form unevenness. For this reason, the deep coloring effect was not sufficient.

特公昭60−87225号公報は、繊維表面の凹孔を屈
折率の小さい樹脂で埋め平滑表面を有する耐久性の良好
な深色化繊維の提案であるが、この方法では繊維特に゛
天然繊維表面に特定の凹孔を形成させる事が困難であり
、仮に凹孔が形成できたとしても、凹孔を樹脂で埋め表
面を平滑にする事では深色性の発現も小さい。又繊維全
体を樹脂皮膜する場合も上述した同じ欠点を有する。
Japanese Patent Publication No. 60-87225 proposes a deep-colored fiber with good durability by filling the concave holes on the fiber surface with a resin having a small refractive index and having a smooth surface. It is difficult to form specific concave holes in the material, and even if concave holes can be formed, the appearance of deep color will be small if the concave holes are filled with resin and the surface is made smooth. Also, when the entire fiber is coated with a resin film, the same drawbacks as mentioned above occur.

特開昭61−97490号公報或いは特開昭60−22
4878号公報等では、ポリエステル繊維にシリコーン
系樹脂を付着させた後プラズマ処理を行ない深色性を付
与する方法を提案している。この方法では繊維表面を覆
っているシリコーン系加工剤のエツチング速度が遅く、
かつ明確な凹凸を形成する事ができないなどエツチング
状態が良好でなく、工業的有利に良好な深色性或いは耐
久性を有する深色化繊維を得ることはできない。
JP-A-61-97490 or JP-A-60-22
No. 4878 and other publications propose a method of attaching a silicone resin to polyester fibers and then subjecting them to plasma treatment to impart deep color properties. In this method, the etching speed of the silicone-based finishing agent covering the fiber surface is slow;
Moreover, the etching condition is not good, such as the inability to form clear irregularities, and it is not possible to obtain deep-colored fibers having good deep-colored properties or durability for industrial purposes.

又別の問題としてはポリエステル繊維表面のプラズマエ
ツチングである為に、エツチング孔が単純で均一な凹凸
しか生成せずにかなりの数の凹凸が存在してなければ深
色化の効果は乏しい。これは凹凸の形状、特にその傾き
が小さく、又凹凸の頂点及び底部が比較的なだらかな為
と推測される。
Another problem is that since the surface of the polyester fiber is plasma etched, the etching holes produce only simple and uniform unevenness, and unless there are a considerable number of unevenness, the deep coloring effect is poor. This is presumed to be because the shape of the unevenness, especially its slope, is small, and the top and bottom of the unevenness are relatively gentle.

特開昭60−17190号公報は、繊維表面にプラズマ
エツチングに対して耐性の差を有する樹脂皮膜を形成さ
せプラズマ処理を行ない樹脂表面に微細な凹凸を多数形
成する事を提案しており、好ましい樹脂皮膜としては、
無機微粒子と、それと相溶性及び均−波型性にすぐれた
樹脂、或いは屈折率が1.5以下のカチオン性ポリウレ
タンおよび/またはビニル重合体変性カチオン性ポリウ
レタンよりなるものである。この提案の樹脂表面の凹凸
は大きさが小さくかつ数が多い為にやはり前述と同様の
問題がある。
JP-A-60-17190 proposes forming a resin film on the fiber surface that has a difference in resistance to plasma etching and then performing plasma treatment to form a large number of fine irregularities on the resin surface, which is preferable. As a resin film,
It is made of inorganic fine particles and a resin having excellent compatibility with the fine particles and uniform waveform, or a cationic polyurethane and/or a vinyl polymer-modified cationic polyurethane having a refractive index of 1.5 or less. Since the irregularities on the resin surface of this proposal are small in size and large in number, there are still problems similar to those described above.

特開昭60−59171号公報には、シリコーン系樹脂
に無機微粒子を混合した処理剤で繊維を皮膜処理後、プ
ラズマ処理し深色化繊維を得る方法を提案しているが、
ここでもエツチング速度が遅い点、表面に付着し−た微
粒子の付着ムラによるエツチング斑及び微粒子の脱落に
よる性能の変化等の問題がある。
JP-A No. 60-59171 proposes a method for obtaining deep-colored fibers by coating fibers with a treatment agent containing silicone resin and inorganic fine particles, and then plasma-treating the fibers.
Here, too, there are problems such as slow etching speed, etching spots due to uneven adhesion of fine particles adhering to the surface, and changes in performance due to dropping of fine particles.

(発明が解決しようとす、る問題点) 本発明の目的とするところは、工業的有利にかつ安価に
、すぐれた耐久性を有しかつ従来に得られなかった水準
の深色性を有する繊維構造物及びその製造方法を提供す
るにある。
(Problems to be Solved by the Invention) The object of the present invention is to provide industrially advantageous and low-cost materials with excellent durability and deep color properties of a level not previously available. The present invention provides a fiber structure and a method for manufacturing the same.

(問題点を解決する為の手段) すなわち本発明は、2種以上の樹脂からなる混合樹脂の
皮膜を有する繊維構造物において(イ)混合樹脂が互い
に非相溶性であり、かつ溶剤溶解性の異なる樹脂成分か
らなり、 (ロ)皮膜表面の少なくとも一部に凹孔及び/又は凹凸
を有する ことを特徴とする着色された深色化繊維構造物である。
(Means for solving the problem) That is, the present invention provides a fiber structure having a mixed resin film made of two or more resins, in which (a) the mixed resins are mutually incompatible and solvent-soluble. (b) A colored, deep-colored fibrous structure comprising different resin components and characterized by (b) having pores and/or irregularities on at least a portion of the surface of the coating.

また本発明の深色化繊維構造物の製造方法は、繊維に互
いに非相溶性でありかつ溶剤溶解性の異なる2種以上の
樹脂からなる混合樹脂の皮膜を形成させ、次いで溶剤に
て混合樹脂の一部を溶解し、樹脂皮膜に凹孔及び/又は
凹凸を形成させる事を特徴とする。
In addition, the method for producing a deep-colored fiber structure of the present invention involves forming a mixed resin film on the fibers, which is composed of two or more resins that are incompatible with each other and having different solvent solubility, and then applying the mixed resin in a solvent. It is characterized by dissolving a part of the resin film to form concave pores and/or irregularities in the resin film.

本発明に於いて繊維構造物とは、特に素材は限定される
ものではなく、綿、羊毛、絹等の天然繊維、ホリエステ
ル、ナイロン、アクリル、レーヨン、アセテート等の化
合繊、及びこれらの混紡、混繊等混用した繊維であるが
、繊維自体の発色性が悪く、かつ繊維表面が平滑で屈折
率が大きく表面反射の大きい繊維素材の改良にはとりわ
け有効である。また繊維形態としては、フィラメント、
スライバー、織編物、不織布、植毛布、立毛布等特に限
定しないが、織編物、不織布等の平面状のものに適用し
やすい。
In the present invention, the fiber structure is not particularly limited in material, and includes natural fibers such as cotton, wool, and silk, synthetic fibers such as hollyester, nylon, acrylic, rayon, and acetate, and blends thereof. , mixed fibers, etc., are particularly effective in improving fiber materials that have poor color development properties, have smooth fiber surfaces, and have a high refractive index and high surface reflection. In addition, fiber forms include filament,
Sliver, woven or knitted fabrics, nonwoven fabrics, flocked fabrics, raised fabrics, etc. are not particularly limited, but it is easy to apply to flat objects such as woven or knitted fabrics or nonwoven fabrics.

