JPH01110556A - Polycarbonate based resin composition - Google Patents

Polycarbonate based resin composition

Info

Publication number
JPH01110556A
JPH01110556A JP26754987A JP26754987A JPH01110556A JP H01110556 A JPH01110556 A JP H01110556A JP 26754987 A JP26754987 A JP 26754987A JP 26754987 A JP26754987 A JP 26754987A JP H01110556 A JPH01110556 A JP H01110556A
Authority
JP
Japan
Prior art keywords
hydroxyphenyl
bis
mol
aromatic polycarbonate
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26754987A
Other languages
Japanese (ja)
Other versions
JP2853806B2 (en
Inventor
Toshiro Endo
敏郎 遠藤
Kenichi Sasaki
佐々城 賢一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP62267549A priority Critical patent/JP2853806B2/en
Publication of JPH01110556A publication Critical patent/JPH01110556A/en
Application granted granted Critical
Publication of JP2853806B2 publication Critical patent/JP2853806B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain a composition having excellent transparency and capable of providing a molded product having small optical strain, by blending polystyrene with an aromatic polycarbonate copolymer led from a bisphenol component having 2 or 3 kind of different structures. CONSTITUTION:(A) 1-99wt.% aromatic polycarbonate copolymer obtained by subjecting (A1) a mol.% 2,2-bis-(4-hydroxyphenyl)propane to carbonate bonding with (A2) b mol.% 1,1'-bis-(4-hydroxyphenyl)-P-diisopropylbenzene and (A3) c mol.% 1,1-bis-(4-hydroxyphenyl)-cyclohexane by ester exchange method at a ratio satisfying formula I - formula VI and having preferably 3,000-50,000 viscosity-average molecular weight is blended with (B) 99-1wt.% preferably 3-60wt.% styrene homopolymer having preferably 10,000-200,000 number- average molecular weight.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ポリスチレン樹脂に2ないし3種の異なった
構造を有するビスフェノール成分より導かれる芳香族ポ
リカーボネート共重合体を配合してなる優れた透明性を
有するポリカーボネート系樹脂組成物に関する。特に、
詳しくは、透明性が優れ、光学的な歪みが小さい成形物
を提供する組成物に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention provides an excellent transparent polycarbonate copolymer derived from bisphenol components having two or three different structures, which is blended with a polystyrene resin. The present invention relates to a polycarbonate resin composition having properties. especially,
Specifically, the present invention relates to a composition that provides a molded article with excellent transparency and low optical distortion.

(従来の技術およびその問題点) ポリカーボネート樹脂とスチレン単独重合体との混合に
おいて、その混合比が全領域において透明性を維持でき
る組成物の開示はまだない。特公昭43−6295号に
は、ポリカーボネート樹脂とポリスチレンを混合させ、
透明性を保持し且つ高軟化点を具えるポリカーボネート
樹脂を提供するとの報告が公告されている。しがしなが
ら、上記公告にも示されているがポリスチレントの混合
の際、混合するポリスチレンの量が多くなるに従って成
形物の透明性は次第に低下し、その添加物量が30%を
超えると曇りが大きくなり、該混合物において全組成領
域に渡り透明性樹脂を提供するものでは側底ありえない
(Prior Art and its Problems) There is no disclosure yet of a composition that can maintain transparency over the entire mixing ratio range of mixing a polycarbonate resin and a styrene homopolymer. In Japanese Patent Publication No. 43-6295, polycarbonate resin and polystyrene are mixed,
Reports have been published that provide polycarbonate resins that maintain transparency and have a high softening point. However, as shown in the above notice, when mixing polystyrene, the transparency of the molded product gradually decreases as the amount of polystyrene mixed increases, and when the amount of additive exceeds 30%, it becomes cloudy. becomes large, and it is impossible to provide a transparent resin over the entire composition range in the mixture.

一方光学機器用の成形物の製造に用いられる成形材料と
しては、透明性に優れ且つ光学的歪みの特に小さいこと
が必須条件として要求される場合が多い。しかしながら
、かがる条件を充分満たし得るプラスチック成形材料は
極めて少ない。
On the other hand, molding materials used in the production of molded articles for optical devices are often required to have excellent transparency and particularly low optical distortion. However, there are very few plastic molding materials that can satisfactorily satisfy these conditions.

近年、光学用材料として、光学式情報記録基板が注目さ
れている。すなわち、レーザー光線のスポットビームを
ディスクにあてディスクに微細なピットで信号を記録し
、ピットによって記録された信号をレーザー光線の反射
又は透過光量を検出することによって読み出すダイレク
ト・リード・アフター・ライト(DRAW)、イレーザ
ブル・ダイレクト・リード・アフター・ライト(EDR
AW)型光学式情報記録再生方式が注目されている。
In recent years, optical information recording substrates have attracted attention as optical materials. In other words, Direct Read After Write (DRAW) is a method in which a spot beam of a laser beam is applied to a disk to record signals on the disk in minute pits, and the signals recorded by the pits are read out by detecting the amount of reflected or transmitted light from the laser beam. , Erasable Direct Read After Write (EDR)
AW) type optical information recording and reproducing system is attracting attention.

このような記録再生方式に利用されるディスクには、デ
ィスク本体をレーザー光線が通過するために透明である
ことは勿論のこと読み取り誤差を少なくするために光学
的均質性が強く求められる。ディスク本体形成時の樹脂
の冷却及び流動過程において生じた熱応力・分子配向・
ガラス転移点付近の容積変化による残留応力が主な原因
となりレーザー光線がディスク本体を通過する際に複屈
折が生ずる。この複屈折に起因する光学的不均一性が大
きいことは光学式ディスクとしては致命的欠陥である。
Disks used in such recording and reproducing systems are required not only to be transparent because a laser beam passes through the disk body, but also to have optical homogeneity to reduce reading errors. Thermal stress, molecular orientation, and
Birefringence occurs when the laser beam passes through the disk body, mainly due to residual stress due to volume changes near the glass transition point. This large optical non-uniformity caused by birefringence is a fatal defect for optical discs.

一般にポリメチルメタアクリレート(以下PMMAと略
す)は、プラスチック材料の中で抜群の透明性と耐候性
を有すると共に、複屈折が小さく成形性が良好で、機械
的強度もバランスしている代表的な光学用材料として使
用できることが知られている。
In general, polymethyl methacrylate (hereinafter abbreviated as PMMA) is a typical plastic material that has outstanding transparency and weather resistance, low birefringence, good moldability, and balanced mechanical strength. It is known that it can be used as an optical material.

しかし、PMMAは吸水性が比較的大きく高精度な寸法
安定性を必要とする用途材料に適していない。
However, PMMA has relatively high water absorption and is not suitable for applications requiring highly precise dimensional stability.

また、ビスフェノールAのホモポリカーボネート(以下
PCと略す)は、PMMAと同程度の透明性を有すると
ともに耐熱性、耐衝撃性に優れたエンジニアリングプラ
スチックの一種で且つ吸水性が低い。
Further, bisphenol A homopolycarbonate (hereinafter abbreviated as PC) is a type of engineering plastic that has transparency comparable to that of PMMA, has excellent heat resistance and impact resistance, and has low water absorption.

しかしながら、PCは光学的異方性の大きな官能基であ
るフェニル環を有し、複屈折性を生じやすく、また、成
形性に劣っている。
However, PC has a phenyl ring which is a functional group with large optical anisotropy, tends to cause birefringence, and has poor moldability.

一方PCを用いたとしても成形温度を高めるか、又は、
樹脂の平均分子量を低下させて溶融粘度を下げることに
より複屈折を低減することができるが、成形温度の上昇
は樹脂の熱分解を生じ、また、分子量の低下は機械的強
度の低下を生ずるなど各々限界がある。
On the other hand, even if PC is used, the molding temperature must be increased, or
Birefringence can be reduced by lowering the average molecular weight of the resin and lowering its melt viscosity, but an increase in molding temperature causes thermal decomposition of the resin, and a decrease in molecular weight causes a decrease in mechanical strength. Each has its limits.

このような状況の中、光デイスク用PCの複屈折低減下
に関する多くに提案がなされている。
Under these circumstances, many proposals have been made for reducing birefringence in PCs for optical disks.

例えば、■配向複屈折を低減化するためにPCの流動性
を改良するもの(特開昭58−126119゜特開昭6
0−215051.特開昭61−16962.特開昭6
1−78864、4?開昭6l−123658)■ビス
フェノールA以外の骨格を有する二価フェノール又は、
脂肪族アルコールを用いて光弾性定数を低下させるもの
(特開昭60−83239.特開昭60−16321.
特開昭60−166322、特開昭61−55116.
特開昭61−55117.特開昭61−223025.
特開昭62−2770.特開昭62−3443゜特開昭
62−39624)■ポリエステルカーボネートやポリ
エーテルカーボネート構造をPCに導入して光弾性定数
を低下するとともに流動性を改質するもの。(特開昭6
0−188422 、特開昭60゜188426 、特
開昭62−36457 )しかしながら、これら上記提
案においては複屈折性がPCの化学構造自身に起因する
ことより、−様に複屈折の低い基板を安定して製造する
ことが困難な状況にある。
For example, ■ improving the fluidity of PC in order to reduce orientational birefringence (JP-A-58-126119; JP-A-6
0-215051. Japanese Patent Publication No. 61-16962. Tokukai Showa 6
1-78864, 4? Kaisho 6l-123658) ■ Dihydric phenol having a skeleton other than bisphenol A, or
Decreasing the photoelastic constant using an aliphatic alcohol (JP-A-60-83239; JP-A-60-16321.
JP-A-60-166322, JP-A-61-55116.
Japanese Patent Publication No. 61-55117. Japanese Patent Publication No. 61-223025.
Japanese Patent Publication No. 62-2770. JP-A No. 62-3443゜ JP-A No. 62-39624) ■ Introducing a polyester carbonate or polyether carbonate structure into PC to lower the photoelastic constant and improve fluidity. (Unexamined Japanese Patent Publication No. 6
0-188422, JP-A-60゜188426, JP-A-62-36457) However, in these proposals, since the birefringence is caused by the chemical structure of PC itself, it is difficult to stabilize a substrate with low birefringence. The situation is such that it is difficult to manufacture these products.

また、最近ポリマーブレンドによる複屈折消去効果が提
唱されている。[米国特許4373065.ポリマー(
Polymer);26巻、1619頁(1985年版
)、特開昭61−108617]これらの基本原理は次
の如くである。すなわち、正の複屈折性ポリマーと負の
複屈折性ポリマーを相溶させれば透明性を失わせること
なく正負の複屈折が相殺されて複屈折のない成形物ある
いは延伸物が得られるという原理に基づいている。PC
の固有複屈折を消去する材料としては、フェニルマレイ
ミド、スチレン共重合体、無水マレイン酸−スチレン共
重合体(特開昭6l−19656)、およびN−フェニ
ルマレイミドとN。
Furthermore, the birefringence canceling effect of polymer blends has recently been proposed. [U.S. Pat. No. 4,373,065. polymer(
Polymer); vol. 26, p. 1619 (1985 edition), JP-A-61-108617] These basic principles are as follows. In other words, the principle is that if a polymer with positive birefringence and a polymer with negative birefringence are made compatible, positive and negative birefringence can be canceled out without losing transparency, and a molded or stretched product without birefringence can be obtained. Based on. PC
Examples of materials that eliminate the inherent birefringence of N-phenylmaleimide and N-phenylmaleimide include phenylmaleimide, styrene copolymer, maleic anhydride-styrene copolymer (Japanese Patent Application Laid-Open No. 61-19656).

t−ブチルマレイミドとスチレンとの三元共重合体(特
開昭62−18466)等があげられる。
Examples include a terpolymer of t-butylmaleimide and styrene (Japanese Patent Application Laid-open No. 18466/1983).