着色とは全面均一な着色、或いはパターン化された部分
着色例えばプリント等を云い、樹脂皮膜の形成前或いは
凹孔及び/又は凹凸の形成後に着色される。
Coloring refers to uniform coloring of the entire surface or patterned partial coloring, such as printing, and is colored before the formation of the resin film or after the formation of concave holes and/or irregularities.

本発明においては、繊維表面に非相溶性を有しかつ溶剤
溶解性の異なる2種以上の混合樹脂の皮膜を有する事、
或いは形成する事が必要である。
In the present invention, the fiber surface has a coating of two or more mixed resins that are incompatible and have different solvent solubility;
Or it is necessary to form.

混合樹脂は、本発明の目的に反しない限り2種を越えて
もよいが、ここでは、判りやすいように2腫の樹脂A及
び樹脂Bの場合を考える。樹脂A及びBは互いに非相溶
であるが、良好な混和性を有し更に好ましくは、樹脂A
とBよりなる皮膜の透明性、均一性、強度、耐久性が良
好で、かつ溶剤溶解性、溶解速度の小さい樹脂への屈折
率が繊維或いは樹脂Bの屈折率より小さい事である。
Although more than two types of mixed resins may be used as long as it does not contradict the purpose of the present invention, here, for the sake of clarity, the case of two types of resins A and B will be considered. Although resins A and B are incompatible with each other, they have good miscibility and are more preferably resin A.
and B have good transparency, uniformity, strength, and durability, and the refractive index of the resin with low solvent solubility and low dissolution rate is lower than that of the fibers or resin B.

樹脂AとBが混和性は有するが非相溶であるとは、Aと
Bとを混合した時に、良好な混合物は形成するが、均一
な相を形成せず人相、B相に相分離を生じる事を言う。
Resins A and B are miscible but incompatible. This means that when A and B are mixed, a good mixture is formed, but a uniform phase is not formed and the phases separate into human phase and B phase. Say something that occurs.

混和性が良好でなければ、ゲル化や増粘或いは沈澱が生
じAとBとの良好な混合樹脂は形成できず、良好な皮膜
は形成できない。ましてや良好な深色化繊維を工業的有
利に製造する事は困難である。又、非相溶性であるとは
、A、B2種の樹脂を十分に混合させても一体化せず、
相分離している事で、これは電子顕微鏡、光学顕微鏡で
観察される。一般的に言えばAとBとを混合した場合、
極端に混合比が異なる時、混合比の大きいものが連続し
た相(海成分)となり、混合比の小さいものが非連続の
相(島成分)となる。非相溶性がなければ(相溶性であ
れば)、AとBは分子オーダーで均質となり、お互いの
特徴をなくすばかりか、耐熱性、物性、化学的安定性に
欠けたものとなり、深色効果も余り期待できない。
If the miscibility is not good, gelation, thickening, or precipitation will occur, and a good mixed resin of A and B cannot be formed, and a good film cannot be formed. Furthermore, it is difficult to produce good deep-colored fibers industrially. In addition, being incompatible means that even if the two resins A and B are sufficiently mixed, they will not be integrated.
Due to phase separation, this can be observed using an electron microscope or an optical microscope. Generally speaking, when A and B are mixed,
When the mixing ratios are extremely different, the one with a large mixing ratio becomes a continuous phase (sea component), and the one with a small mixing ratio becomes a discontinuous phase (island component). If there is no incompatibility (if they are compatible), A and B will not only be homogeneous on the molecular order and lose each other's characteristics, but also lack heat resistance, physical properties, and chemical stability, resulting in the bathochromic effect. I can't expect much either.

溶剤溶解性が異なるとは、例えば水中、アルカリ溶液中
、酸性溶液中或いは溶剤中に浸漬或いは接触させた場合
、非相溶性を示し独立した各樹脂相により溶解、除去さ
れる程度が異なり、従って繊維表面に凹孔及び/又は凹
凸が形成される。混合樹脂の組み合せは使用する溶剤に
より好ましい組み合せがあるが、除去されない残存成分
(以下樹脂Aとする)としては、透明性が良好で皮膜形
成性、物理的性能のすぐれたかつ屈折率の小さいものが
好ましく、例えば各種フッ素系樹脂、或いは部分フツ素
化樹脂、各種シリコーン系樹脂等が考えられる。
Different solvent solubility means, for example, that when immersed in or in contact with water, an alkaline solution, an acidic solution, or a solvent, they are incompatible and the extent to which they are dissolved and removed by each independent resin phase is different. Holes and/or irregularities are formed on the fiber surface. There are preferable combinations of mixed resins depending on the solvent used, but the residual component that is not removed (hereinafter referred to as resin A) should have good transparency, film-forming properties, excellent physical performance, and a low refractive index. are preferable, and for example, various fluororesins, partially fluorinated resins, various silicone resins, etc. can be considered.

シリコーン系樹脂は、皮膜形成性、透明性が良の基本骨
格構造を有するものであればよく特に限定しないが、使
用する際の便利さ及び繊維に対する皮膜形成性等より水
分散性の良好なものが好ましい。基本骨格構造は上記の
とおりであるが、水分散性、皮膜形成性、皮膜強度の改
良の為に側鎖或いは末端にアミノ基、水酸基、エポキシ
基、アルコキシル基、シラノール基、カルボキシル基等
を含有する修飾基を導入してもよい。これらの修飾基に
よる変性度は、大きくなれば繊維への付着性、皮膜形成
性、皮膜強度等の向上がありより好ましく、例えばエポ
キシ基変性のジメチルシリコーン樹脂の場合、エポキシ
当量(エポキシ基1個当りのシリコーン樹脂の分子量)
は高々1ooooo、好ましくは50000以下、更に
好ましくは10000以下である。
Silicone resins are not particularly limited as long as they have a basic skeletal structure with good film-forming properties and transparency, but silicone resins have good water dispersibility due to convenience in use and film-forming properties on fibers, etc. is preferred. The basic skeleton structure is as described above, but it contains amino groups, hydroxyl groups, epoxy groups, alkoxyl groups, silanol groups, carboxyl groups, etc. in side chains or terminals to improve water dispersibility, film forming properties, and film strength. A modifying group may be introduced. The higher the degree of modification by these modifying groups, the better the adhesion to fibers, film formation, film strength, etc. Molecular weight of silicone resin per unit)
is at most 1oooooo, preferably 50,000 or less, more preferably 10,000 or less.