(問題点を解決するための手段) 本発明は、芳香族ポリカーボネート共重合体とポリスチ
レン樹脂との混合系に関し、その混合比が全領域におい
て優れた透明性を維持できるポリカーボネート系樹脂組
成物を見い出し、また、特に詳しくは、透明性に優れる
と共に光学的歪みの小さい成形品を見い出し本発明に到
達したものである。
(Means for Solving the Problems) The present invention relates to a mixed system of an aromatic polycarbonate copolymer and a polystyrene resin, and has found a polycarbonate resin composition that can maintain excellent transparency in the entire mixing ratio range. More specifically, the present invention was achieved by discovering a molded product with excellent transparency and low optical distortion.

すなわち、本発明は、 (1)(イ) 数種の特定の二価フェノール系化合物を
用いてなる芳香族ポリカーボネー ト共重合体1〜99重量%及び (ロ)  スチレンの単独重合体99〜1重量%を混合
してなる透明なポリカーボネート 系樹脂組成物   ゛ (2)数種の特定の二価フェノール系化合物を用いてな
る芳香族ポリカーボネート共重合体は2.2−ビス−(
4−ヒドロキシフェニル)プロパン(i)aモル%と1
,1−ビス−(4−ヒドロキシフェニル)−p−ジイソ
プロピルベンゼン(ii)bモル%と1,1−ビス−(
4−ヒドロキシフェニル)シクロヘキサン(iii)c
モル%をカーボネート結合して得られる芳香族ポリカー
ボネート共重合体である前記(1)記載のポリカーボネ
ート系樹脂組成物。
That is, the present invention comprises (1) (a) 1 to 99% by weight of an aromatic polycarbonate copolymer using several specific dihydric phenol compounds, and (b) 99 to 1% by weight of a styrene homopolymer. (2) An aromatic polycarbonate copolymer prepared using several specific dihydric phenol compounds is 2,2-bis-(
4-hydroxyphenyl)propane (i) a mol% and 1
, 1-bis-(4-hydroxyphenyl)-p-diisopropylbenzene (ii)b mol% and 1,1-bis-(
4-hydroxyphenyl)cyclohexane(iii)c
The polycarbonate resin composition according to (1) above, which is an aromatic polycarbonate copolymer obtained by carbonate bonding of mol %.

ここで、芳香族ポリカーボネート共重合体の樹脂組成範
囲に用いたa、b、c(モル%)は、下記数式(I)〜
(VI)を満足する芳香族ポリカーボネート共重合体で
ある。
Here, a, b, and c (mol%) used in the resin composition range of the aromatic polycarbonate copolymer are represented by the following formula (I) ~
This is an aromatic polycarbonate copolymer that satisfies (VI).

a+b+c=100   −・・・・・CI)0≦b<
100       ・・・・・・(II)0≦c≦7
5       ・−−−・・(IH)O≦a≦35+
5.5cただしO≦c≦10の時・・・・・(■)0≦
a≦100−cただし10≦c≦70の時・・・・・(
V)0≦a≦450−6cただし70≦c≦75の時・
・・・・(■)それぞれの構成単位(i X ii X
 iii )が上記範囲外であるとスチレンの単独重合
体との混合によって得られるポリカーボネート系樹脂組
成物の透明性が失われる。
a+b+c=100 -...CI)0≦b<
100 (II) 0≦c≦7
5 ・---...(IH)O≦a≦35+
5.5c However, when O≦c≦10... (■) 0≦
a≦100-c However, when 10≦c≦70... (
V) 0≦a≦450-6c, but when 70≦c≦75・
...(■) Each constituent unit (i X ii
If iii) is outside the above range, the polycarbonate resin composition obtained by mixing with the styrene homopolymer will lose its transparency.

尚、本発明の共重合体のビスフェノールA−ポリカーボ
ネート換算の粘度平均分子量は13.000〜50,0
00が好ましい。13,000未満では共重合体が脆く
なり、50,000を超えると光学的歪みの小さい成形
材料を供する上で支障をきたす。
The copolymer of the present invention has a viscosity average molecular weight of 13.000 to 50.0 in terms of bisphenol A-polycarbonate.
00 is preferred. If it is less than 13,000, the copolymer will become brittle, and if it exceeds 50,000, it will be difficult to provide a molding material with small optical distortion.

また、上述の芳香族ポリカーボネート共重合体との混合
に用いられるスチレンの単独重合体は、組成物中3〜6
0重量%の範囲で含有することが特に望ましい。
In addition, the styrene homopolymer used for mixing with the above-mentioned aromatic polycarbonate copolymer may contain 3 to 6 % of the styrene homopolymer in the composition.
It is particularly desirable that the content be in the range of 0% by weight.

すなわち、3重量%未満であると光学的均質性を保持す
る上で支障をきたし、又、60重量%を超すと熱安定性
低下により成形品の着色機械的性質の低下などの支障を
きたす。
That is, if it is less than 3% by weight, it will be difficult to maintain optical homogeneity, and if it exceeds 60% by weight, it will cause problems such as a decrease in the coloring and mechanical properties of the molded product due to a decrease in thermal stability.

尚、上述のスチレンの単独重合体は、数平均分子量にし
て10,000〜200,000の間にある事が好まし
く、この範囲外であると機械的性質及び光学的均質性の
いずれかにおいて支障を生じる。
The above-mentioned styrene homopolymer preferably has a number average molecular weight between 10,000 and 200,000, and if it is outside this range, either mechanical properties or optical homogeneity may be affected. occurs.

本発明の芳香族ポリカーボネート共重合体の製造法とし
ては、次の二つの方法がある。
There are the following two methods for producing the aromatic polycarbonate copolymer of the present invention.

■エステル交換法 2.2− ヒス−(4−ヒドロキシフェニル)プロパン
、1.1−ビス−(4−ヒドロキシフェニル)−1)−
ジイソプロピルベンゼンおよび1,1.ビス(4−ヒド
ロキシフェニル)シクロヘキサンの化合物に対し化学量
論的に当量よりやや過剰のジフェニルカーボネートに、
通常のカーボネート化触媒の存在下、約160〜180
°Cの温度で常圧下、不活性ガスを導入した条件で約3
0分反応させ、2時間かけて徐々に減圧しながら約18
0〜220°Cの温度下で最終的に10Torr、 2
20°Cで前縮合を終了する。その後、10Torr、
 270°Cで30分、5Torr、 270°Cで2
0分反応し、次いで0.5 Torr以下、好ましくは
0.3Torr−0,ITorrの減圧下で270’C
で1.5時間〜2.0時間後縮合を進める。
■Transesterification method 2.2-His-(4-hydroxyphenyl)propane, 1.1-bis-(4-hydroxyphenyl)-1)-
diisopropylbenzene and 1,1. Diphenyl carbonate in a slight excess of the stoichiometric equivalent to the compound of bis(4-hydroxyphenyl)cyclohexane,
In the presence of a conventional carbonation catalyst, about 160-180
Approximately 3 °C under normal pressure and with inert gas introduced.
React for 0 minutes, then gradually reduce the pressure over 2 hours for about 18 minutes.
Finally 10 Torr under the temperature of 0-220 °C, 2
Precondensation is completed at 20°C. After that, 10 Torr,
30 minutes at 270°C, 5 Torr, 2 at 270°C
0 minutes, then 270'C under reduced pressure of 0.5 Torr or less, preferably 0.3 Torr-0,ITorr.
After 1.5 to 2.0 hours, proceed with the condensation.

尚、カーボネート結合のためのカーボネート化触媒とし
ては、リチウム系触媒、カリウム系触媒、ナトリウム系
触媒、カルシウム系触媒、錫系触媒等のアルカリ金属、
アルカリ土類金属触媒が適しており、例えば水酸化リチ
ウム、炭酸リチウム、水素化ホウ素カリウム、リン酸水
素カリウム、水酸化ナトリウム、水素化ホウ素ナトリウ
ム、水素化カルシウム、ジブチル錫オキシド。
In addition, carbonation catalysts for carbonate bonding include alkali metals such as lithium-based catalysts, potassium-based catalysts, sodium-based catalysts, calcium-based catalysts, and tin-based catalysts;
Alkaline earth metal catalysts are suitable, such as lithium hydroxide, lithium carbonate, potassium borohydride, potassium hydrogen phosphate, sodium hydroxide, sodium borohydride, calcium hydride, dibutyltin oxide.

酸化第1錫が挙げられる。これらのうち、カリウム系触
媒を用いることが好ましい。
Examples include stannous oxide. Among these, it is preferable to use a potassium catalyst.

■ホスゲン法 三つロフラスコにかき混ぜ機、温度計、ガス導入管、排
気管を付けこれに2,2−ビス−(4−ヒドロキシフェ
ニル)プロパン、 1,1’−ビス−(4−ヒドロキシ
フェニル)−1)−ジイソプロピルベンゼンおよび1,
1−ビス(4−ヒドロキシフェニル)シクロヘキサンの
混合物のピリジン溶液を入れ、これを激しくかき混ぜな
がらホスゲンガスを導入する。ホスゲンは猛毒であるか
ら強力なドラフト中で操作する。また排気末端には水酸
化ナトリウム10%水溶液で余剰ホスゲンを分解無毒化
するユニットを付ける。ホスゲンはボンベから空の洗気
瓶。
■Phosgene method Attach a stirrer, a thermometer, a gas inlet pipe, and an exhaust pipe to a three-bottle flask and add 2,2-bis-(4-hydroxyphenyl)propane and 1,1'-bis-(4-hydroxyphenyl). -1)-diisopropylbenzene and 1,
A pyridine solution of a mixture of 1-bis(4-hydroxyphenyl)cyclohexane is added, and phosgene gas is introduced while stirring the mixture vigorously. Since phosgene is extremely poisonous, it must be operated in a strong fume hood. Additionally, a unit is attached to the exhaust terminal that decomposes and detoxifies excess phosgene with a 10% aqueous sodium hydroxide solution. For phosgene, use the empty air washing bottle from the cylinder.

パラフィンを入れた洗気瓶(泡散を数える)、空の洗気
瓶を通してフラスコに導入する。ガス導入管はかき混ぜ
機の上に差し込むようにし、析出するピリジン塩によっ
て詰まらないようにするため先端を漏斗状に広げておく
Introduce the paraffin into the flask through an air washing bottle (count the foam) and an empty air washing bottle. The gas introduction tube should be inserted above the stirrer, and the tip should be widened into a funnel shape to prevent it from becoming clogged by precipitated pyridine salt.