Aの分子量は特に限定しないが、水中分散性、繊維への
付着性、皮膜の強度、耐久性等より通常5000以上、
好ましくは1万以上、更に好ましくは3万以上である。
The molecular weight of A is not particularly limited, but it is usually 5000 or more based on water dispersibility, adhesion to fibers, film strength, durability, etc.
Preferably it is 10,000 or more, more preferably 30,000 or more.

分子量が5000未満では繊維への付着特性、皮膜の耐
久性、他の樹脂との非相溶性が幾分低下する傾向がでる
If the molecular weight is less than 5,000, the adhesion properties to fibers, the durability of the film, and the incompatibility with other resins tend to be somewhat reduced.

Aの側鎖の形態は屈折率や透明性、皮膜の強度等に影響
し、側鎖の分子量が大となれば、屈折率も大となり好ま
しくない。従ってAの側鎖としては、01〜012  
程度の低級アルキル基が好ましく、更に好ましくはC1
〜C6程度であるが、耐熱性、皮膜形成性の向上の為に
ベンゼン環や不飽和結合、アミノ基、エポキシ基、水酸
基、アルコキシル基等を含有してもよい。
The form of the side chain of A affects the refractive index, transparency, strength of the film, etc., and as the molecular weight of the side chain increases, the refractive index also increases, which is not preferable. Therefore, the side chain of A is 01-012
A lower alkyl group with a C1
~C6, but may contain benzene rings, unsaturated bonds, amino groups, epoxy groups, hydroxyl groups, alkoxyl groups, etc. to improve heat resistance and film forming properties.

更に触媒、熱、光等によりシリコーン系樹脂が架橋し化
学的安定化、物理的強度向上のできるものが溶解処理時
の耐久性、使用時の耐摩耗性の点でより好ましい。例え
ばポリマー中に、活性水素基、水酸基、アルコキシ基、
エポキシ基、アミノ基、カルボキシル基、アルコール基
等を有するジオルガノシリコーン、或いは分子末端にビ
ニル基や不飽和結合等を有するもの(以降変性シリコー
ンという)は、加熱により容易に架橋し化学的。
Furthermore, silicone resins that can be crosslinked by catalysts, heat, light, etc. to achieve chemical stabilization and improved physical strength are more preferred in terms of durability during dissolution treatment and abrasion resistance during use. For example, active hydrogen groups, hydroxyl groups, alkoxy groups,
Diorganosilicones having epoxy groups, amino groups, carboxyl groups, alcohol groups, etc., or those having vinyl groups, unsaturated bonds, etc. at the molecular ends (hereinafter referred to as modified silicones) can be easily crosslinked by heating and chemically bonded.

物理的に安定なシリコーン樹脂膜を形成する。又、該変
性レリコーンにアミノアルコキシシラン、ビニルアルコ
キシシラン、エポキシアルコキシシラン等の架橋剤を併
用する事で加熱により化学的。
Forms a physically stable silicone resin film. In addition, by using a crosslinking agent such as aminoalkoxysilane, vinylalkoxysilane, or epoxyalkoxysilane in combination with the modified relicon, it can be chemically cured by heating.

物理的に更に安定なシリコーン樹脂の皮膜を形成し好ま
しい。
It is preferable to form a physically more stable silicone resin film.

一方溶解除去される樹脂成分(以下樹脂Bとする)とし
ては、例えば水溶性の大きいでんぷん、スターチ、デキ
ストリン、ゼラチン、ペプチド、タンパク、多糖類、ポ
リアミノ酸等の天然高分子やポリエチレンオキサイド、
ポリエチレングリコール、ポリアクリル酸、ポリアクリ
ルアミド、カルボキシメチルセルローズ、ヒドロキシエ
チルセルローズ、メチルセルローズ、ヒドロキシプロピ
ルメチルセルローズ等の水溶性高分子や、ポリアクリル
酸メチル、ポリアクリル酸エチル、ポリアクリル酸イソ
プロピル、ポリギ酸ビニル、ポリ酢酸ビニル、トリニト
ロセルローズ、ポリスチレン、ポリ塩化ビニル、スチレ
ン−ブタジェン共重合体、アクリロニトリル−ブタジェ
ン共重合体等の有機溶媒溶解性の合成高分子が使用でき
る。
On the other hand, the resin components to be dissolved and removed (hereinafter referred to as resin B) include, for example, highly water-soluble natural polymers such as starch, starch, dextrin, gelatin, peptides, proteins, polysaccharides, and polyamino acids, polyethylene oxide,
Water-soluble polymers such as polyethylene glycol, polyacrylic acid, polyacrylamide, carboxymethyl cellulose, hydroxyethyl cellulose, methyl cellulose, hydroxypropyl methyl cellulose, methyl polyacrylate, ethyl polyacrylate, isopropyl polyacrylate, polyformic acid Organic solvent-soluble synthetic polymers such as vinyl, polyvinyl acetate, trinitrocellulose, polystyrene, polyvinyl chloride, styrene-butadiene copolymer, and acrylonitrile-butadiene copolymer can be used.

天然繊維、或いは合成繊維よりなる着色布に混合樹脂を
付与する方法は、浸漬吸着法即ち樹脂分散液に含浸後搾
液し、しかる後に乾燥又は乾燥後乾熱処理、温熱処理或
いは高温湿熱処理のいずれか行なう方法、或いはコーテ
ィング法即ち樹脂液をグラビアコーター等でコーティン
グ付与した後で前述の熱処理を行なう等、従来公知の方
法で行なう事が出来るが、浸漬吸着法が好ましい。浸漬
吸着法において繊維表面へ混合樹脂の均一な皮膜を形成
させる馬番こは、混合樹脂の分散液中の樹脂濃度を通常
15%以下、好ましくは10%以下、更に好ましくは0
.1〜7πにする。又、分散液中の樹脂の混合状態の安
定性、分散安定性の向上の為には、界面活性剤例えば通
常用いられるカチオン系界面活性剤、ノニオン系界面活
性剤或いはアニオン系界面活性剤を混合樹脂量の50%
以下、好ましくは20%以下程度添加してもよい。
The method of applying the mixed resin to a colored fabric made of natural fibers or synthetic fibers is the immersion adsorption method, that is, impregnation with a resin dispersion, squeezing, and then drying, or after drying, dry heat treatment, warm heat treatment, or high temperature moist heat treatment. Although conventionally known methods can be used, such as a coating method, that is, applying a coating with a resin liquid using a gravure coater or the like and then performing the above-mentioned heat treatment, the immersion adsorption method is preferred. In order to form a uniform film of the mixed resin on the fiber surface in the immersion adsorption method, the resin concentration in the dispersion of the mixed resin is usually 15% or less, preferably 10% or less, and more preferably 0.
.. Set it to 1 to 7π. In addition, in order to improve the stability of the mixed state of the resin in the dispersion and the dispersion stability, a surfactant such as a commonly used cationic surfactant, nonionic surfactant or anionic surfactant may be mixed. 50% of resin amount
Below, preferably about 20% or less may be added.