ガス導入に伴いピリジンの塩酸塩が析出して内容は濁っ
てくる。反応温度は308C以下になるように水冷する
。縮合の進行と共に粘ちょうになってくる。ホスゲン−
塩化水素錯体の黄色が消えなくなるまでホスゲンを通じ
る。反応終了後、メタノールを加えて重合体を沈殿せし
め、ろ別乾燥する。生成するポリカーボネートは塩化メ
チレン、ピリジン、クロロホルム、テトラヒドロフラン
等に溶けるから、これらの溶液からメタノールで再沈殿
して精製する。
As gas is introduced, pyridine hydrochloride precipitates and the contents become cloudy. Water cooling is performed so that the reaction temperature is 308C or less. It becomes viscous as the condensation progresses. Phosgene
Pass phosgene through until the yellow color of the hydrogen chloride complex no longer disappears. After the reaction is completed, methanol is added to precipitate the polymer, which is then filtered and dried. Since the polycarbonate produced is soluble in methylene chloride, pyridine, chloroform, tetrahydrofuran, etc., it is purified by reprecipitation from these solutions with methanol.

上記の芳香族ポリカーボネート共重合体とスチレン樹脂
とを均一に混合させる方法としては押し出し機、ニーダ
−、バンバリーミキサ−等による公知の溶融混線手法あ
るいは塩化メチレン等の共通溶媒に溶解させて溶媒混合
させ、後乾燥させる手法等を挙げることが出来る。
The above-mentioned aromatic polycarbonate copolymer and styrene resin can be uniformly mixed using a known melt mixing method using an extruder, kneader, Banbury mixer, etc., or by dissolving them in a common solvent such as methylene chloride and mixing with the solvent. , a post-drying method, etc.

また、本発明による樹脂組成物は必要に応じ公知の滑剤
各種の安定剤を生成物の諸物性に害を与えない範囲で含
有させてもよい。
Further, the resin composition according to the present invention may contain, if necessary, a known lubricant and various stabilizers within a range that does not harm the physical properties of the product.

以下に本発明を実施例について説明するが、本発明はこ
れらの実施例によって限定されるものではない。尚、以
下の参考例および実施例に示した粘度平均分子量とは、
ビスフェノールA、ポリカーボネートの20°Cにおけ
る塩化メチレン溶液を用いて測定して、固有粘度[11
1と粘度平均分子量Mvの関係式として得られた [!11: 1.11 X 10−4 (Mv)0.8
2[イー、ミラー(E、Miiller)とオー、バイ
ヤー(c,Bayer);米国特許2999844]の
式を用い固有粘度から計算したビスフェノールA、ポリ
カーボネート換算の分子量である。
EXAMPLES The present invention will be described below with reference to Examples, but the present invention is not limited to these Examples. In addition, the viscosity average molecular weight shown in the following reference examples and examples is
Bisphenol A, the intrinsic viscosity [11
1 and the viscosity average molecular weight Mv [! 11: 1.11 x 10-4 (Mv) 0.8
This is the molecular weight of bisphenol A in terms of polycarbonate calculated from the intrinsic viscosity using the formula of 2 [E, Miiller and C, Bayer; US Pat. No. 2,999,844].

(参考例及び実施例) 参考例1 芳香族ポリカーボネート共重合体の合成(エステル交換
法) 2.2− ヒス−(4−ヒドロキシフェニル)プロパン
14重量部(5mo1%)と1,1′−ビス−(4−ヒ
ドロキシフェニル)−p−ジイソプロピルベンゼン24
5重量部(59mo1%)と1,1−ビス−(4−ヒド
ロキシフェニル)シクロヘキサン116重量部(36m
o1%)とジフェニルカーボネート264重量部を31
三つロフラスコに入れ、脱気、N2パージを5回繰り返
した後、シリコンバス180°Cで窒素を導入しながら
溶融させた。溶融したら、カーボネート化触媒である水
素化ホウ素カリウムを予めフェノールに溶かした溶液(
仕込んだビスフェノール全量に対して3 X 10−3
 mo1%量)を加え、180°C,N2下、30分撹
はん醸成した。次に同温度下100Torrに減圧し、
30分撹はんした後、同温度下で更に50Torrに減
圧し、30分反応させた。次に徐々に温度を220°C
まで上げ30分反応させ、ここまでの反応でフェノール
留出理論量の80%を留出させた。
(Reference Examples and Examples) Reference Example 1 Synthesis of aromatic polycarbonate copolymer (ester exchange method) 2. 14 parts by weight (5 mo 1%) of 2-his-(4-hydroxyphenyl)propane and 1,1'-bis -(4-hydroxyphenyl)-p-diisopropylbenzene 24
5 parts by weight (59 mo1%) and 116 parts by weight (36 mo1%) of 1,1-bis-(4-hydroxyphenyl)cyclohexane.
1%) and 264 parts by weight of diphenyl carbonate.
The mixture was placed in a three-necked flask, and after repeating degassing and N2 purging five times, it was melted in a silicon bath at 180°C while nitrogen was introduced. Once melted, add a solution of potassium borohydride, the carbonation catalyst, dissolved in phenol (
3 x 10-3 for the total amount of bisphenol charged
Mo1% amount) was added, and the mixture was stirred and incubated at 180°C under N2 for 30 minutes. Next, the pressure was reduced to 100 Torr at the same temperature,
After stirring for 30 minutes, the pressure was further reduced to 50 Torr at the same temperature, and the mixture was reacted for 30 minutes. Then gradually increase the temperature to 220°C
The reaction was carried out for 30 minutes, and 80% of the theoretical amount of phenol was distilled out through the reaction up to this point.

しかる後、同温度下で10 Torrに減圧し30分反
応させ、温度を徐々に270°Cに上げ、30分反応さ
せた。更に同温度下で5 Torrに減圧し30分反応
させ、フェノール留出理論量のほぼ全量を留出させ、前
縮合を終えた。
Thereafter, the pressure was reduced to 10 Torr at the same temperature, and the reaction was carried out for 30 minutes, and the temperature was gradually raised to 270°C, and the reaction was carried out for 30 minutes. Further, at the same temperature, the pressure was reduced to 5 Torr and the reaction was allowed to proceed for 30 minutes, and almost the entire theoretical amount of phenol was distilled off, completing the precondensation.

次に同温度下で0.1〜0.3 Torrで2時間稜線
合させた。窒素下にて生成物のポリマーを取り出し冷却
した後、ジクロルメタンを溶媒に用いて200Cにて溶
液粘度を測定した。この値から算出した粘度平均分子量
(以下これをMvと略す)は、Mv=16,520であ
った。アツベの屈折計より測定した屈折率(以下これを
n。と略す)は、nD=1.5922であった。また、
示差走査カロリーメーター(DSC;Perkin −
Elmer 2C型)からガラス転移温度(以下これを
Tgと略す)は、Tg=156°Cであることがわかっ
た。また、ASTM−D−570−63に準じ測定した
吸水率(以下これをWabと略す)は、Wab = 0
.23%であった。更に光弾性定数(以下これをCと略
す)はC=32ブリュースターズ(Brewsters
、 10−12 m2 / N)であることがわかった
。光弾性定数は自作のものを用いて測定したが光弾性定
数の算出方法は試験片 (100mmX 10mmX 1mm)に異なる大きさ
の引張応力を長さ方向に追加し、下式(1)に各々の値
を代入してその傾きから光弾性定数を求めた。
Next, the edges were aligned at the same temperature for 2 hours at 0.1 to 0.3 Torr. After the product polymer was taken out and cooled under nitrogen, the solution viscosity was measured at 200C using dichloromethane as a solvent. The viscosity average molecular weight (hereinafter abbreviated as Mv) calculated from this value was Mv=16,520. The refractive index (hereinafter abbreviated as n) measured using an Atsube refractometer was nD=1.5922. Also,
Differential scanning calorimeter (DSC; Perkin -
Elmer 2C type), the glass transition temperature (hereinafter abbreviated as Tg) was found to be Tg = 156°C. In addition, the water absorption rate (hereinafter abbreviated as Wab) measured according to ASTM-D-570-63 is Wab = 0
.. It was 23%. Furthermore, the photoelastic constant (hereinafter abbreviated as C) is C=32 Brewsters
, 10-12 m2/N). The photoelastic constant was measured using a self-made one, but the method for calculating the photoelastic constant was to add different magnitudes of tensile stress to the test piece (100mm x 10mm x 1mm) in the length direction, and to calculate each using the following formula (1). The photoelastic constant was determined from the slope by substituting the value.

nl−n2=c(al−(72)      (1)但
し、 nl −n2:  複屈折 σ1−02:  残留応力 C: 光弾性定数 参考例2 芳香族ポリカーボネート共重合体の合成(ホスゲン法) 三つロフラスコに撹はん機、温度計、ガス導入管、排気
管を付ける。水酸化ナトリウム10重量%水溶液に2,
2−ビス−(4−ヒドロキシフェニル)プロパン55重
量部(20mo1%)と1,1′−ビス−(4−ヒドロ
キシフェニル)−p−ジイソプロピルベンゼン179重
量部(43mo1%)と1.1−ビス−(4−ヒドロキ
シフェニル)シクロヘキサン119重量部(37mo1
%)を溶かし、ジクロルメタンを加え、これを激しく撹
はんしながらホスゲンガスを導入した。ホスゲンはボン
ベから空の洗気瓶、水を入れた洗気瓶、空の洗気瓶を通
してフラスコに導入した。ホスゲンガスの導入中の反応
温度は25°C以下になるように水冷した。縮合の進行
と共に溶液は粘ちょうになってくる。更にホスゲン−塩
化水素錯体の黄色が消えなくなる迄ホスゲンを通じた。
nl-n2=c(al-(72)) (1) However, nl-n2: Birefringence σ1-02: Residual stress C: Photoelastic constant Reference example 2 Synthesis of aromatic polycarbonate copolymer (phosgene method) Three Attach a stirrer, a thermometer, a gas inlet pipe, and an exhaust pipe to the flask.
55 parts by weight (20 mo1%) of 2-bis-(4-hydroxyphenyl)propane, 179 parts by weight (43 mo1%) of 1,1'-bis-(4-hydroxyphenyl)-p-diisopropylbenzene, and 1,1-bis-(4-hydroxyphenyl)-p-diisopropylbenzene. -(4-hydroxyphenyl)cyclohexane 119 parts by weight (37 mo1
%) was dissolved, dichloromethane was added, and phosgene gas was introduced while stirring vigorously. Phosgene was introduced from the cylinder into the flask through an empty washing bottle, a washing bottle filled with water, and an empty washing bottle. The reaction temperature during the introduction of phosgene gas was water-cooled to 25°C or less. As the condensation progresses, the solution becomes viscous. Further phosgene was passed through the mixture until the yellow color of the phosgene-hydrogen chloride complex no longer disappeared.

反応終了後、メタノールに反応溶液を注ぎ込みろ別し、
水洗を繰り返した。更に生成したポリカーボネートは、
ジクロルメタンの溶液からメタノールで再沈して精製し
た。
After the reaction is complete, pour the reaction solution into methanol and filter it.
Repeated washing. Furthermore, the polycarbonate produced is
It was purified by reprecipitation with methanol from a dichloromethane solution.