繊維への樹脂の付着量のコントロールは分散液中の樹脂
濃度、繊維への分散液の付着率或いは樹脂付着回数等で
行なう事が出来る。繊維表面への混合樹脂の付着量は通
常15%以下、好ましくは0.2〜10%、更に好まし
くは0.3〜5%である。
The amount of resin attached to the fibers can be controlled by the resin concentration in the dispersion, the rate of adhesion of the dispersion to the fibers, the number of times the resin is attached, etc. The amount of the mixed resin attached to the fiber surface is usually 15% or less, preferably 0.2 to 10%, and more preferably 0.3 to 5%.

付着量が0.1%以下では、目的とする深色化効果が得
られに<<、好ましくない。一方、15%を越えると処
理布の風合が粗硬になるばかりか、他の加工処理を行な
うのに妨げとなる。
If the amount of adhesion is less than 0.1%, the desired deep coloring effect cannot be obtained, which is not preferable. On the other hand, if it exceeds 15%, not only will the texture of the treated cloth become rough and hard, but it will also become a hindrance to other processing treatments.

樹脂AとBとの混合樹脂の皮膜は、繊維重量当り高々1
5重量にの付着量が好ましい。好ましくは0.2〜10
重量%、更に好ましくは0.3〜7重量%、特に好まし
くは0.5〜5重量%である。
The film of the mixed resin of resins A and B is at most 1 per fiber weight.
A coverage of 5% by weight is preferred. Preferably 0.2-10
% by weight, more preferably 0.3-7% by weight, particularly preferably 0.5-5% by weight.

15重量%を越えると、混合樹脂の皮膜が均一に付着せ
ず風合の変化や透湿性、通気性等の低下や、樹脂層の厚
さによる色のくすみ等の問題が生じ易い。一方0.2重
量により少なければ、樹脂皮膜が薄すぎて深色効果の発
現や耐久性の低下かあハ好ましくない。
If it exceeds 15% by weight, the mixed resin film will not adhere uniformly and problems such as change in texture, decrease in moisture permeability, air permeability, etc., and dull color due to the thickness of the resin layer will likely occur. On the other hand, if it is less than 0.2 weight, the resin film is too thin, resulting in a deep color effect and a decrease in durability, which is not preferable.

混合樹脂におけるAとBとの比率A/B (重量比)は
、混和性が良好で非相溶性を示せばいずれでもよいが、
好ましくは9515〜10/90、更に好ましくは90
/10〜25/75、特に好ましくは80/20〜50
150である。Aが95重量%より多くBが5重量%よ
り少ない場合は、シリコーン系加工剤としての前述した
問題点の改良或いは耐久性の付与が十分にできず好まし
くなく、又Aが10重量%より少なくBが90重量%よ
り多くなれば、B成分の溶解除去に際して残存すべきA
成分が残存しにくくなる。又残存したとしても生成した
凹凸は実質的に凸となり深色性、及びその耐久性が好ま
しくない。
The ratio A/B (weight ratio) of A and B in the mixed resin may be any value as long as it has good miscibility and shows incompatibility, but
Preferably 9515 to 10/90, more preferably 90
/10 to 25/75, particularly preferably 80/20 to 50
It is 150. If A is more than 95% by weight and B is less than 5% by weight, it is not preferable because the above-mentioned problems as a silicone-based processing agent cannot be sufficiently improved or durability is imparted, and if A is less than 10% by weight. If B exceeds 90% by weight, A that should remain when the B component is dissolved and removed
Components are less likely to remain. Moreover, even if it remains, the resulting unevenness is substantially convex, resulting in unfavorable bathochromic properties and durability.

即ち、混合樹脂AとBとの溶解度、溶解速度の差、混合
比率及び付着量の特定が深色効果を最も効果的に発現さ
せる為には重要である。この理由は明らかでないが、次
のように考えられる。
That is, it is important to specify the solubility, the difference in dissolution rate, the mixing ratio, and the amount of adhesion between the mixed resins A and B in order to most effectively express the deep color effect. Although the reason for this is not clear, it is thought to be as follows.

混合樹脂AとBは、その非相溶性の為に繊維表面上でも
互いに相分離構造を形成する。相分離の大きさ即ちA、
B成分の領域の形状及び大きさは、樹脂A及びBの物性
及びその混合比率に影響をう 。
Due to their incompatibility, the mixed resins A and B form a phase-separated structure with each other even on the fiber surface. The magnitude of phase separation, i.e. A,
The shape and size of the region of component B affect the physical properties of resins A and B and their mixing ratio.

け、−概に言えないが、混合比率の大きいものが海成分
となり連続相として存在しやすく、小さいものが島成分
となり非連続相として存在しやすい。
Although it is difficult to generalize, those with a large mixing ratio become sea components and tend to exist as a continuous phase, and those with a small mixing ratio become island components and tend to exist as a discontinuous phase.

即ち、A/B=9/1〜8/2程度であればB成分が島
成分として存在しやすく、B/A=9/1〜8/2程度
であればA成分が島成分として存在しやすい。又A/B
=7/8〜3/7ではより小量の成分が島成分となりや
すいが、部分的にはお互いに海/島が明確にならず入り
組んだ形状をとる場合もある。前述したように90/1
0〜80/70において最も深色効果が大きい事は、相
分離の形、即ち溶剤で溶解除去されて生成した凹孔の形
が小さくもなく比較的連続したものでかつ複雑な形状を
したものが深色性の発現には効果的であると思われる。
That is, if A/B = about 9/1 to 8/2, the B component tends to exist as an island component, and if B/A = about 9/1 to 8/2, the A component tends to exist as an island component. Cheap. Also A/B
= 7/8 to 3/7, smaller amounts of components tend to become island components, but there are cases where the sea/island is not clearly defined from each other and takes a complicated shape. As mentioned above, 90/1
The fact that the bathochromic effect is the largest in the range 0 to 80/70 is due to the form of phase separation, that is, the shape of the concave pores generated by dissolution and removal with a solvent is not small and relatively continuous, and has a complex shape. seems to be effective in expressing bathochromic color.

しかし、これらも前述したようにA及びB成分の物性に
影響されるところが大である。
However, as mentioned above, these are also greatly influenced by the physical properties of the A and B components.