精製後よく乾燥した後、ジクロルメタンを溶媒に用いて
20°Cにて溶液粘度を測定した。この値から算出した
粘度平均分子量Mvは18,420であった。更に、参
考例1と同様の測定を行ったところ、屈折率、ガラス転
移温度、光弾性定数、吸水率は第1表に示す結果となっ
た。
After purification and thorough drying, the solution viscosity was measured at 20°C using dichloromethane as a solvent. The viscosity average molecular weight Mv calculated from this value was 18,420. Furthermore, the same measurements as in Reference Example 1 were performed, and the results of the refractive index, glass transition temperature, photoelastic constant, and water absorption rate were shown in Table 1.

参考例3〜5 ビスフェノール(工)(II )(III )をそれぞ
れ第1表に掲げた如き割合で参考例1あるいは参考例2
で示したポリカーボネート共重合体の製造法(エステル
交換法あるいはホスゲン法)で共重合体を合成した。前
記参考例1および参考例2と同様に、これらの樹脂特性
を測定したところ第1表に示す結果となった。
Reference Examples 3 to 5 Bisphenol (II) (II) (III) was prepared in Reference Example 1 or Reference Example 2 in the proportions listed in Table 1, respectively.
A copolymer was synthesized by the polycarbonate copolymer manufacturing method (ester exchange method or phosgene method) shown in . The properties of these resins were measured in the same manner as Reference Example 1 and Reference Example 2, and the results are shown in Table 1.

尚、第1表には以下に記した参考例6,7の緒特性を併
記した。
Incidentally, Table 1 also lists the initial characteristics of Reference Examples 6 and 7 described below.

参考例6 ビスフェノールAホモポリカーボネートAD5503(
音大化成(株)商品名)は、ジクロルメタンを溶媒に用
いて20°Cにて溶液粘度を測定し、この値より算出し
た粘度平均分子量がMv=17,000であるビスフェ
ノールAホモポリカーボネートである。また、AD55
03においてG、Pρ、による数平均分子量は11,0
00であり重量平均分子量は37,000である。
Reference example 6 Bisphenol A homopolycarbonate AD5503 (
Ondai Kasei Co., Ltd. (trade name) is a bisphenol A homopolycarbonate whose viscosity average molecular weight, calculated from the solution viscosity measured at 20°C using dichloromethane as a solvent, is Mv = 17,000. . Also, AD55
In 03, the number average molecular weight according to G and Pρ is 11,0
00 and the weight average molecular weight is 37,000.

参考例7 スチレン単独重合体 5tyron666(旭化成((株)商品名)は、G、
P、C,にょる数平均分子量が55,000のスチレン
単独重合体である。
Reference Example 7 Styrene homopolymer 5tyron666 (trade name of Asahi Kasei Co., Ltd.) is G,
It is a styrene homopolymer with a number average molecular weight of 55,000.

(実施例1〜7および比較例1,2) 上記参考例1〜5の芳香族ポリカーボネート共重合体を
それぞれポリカーボネート樹脂工〜Vと略称し、参考例
6で得られたビスフェノールA−ホモポリカーボネート
をポリカーボネート樹脂■と略称する。更に、参考例7
で得られたホモポリスチレンをスチレン系樹脂Aと略称
する。
(Examples 1 to 7 and Comparative Examples 1 and 2) The aromatic polycarbonate copolymers of Reference Examples 1 to 5 above are respectively abbreviated as polycarbonate resin-V, and the bisphenol A-homopolycarbonate obtained in Reference Example 6 is It is abbreviated as polycarbonate resin ■. Furthermore, reference example 7
The homopolystyrene obtained is abbreviated as styrenic resin A.

ポリカーボネート樹脂工〜■とスチレン系樹脂Aを第2
表に示した如き割合で20Φのブラベンダー、エクスト
ウルダ−(Brabender Extruder)を
用い混練し、ペレット化を行いポリカーボネート系樹脂
組成物を得た。
Polycarbonate resin ~■ and styrene resin A are the second
The mixture was kneaded using a 20Φ Brabender Extruder in the proportions shown in the table and pelletized to obtain a polycarbonate resin composition.

得られたポリカーボネート系樹脂組成物それぞれについ
て諸物件を測定したところ第2表に示す結果を得た。
When various properties were measured for each of the obtained polycarbonate resin compositions, the results shown in Table 2 were obtained.

(効果) 表−2の結果から明らかな様に、本発明によるポリカー
ボネート樹脂組成物は、透明性に優れ、且つ光学的歪み
の小さい樹脂組成物であることがわかる。
(Effects) As is clear from the results in Table 2, the polycarbonate resin composition according to the present invention is a resin composition with excellent transparency and small optical distortion.

また、エンジニアリングプラスチックスの用途としても
特に透明性が要求される分野に用いられる。
It is also used in engineering plastics, particularly in fields where transparency is required.