繊維表面上の混合樹脂皮膜は、深色性発現の一つの要因
である凹孔或いは凹凸を有する。凹凸の形状は文字どお
りデコボコの形状であるが、好ましくは混合樹脂表面が
部分的に陥没した実質的な凹孔がよく、更に好ましくは
相分離した樹脂A例えばシリコーン系樹脂以外の領域が
優先的に溶解・溶出された凹孔の方がよい。こうした凹
孔を形成させる事により、深色化効果、耐摩耗性、及び
耐洗濯性、耐ドライクリーニング性のすぐれたものが出
来る。本発明の凹孔の形状及び大きさ、数は特に限定さ
れるものではないが、例えば大きさについては凹孔占有
面積で表わせば単位面積当り通常50%以下、好ましく
は5〜40に、更に好ましくは7〜30%である。数に
ついては、通常1μ2当り30個以下、好ましくは25
個以下、更に好ましくは1〜20個である。凹孔の面積
が50%を越えると、深色化に対しては効果が増加しな
いばかりか、耐摩耗性、光沢等低下し好ましくない。又
凹孔の個数については、凹孔の占有面積、凹孔の大きさ
等にも影響されるものであるが、通常30ケ/μ2以下
である。30ケ/μ2を越えると、凹孔が小さくなった
り或いは凹孔と凹孔との間隔が小さくなり、耐摩耗性、
光沢の低下等の点で不利となる。尚、繊維表面の凹凸の
大きさ及び数は、電子顕微鏡観察により測定できる。繊
維表面に形成された凹凸或いは凹孔の有するエツジ及び
凹部分の繊維表面となす角度はより鋭角的であればある
程深色化という点では効果的である。
The mixed resin film on the fiber surface has pores or irregularities, which are one of the factors for the development of deep color. The shape of the unevenness is literally uneven, but preferably it is a substantial depression where the surface of the mixed resin is partially depressed, and more preferably, the phase-separated resin A, for example, a region other than silicone resin, is preferentially formed. Dissolved/eluted concave pores are better. By forming such concave holes, a product with excellent deep coloring effect, abrasion resistance, washing resistance, and dry cleaning resistance can be obtained. The shape, size, and number of the recesses of the present invention are not particularly limited, but for example, the size, expressed in terms of the area occupied by the recesses, is usually 50% or less per unit area, preferably 5 to 40, and Preferably it is 7 to 30%. Regarding the number, it is usually 30 or less per 1μ2, preferably 25
The number is preferably 1 to 20, more preferably 1 to 20. If the area of the recesses exceeds 50%, not only will the effect against deep coloring not increase, but also the abrasion resistance, gloss, etc. will deteriorate, which is not preferable. The number of holes is usually 30 holes/μ2 or less, although it is influenced by the area occupied by the holes, the size of the holes, etc. If it exceeds 30 holes/μ2, the recesses become smaller or the distance between the recesses becomes smaller, resulting in poor wear resistance and
This is disadvantageous in terms of reduced gloss, etc. Incidentally, the size and number of unevenness on the fiber surface can be measured by electron microscopic observation. The more acute the angle between the edges of the unevenness or recesses formed on the fiber surface and the concave portion and the fiber surface, the more effective it is in terms of deepening the color.

従来の文献(例えば特開昭55−107512号公報の
第1図)に記載されている凹凸は、凹部及び凸部の繊維
表面となす角が鋭角的でなくかつ凹凸の山及び谷がなだ
らかである為に深色化効果は十分でなかった。
The unevenness described in conventional literature (for example, Fig. 1 of JP-A-55-107512) is such that the angles formed between the concave portions and the convex portions with the fiber surface are not acute, and the peaks and valleys of the unevenness are gentle. Therefore, the deep coloring effect was not sufficient.

混合樹脂の皮膜への凹凸の形成は、樹脂AとBの溶剤溶
解性の相違による一成分の洗い出しによる一成分の溶解
・除去により可能である。樹脂Bとしては、特に温水、
水、アルカリ溶液、酸性溶液、アルコール、アルコール
水溶液等により溶解、除去が容易なものが好ましい。従
来の溶解除去法による凹孔或いは凹凸の形成では、水溶
性或いは溶剤溶解性を有する塩類或いは低分子化合物を
ポリマーに添加し紡糸後それらを溶解除去していたが、
この方法では凹孔或いは凹凸の入口が広く及びなだらか
なものしか得られない。これは塩類或いは低分子化合物
の繊維中での存在形態と、溶解時に塩類、低分子化合物
のみの溶解では十分な凹孔或いは凹凸が形成できずポリ
マ一部分まで溶解した為である。これに対し、本発明で
は互いに非相溶である少なくとも2種以上の樹脂よりな
る混合皮膜であり、その皮膜中で相分離した一方のドメ
インは他のドメインに対して鋭角的な工、フジを有して
おり、また各々のドメイン間は相分離の為に容易に剥離
する。従って本発明において一成分を溶解除去後に形成
される凹孔或いは凹凸は鋭角的エツジを有している。
The formation of irregularities on the mixed resin film is possible by dissolving and removing one component by washing out one component due to the difference in solvent solubility between resins A and B. As resin B, especially hot water,
Those that can be easily dissolved and removed with water, alkaline solution, acidic solution, alcohol, alcohol aqueous solution, etc. are preferred. In the conventional method of forming concave holes or irregularities by dissolving and removing, water-soluble or solvent-soluble salts or low-molecular compounds are added to the polymer and then dissolved and removed after spinning.
With this method, only wide and gentle entrances to the recesses or irregularities can be obtained. This is due to the existence form of the salts or low molecular weight compounds in the fibers, and the fact that sufficient pores or irregularities cannot be formed by dissolving only the salts or low molecular weight compounds during dissolution, and only a portion of the polymer is dissolved. In contrast, the present invention is a mixed film made of at least two or more resins that are incompatible with each other, and one domain that is phase-separated in the film has an acute angle to the other domain. Moreover, each domain is easily separated due to phase separation. Therefore, in the present invention, the recesses or irregularities formed after dissolving and removing one component have sharp edges.

混合樹脂の少なくとも一成分(樹脂B)を溶解除去する
方法は、混合樹脂を構成する少なくとも二成分間の溶解
性、溶解度の差を利用し、好ましくは屈折率の小さい樹
脂成分を残すような溶解処理を行なう。溶解時に加熱し
たり、超音波で振動を与えたり或いは機械的なモミを加
える事も好ましい。例えば、一方の樹脂がシリコーン系
樹脂で、他方がポリエチレングリコール、ポリビニルア
ルコール、メトキシセルロース或いはでんぷん等の水溶
性樹脂であれば、通常の水洗浄で十分にシリコーン系樹
脂以外の樹脂成分を溶解除去でき、皮膜表面に水溶性樹
脂成分が除去された凹孔の形成がある。また一方の樹脂
がパーフルオロアルキルアクリレートで、他方がポリ酢
酸ビニル、ポリエチルビニルエーテル、ポリビニルピリ
ジン、ポリビニルアルコール等の組み合せでは、メタノ
ールにより他方成分を溶解除去でき凹孔を形成させる事
が出来る。
The method of dissolving and removing at least one component (resin B) of the mixed resin utilizes the solubility and the difference in solubility between at least two components constituting the mixed resin, preferably by dissolving in a manner that leaves a resin component with a small refractive index. Process. It is also preferable to heat the melt, apply ultrasonic vibration, or add mechanical fir. For example, if one resin is a silicone resin and the other is a water-soluble resin such as polyethylene glycol, polyvinyl alcohol, methoxycellulose, or starch, ordinary washing with water will be sufficient to dissolve and remove the resin components other than the silicone resin. , there is formation of concave pores on the surface of the film where the water-soluble resin component has been removed. When one resin is perfluoroalkyl acrylate and the other is polyvinyl acetate, polyethyl vinyl ether, polyvinyl pyridine, polyvinyl alcohol, etc., the other component can be dissolved and removed with methanol, forming pores.

溶剤に対する溶解性、溶解速度の相異によって形成され
る凹孔及び/又は凹凸は各成分の非相溶性が大きい程、
各成分領域に他成分の混入がなくより明確に形成させる
事が出来る。
The greater the incompatibility of each component, the more concavities and/or irregularities formed due to differences in solubility and dissolution rate in solvents.
Each component region is free from contamination with other components and can be formed more clearly.

溶剤としては少なくとも一成分に対して良好な溶剤であ
り、少なくとも他の一成分の貧溶剤好ましくは非溶剤で
かつ膨潤性もない方がよい。
The solvent should be a good solvent for at least one component, a poor solvent for at least another component, preferably a non-solvent and not swellable.

−成分の樹脂の溶解・除去処理後は溶剤の洗浄・精練及
び乾燥を行ない更に必要ならば親水加工、捏水加工、防
シワ加工及び制電加工等を行なう。
- After dissolving and removing the component resin, solvent cleaning, scouring, and drying are performed, and if necessary, hydrophilic processing, water-repellent processing, wrinkle-proofing processing, antistatic processing, etc. are performed.

AとBとの溶解性、溶解速度の比は通常2倍以上、好ま
しくは10倍以上である。この事により皮膜中よFIB
成分が優先的に溶解が進行する。更に好ましくは、Aを
溶解せずBのみを溶解”する溶剤で処理するのがよい。
The ratio of solubility and dissolution rate between A and B is usually 2 times or more, preferably 10 times or more. Due to this, the FIB inside the film
Dissolution proceeds preferentially for the components. More preferably, the treatment is performed with a solvent that does not dissolve A but only B.

即ちA、B成分が相分離し、かつ溶解性、溶解速度がA
の方が小さい為に短時間でBが溶解・除去された孔が形
成し、微小な凹凸、好ましくは凹孔が形成される。こう
して皮膜中に凹凸及び又は凹孔、好ましくは実質的に凹
孔が形成される事により深色化が効率よく発現しかつ耐
久性にすぐれた深色化繊維が得られる。
That is, components A and B phase separate, and the solubility and dissolution rate are A.
Since B is smaller, pores are formed in which B is dissolved and removed in a short time, and minute irregularities, preferably concave pores, are formed. In this way, by forming irregularities and/or concave holes, preferably substantially concave holes, in the film, a deep-colored fiber can be obtained which efficiently develops deep coloring and has excellent durability.

混合樹脂のAとBで、例えばポリエステル系合成繊維へ
の親和性を比較した場合、Bの親和性がAより大きくな
るように設定すると(例えばAにシリコーン系樹脂、B
にポリエーテルエステル系樹脂)、相分離した混合樹脂
皮膜中でのBの比率がポリエステル繊維に近いところで
は大きく、樹脂皮膜表面近くでは小さくなる。逆にAの
比率は樹脂表面近くで大きく、繊維表面の近くでは小さ
い。従ってこうした混合樹脂の組合せでは実質的に凹孔
が形成され、極めて深色性が良好となる。
For example, when comparing the affinity of mixed resins A and B to polyester synthetic fibers, if the affinity of B is set to be greater than that of A (for example, if A is silicone-based resin, B is
The ratio of B in the phase-separated mixed resin film is large near the polyester fibers and small near the surface of the resin film. Conversely, the ratio of A is large near the resin surface and small near the fiber surface. Therefore, with such a combination of mixed resins, concave holes are substantially formed, resulting in extremely good bathochromic properties.

即ち本発明の凹孔は、鋭角的エツジを有し、孔の入口よ
りむしろ孔の奥が拡がった形状を示す場合が多いからで
ある。こういう凹孔の形成は従来提案されておらず、本
発明において初めて見出されたものである。凹孔の入口
が小さく奥が広い為に凹孔に達した光は反射して外部へ
出る事が極めて困難であり、入射光の多くが繊維内部に
侵入する。
That is, the recessed hole of the present invention has an acute edge and often exhibits a shape in which the depth of the hole widens rather than the entrance of the hole. Formation of such a recessed hole has not been previously proposed, and was discovered for the first time in the present invention. Since the entrance of the recessed hole is small and the depth is wide, it is extremely difficult for the light that reaches the recessed hole to be reflected and go outside, and most of the incident light enters the inside of the fiber.

一方、従来から提案されている凹凸は丁度ネジ山のよう
な一定角度の凹凸のくり返しである為に凹部へ入った光
の大部分がそのまま反射してしまい、表面にいくら凹凸
をつけても深色化効果は十分でなかった(例えば特開昭
55−IQ7512号公報の第1図参照)。
On the other hand, since the concavities and convexities that have been proposed in the past are repeated concavities and convexities at a certain angle, just like a screw thread, most of the light that enters the concavities is reflected as is, and no matter how many concavities and convexities are made on the surface, The coloring effect was not sufficient (for example, see FIG. 1 of JP-A-55-IQ7512).

(発明の効果) 本発明の深色化繊維は、驚くべきことに深色性が従来提
案されているものよりはるかに良好で、かつ耐洗濯性及
び耐摩耗性等の堅牢度が良好である。更に深色性或いは
濃色効果が著しい為に、染料使用量も従来より低減でき
る、色あせ、色の移行がないなど品質とコストにすぐれ
たものである。
(Effects of the Invention) Surprisingly, the deep-colored fiber of the present invention has far better deep color properties than those conventionally proposed, and has good fastness such as washing resistance and abrasion resistance. . Furthermore, because it has a remarkable deep color or deep color effect, the amount of dye used can be reduced compared to conventional methods, and it is superior in quality and cost, with no fading or color migration.

かかる本発明の深色化繊維は、ブラックフォーマルや学
生服など黒さが生命である用途にはもちろん、カラーフ
ォーマルやプリント等多様な繊維製品にも適用すること
ができ、極めて有用である。
The deep-colored fiber of the present invention can be applied not only to applications where blackness is essential, such as black formal wear and school uniforms, but also to a variety of textile products such as colored formal wear and prints, and is therefore extremely useful.

また本発明の方法によれば、耐久性に優れた深色化繊維
を混合樹脂の付着量が少なく、かつ効果的に繊維を粗面
化できるので、工業的に極めて有用である。
Further, according to the method of the present invention, it is possible to make deep-colored fibers with excellent durability with a small amount of adhesion of the mixed resin and to effectively roughen the surface of the fibers, so that the fibers are extremely useful industrially.