Claims (2)

【特許請求の範囲】[Claims] (1)(イ)数種の特定の二価フェノール系化合物を用
いてなる芳香族ポリカーボネー ト共重合体1〜99重量%及び (ロ)スチレンの単独重合体99〜1重量%を混合して
なる透明なポリカーボネート 系樹脂組成物
(1) (a) A mixture of 1 to 99% by weight of an aromatic polycarbonate copolymer using several specific dihydric phenol compounds and (b) 99 to 1% by weight of a styrene homopolymer. Transparent polycarbonate resin composition
(2)数種の特定の二価フェノール系化合物を用いてな
る芳香族ポリカーボネート共重合体は2、2−ビス−(
4−ヒドロキシフェニル)プロパン(aモル%)と1、
1′−ビス−(4−ヒドロキシフェニル)−p−ジイソ
プロピルベンゼン(bモル%)と1、1−ビス−(4−
ヒドロキシフェニル)シクロヘキサン(cモル%)をカ
ーボネート結合して得られる芳香族ポリカーボネート共
重合体である特許請求の範囲第1項記載のポリカーボネ
ート系樹脂組成物。 ここで、芳香族ポリカーボネート共重合体の樹脂組成範
囲に用いたa、b、c(モル%)は、下記数式( I )
〜(VI)を満足する芳香族ポリカーボネート共重合体で
ある。 a+b+c=100・・・・・・( I ) 0≦b<100・・・・・・(II) 0≦c≦75・・・・・・(III) 0≦a≦35+5.5cただし0≦c≦10の時・・・
・・(IV) 0≦a≦100−cただし10≦c≦70の時・・・・
・(V) 0≦a≦450−6cただし70≦c≦75の時・・・
・・(VI)
(2) Aromatic polycarbonate copolymers made using several specific dihydric phenol compounds are 2,2-bis-(
4-hydroxyphenyl)propane (a mol%) and 1,
1'-bis-(4-hydroxyphenyl)-p-diisopropylbenzene (b mol%) and 1,1-bis-(4-
2. The polycarbonate resin composition according to claim 1, which is an aromatic polycarbonate copolymer obtained by carbonate-bonding hydroxyphenyl)cyclohexane (c mol %). Here, a, b, c (mol%) used for the resin composition range of the aromatic polycarbonate copolymer are expressed by the following formula (I)
It is an aromatic polycarbonate copolymer that satisfies (VI). a+b+c=100...(I) 0≦b<100...(II) 0≦c≦75...(III) 0≦a≦35+5.5c However, 0≦ When c≦10...
...(IV) 0≦a≦100-c, but when 10≦c≦70...
・(V) 0≦a≦450-6c However, when 70≦c≦75...
...(VI)
JP62267549A 1987-10-22 1987-10-22 Polycarbonate resin composition Expired - Lifetime JP2853806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62267549A JP2853806B2 (en) 1987-10-22 1987-10-22 Polycarbonate resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62267549A JP2853806B2 (en) 1987-10-22 1987-10-22 Polycarbonate resin composition

Publications (2)

Publication Number Publication Date
JPH01110556A true JPH01110556A (en) 1989-04-27
JP2853806B2 JP2853806B2 (en) 1999-02-03

Family

ID=17446357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62267549A Expired - Lifetime JP2853806B2 (en) 1987-10-22 1987-10-22 Polycarbonate resin composition

Country Status (1)

Country Link
JP (1) JP2853806B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241623A (en) * 2001-02-16 2002-08-28 Teijin Chem Ltd Resin composition for optical disk substrate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4923243A (en) * 1972-06-26 1974-03-01
JPS5017462A (en) * 1973-06-09 1975-02-24
JPS5525467A (en) * 1978-08-14 1980-02-23 Mitsubishi Gas Chem Co Inc Polymer composition
JPS63110248A (en) * 1986-10-22 1988-05-14 バイエル・アクチエンゲゼルシヤフト Thermoplastic mixture of aromatic polycarbonate and polystyrene and its use as base material for optical data memory

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4923243A (en) * 1972-06-26 1974-03-01
JPS5017462A (en) * 1973-06-09 1975-02-24
JPS5525467A (en) * 1978-08-14 1980-02-23 Mitsubishi Gas Chem Co Inc Polymer composition
JPS63110248A (en) * 1986-10-22 1988-05-14 バイエル・アクチエンゲゼルシヤフト Thermoplastic mixture of aromatic polycarbonate and polystyrene and its use as base material for optical data memory

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241623A (en) * 2001-02-16 2002-08-28 Teijin Chem Ltd Resin composition for optical disk substrate

Also Published As

Publication number Publication date
JP2853806B2 (en) 1999-02-03

Similar Documents

Publication Publication Date Title
JP2002541284A (en) Optical quality polycarbonate with reduced electrostatic charge and process for its production
JPH0662752B2 (en) Optical information material
KR20040105583A (en) Polycarbonate resin composition and polarizing sheet used the same
JP5440500B2 (en) Polycarbonate resin composition and optical material using the same
CN104854164B (en) Polycarbonate resin, its production method and the mechanograph comprising it
JPH0139688B2 (en)
KR101574837B1 (en) Polycarbonate resin for film, method for preparing the same and film comprising the same
JP5682562B2 (en) Polycarbonate resin composition
JPH01110556A (en) Polycarbonate based resin composition
JPS63223034A (en) Polycarbonate copolymer
JP2580255B2 (en) Polycarbonate resin composition
JPH06116382A (en) Non-rigid polycarbonate resin
JP3841120B2 (en) Polycarbonate resin composition
JPH01299864A (en) Polycarbonate resin composition
JPH01299865A (en) Polycarbonate resin composition
JP5287704B2 (en) Polycarbonate resin composition
JPS63207821A (en) Aromatic polycarbonate terpolymer
JP2000178431A (en) Polycarbonate resin composition, optical part and its production
JPH0618701A (en) Lens
JPH07216079A (en) Modified aromatic polycarbonate resin and its production
JPH08143760A (en) Reinforced aromatic polycarbonate resin composition and molding
JP2000178430A (en) Polycarbonate resin composition, optical part and its production
JPS63207822A (en) Aromatic polycarbonate terpolymer
JP4513949B2 (en) Polycarbonate resin
JPS63199734A (en) Aromatic polycarbonate terpolymer