(実施例) 以下、実施例を示して本発明を更に具体的に説明する。(Example) Hereinafter, the present invention will be explained in more detail with reference to Examples.

尚、本発明における評価は次の方法により行った。Note that the evaluation in the present invention was performed by the following method.

A、深色性の評価 深色性(色の深み)は、CI E 1976 (Lab
)法により、カラーアナライザーで反射率を測定してY
値を求め、下記の式よりL値を得た。L値は小さい程、
深色化のレベルが高いことを表わしている。
A. Evaluation of bathochromism Bathochromism (depth of color) is determined by CI E 1976 (Lab
) method, measure the reflectance with a color analyzer and
The value was determined and the L value was obtained from the following formula. The smaller the L value, the
This indicates a high level of deep coloring.

L=25 (100Y/Yo )” −16またΔLは
樹脂皮膜形成後のL−値(Ll)  と溶解処理後のL
−値(L2)との差であり、ΔLが大きい程、大きい深
色効果が発現した事を示す。
L=25 (100Y/Yo)" -16 Also, ΔL is the L-value (Ll) after resin film formation and L after dissolution treatment
- value (L2), and the larger ΔL is, the greater the bathochromic effect is expressed.

非相溶性の評価 樹脂混合物をフィルム、或いはガラス板上に成膜し、光
学顕微鏡、位相差顕微鏡、電子顕微鏡或いは蛍光X線分
析によって観察した。
Evaluation of incompatibility The resin mixture was formed on a film or a glass plate, and observed using an optical microscope, phase contrast microscope, electron microscope, or fluorescent X-ray analysis.

実施例1 60 d/48 fのポリエステルフィラメントに25
0 T/Mの8撚をかけた経糸と、75 d/72 f
のポリエステルフィラメントに8000 T/MのS、
z撚をかけた緯糸とからなるジョーゼット織物を、常法
でワッシャーしぼ立て後、180℃の乾熱中でセットし
、90℃の20%カセイソーダ水溶液中に浸漬して20
%の減量処理を行なった。
Example 1 25 to 60 d/48 f polyester filament
0 T/M 8-twist warp and 75 d/72 f
8000 T/M S on polyester filament,
A georgette fabric consisting of twisted weft yarns was blanched using a conventional method, set in dry heat at 180°C, and immersed in a 20% caustic soda aqueous solution at 90°C for 20 minutes.
% weight loss treatment was performed.

この織物をカヤロンポリエステルブラック08FC日本
化薬■製)15に(o、w、f、)で染色した後、還元
洗滌して黒色のジョーゼット織物を得た。
This fabric was dyed with Kayalon Polyester Black 08FC (manufactured by Nippon Kayaku ■) 15 (o, w, f,) and then subjected to reduction washing to obtain a black georgette fabric.

次いでアミノ変性ジメチルシロキサン樹脂(Mw = 
10000、アミノ当量3400)の水分散液と、ポリ
ビニルアルコール(重合度500、ケン化度88に)の
水分散液を第1表の比率になるよう混合し、織物に樹脂
量として3%o1w、f。
Next, amino-modified dimethylsiloxane resin (Mw =
An aqueous dispersion of polyvinyl alcohol (polymerization degree of 500, saponification degree of 88) and an aqueous dispersion of polyvinyl alcohol (polymerization degree of 500, saponification degree of 88) were mixed at the ratio shown in Table 1, and the resin amount was 3% O1W, f.

になるように付着させた。乾燥−熱処理して混合樹脂の
皮膜を形成させた後、50〜60℃温水に30分間浸漬
、撹拌し、続いて脱水乾燥した。
I attached it so that it looked like this. After drying and heat treating to form a film of the mixed resin, it was immersed in warm water of 50 to 60°C for 30 minutes, stirred, and then dehydrated and dried.

第1表に結果を示す。表中相分離状態の評価を示す◎は
樹脂A及びBの各ドメインが、明確に相分離を形成して
いるもの、○は大部分相分離を形成するが極く一部相溶
性を示している、△は相分離した樹脂A又はBの界面が
小さく溶解しにくいもの、×は相分離を形成せず溶解処
理を行っても凹孔及び/又は凹凸の形成がないものを示
す。
Table 1 shows the results. In the table, the evaluation of the phase separation state is shown. ◎ indicates that each domain of resin A and B clearly forms a phase separation, and ○ indicates that most of the domains form phase separation, but only some of them are compatible. Δ indicates that the phase-separated resin A or B has a small interface and is difficult to dissolve, and × indicates that no phase separation is formed and no concave pores and/or irregularities are formed even after dissolution treatment.

(以下余白) 実施例2 樹脂Aとしてエポキシ変性シリコーン(Mw =200
00 、エポキシ基当量)とγ−グリシドキシプロビル
メトキシシランとの80/20 (重量比)混合物、樹
脂Bとして、ヒドロキシメチルプロピルセルローズを用
いた。樹脂A/樹脂B=7/3(重量比)混合物の水分
散液を実施例1の染色洗滌後のジッーゼット織物に、第
2表に示す樹脂付着量となるように皮膜を形成し、更に
80℃熱水にて溶出処理を行った。尚、樹脂付着前の織
物のL値は12.5であった。
(Left below) Example 2 Epoxy-modified silicone (Mw = 200
As resin B, a mixture of 80/20 (weight ratio) of 00, epoxy group equivalent) and γ-glycidoxypropylmethoxysilane, hydroxymethylpropyl cellulose was used. An aqueous dispersion of a mixture of resin A/resin B = 7/3 (weight ratio) was applied to the dyed and washed Zizette fabric of Example 1 to form a film so as to have the resin adhesion amount shown in Table 2. Elution treatment was performed with hot water at ℃. Note that the L value of the fabric before resin attachment was 12.5.

結果を第2表に示す。尚、樹脂付着状態の評価を示す◎
は繊維表面上に均一皮膜を形成したもの、○は一部付着
斑が生じたもの、△は付着斑があり繊維間への付着もあ
るものを示す。
The results are shown in Table 2. In addition, the evaluation of the resin adhesion state is shown◎
○ indicates that a uniform film was formed on the fiber surface, ○ indicates that some adhesion spots were formed, and Δ indicates that there were adhesion spots and some adhesion between the fibers.

(以下余白)(Margin below)

Claims (10)

【特許請求の範囲】[Claims] (1)2種以上の樹脂からなる混合樹脂の皮膜を有する
繊維構造物において、 (イ)混合樹脂が互いに非相溶性であり、かつ溶剤溶解
性の異なる樹脂成分からなり、 (ロ)皮膜表面の少なくとも一部に凹孔及び/又は凹凸
を有する ことを特徴とする着色された深色化繊維構造物。
(1) In a fiber structure having a mixed resin film consisting of two or more resins, (a) the mixed resin is mutually incompatible and consists of resin components with different solvent solubility, and (b) the film surface 1. A colored, deep-colored fiber structure characterized by having recesses and/or irregularities in at least a portion of the structure.
(2)溶剤溶解性の小なる成分がシリコーン系樹脂であ
る特許請求の範囲第1項記載の繊維構造物。
(2) The fibrous structure according to claim 1, wherein the component with low solvent solubility is a silicone resin.
(3)溶剤溶解性の大なる成分が水溶性或いはアルカリ
溶解性である特許請求の範囲第1項記載の繊維構造物。
(3) The fibrous structure according to claim 1, wherein the major solvent-soluble component is water-soluble or alkali-soluble.
(4)混合樹脂皮膜が2種以上の独立した相に相分離し
ている特許請求の範囲第1項記載の繊維構造物。
(4) The fibrous structure according to claim 1, wherein the mixed resin film is phase-separated into two or more independent phases.
(5)混合樹脂皮膜が繊維重量当り高々15重量%であ
る特許請求の範囲第1項記載の繊維構造物。
(5) The fiber structure according to claim 1, wherein the mixed resin coating is at most 15% by weight based on the weight of the fibers.
(6)繊維に互いに非相溶性であり、かつ溶剤溶解性の
異なる2種以上の樹脂からなる混合樹脂の皮膜を形成さ
せ、次いで溶剤にて混合樹脂の一部を溶解し、樹脂皮膜
に凹孔及び/又は凹凸を形成させる事を特徴とする着色
化された深色化繊維構造物の製造方法。
(6) Form a mixed resin film on the fibers consisting of two or more resins that are mutually incompatible and have different solvent solubility, and then dissolve a portion of the mixed resin with a solvent to create dents in the resin film. A method for producing a colored deep-colored fiber structure characterized by forming holes and/or irregularities.
(7)混合樹脂の皮膜を形成させるのに混合樹脂の水分
散液を付着させる特許請求の範囲第6項記載の方法。
(7) The method according to claim 6, in which an aqueous dispersion of the mixed resin is applied to form the mixed resin film.
(8)水或いはアルカリ溶液により混合樹脂皮膜の溶解
度の大きい樹脂相を優先的に溶解除去し、実質的に凹孔
を形成させる特許請求の範囲第6項記載の方法。
(8) The method according to claim 6, wherein the highly soluble resin phase of the mixed resin film is preferentially dissolved and removed using water or an alkaline solution to substantially form concave pores.
(9)アルコール或いは水/アルコール混合溶液により
混合樹脂皮膜の溶解度の大きい樹脂相を優先的に溶解除
去し、実質的に凹孔を形成させる特許請求の範囲第6項
記載の方法。
(9) The method according to claim 6, wherein the highly soluble resin phase of the mixed resin film is preferentially dissolved and removed using alcohol or a water/alcohol mixed solution to substantially form concave pores.
(10)溶解除去量が繊維重量当り少なくとも0.1重
量%である特許請求の範囲第6項記載の方法。
(10) The method according to claim 6, wherein the amount removed by dissolution is at least 0.1% by weight based on the weight of the fiber.
JP62263262A 1987-03-03 1987-10-19 Method for producing deep-colored fiber structure Expired - Lifetime JP2599113B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP62263262A JP2599113B2 (en) 1987-10-19 1987-10-19 Method for producing deep-colored fiber structure
US07/160,584 US4900625A (en) 1987-03-03 1988-02-26 Deep-colored fibers and a process for manufacturing the same
DE3850144T DE3850144T2 (en) 1987-03-03 1988-03-01 Treatment of deep-colored fibers with resins.
EP88103063A EP0281066B1 (en) 1987-03-03 1988-03-01 Resin treatment of deep-coloured fibres
KR8802221A KR910003682B1 (en) 1987-03-03 1988-03-03 Deep colored fibers and a process for manufacturing the same
US07/435,941 US4997519A (en) 1987-03-03 1989-11-13 Deep-colored fibers and a process for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62263262A JP2599113B2 (en) 1987-10-19 1987-10-19 Method for producing deep-colored fiber structure

Publications (2)

Publication Number Publication Date
JPH01111070A true JPH01111070A (en) 1989-04-27
JP2599113B2 JP2599113B2 (en) 1997-04-09

Family

ID=17387021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62263262A Expired - Lifetime JP2599113B2 (en) 1987-03-03 1987-10-19 Method for producing deep-colored fiber structure

Country Status (1)

Country Link
JP (1) JP2599113B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010168719A (en) * 2008-12-24 2010-08-05 Ist Corp Jet-black-colored animal fiber, jet-black-colored wool fiber, and fabric

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5976983A (en) * 1982-10-26 1984-05-02 東レ株式会社 Production of highly color developable fiber
JPS60224878A (en) * 1984-04-23 1985-11-09 東レ株式会社 Production of highly color developable fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5976983A (en) * 1982-10-26 1984-05-02 東レ株式会社 Production of highly color developable fiber
JPS60224878A (en) * 1984-04-23 1985-11-09 東レ株式会社 Production of highly color developable fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010168719A (en) * 2008-12-24 2010-08-05 Ist Corp Jet-black-colored animal fiber, jet-black-colored wool fiber, and fabric

Also Published As

Publication number Publication date
JP2599113B2 (en) 1997-04-09

Similar Documents

Publication Publication Date Title
CN106894245A (en) The preparation method of schemochrome fabric
US4900625A (en) Deep-colored fibers and a process for manufacturing the same
JPH01111070A (en) Dark color fiber structure and its production
JPH0345138B2 (en)
CN110373893A (en) A kind of graphene conductive fabric and preparation method thereof
JP2820150B2 (en) Deep-colored fiber structure
JP3464053B2 (en) Discoloration processing method for cellulosic fiber cloth
JP2954947B2 (en) Deepening fiber
JP2566885B2 (en) Deep-colored fiber structure and manufacturing method thereof
JP2703557B2 (en) Deep-colored fiber and method for producing the same
JP3604163B2 (en) Fabric with improved texture and method for producing the same
JPH0424465B2 (en)
JPS6139438B2 (en)
BE883343A (en) OPACIFICATION PROCESS OF POLYESTER TEXTILE MATERIALS AND OPACIFIED TEXTILE MATERIAL OBTAINED
JP2582149B2 (en) Knitted woolen fabric and method for producing the same
JPS59192772A (en) Surface roughened fiber structure and production thereof
JPH0242938B2 (en)
JPS61194278A (en) Production of highly color-developable fiber
JPH05214677A (en) High chromophoric fiber sheet and its production
JPH0235069B2 (en) KOHATSUSHOKUSEISENIKOZOBUTSUNOSEIZOHOHO
JPH07119052A (en) Method for pretreatment processing for obtaining nonuniform color tone and color pattern
JPS6013821A (en) Dyeing and processing of molded article of synthetic resin
JPS6212333B2 (en)
JPS6343503B2 (en)
JPH07258977A (en) Production of cloth having durable stainproof property