JPH0111040Y2 - - Google Patents

Info

Publication number
JPH0111040Y2
JPH0111040Y2 JP6266684U JP6266684U JPH0111040Y2 JP H0111040 Y2 JPH0111040 Y2 JP H0111040Y2 JP 6266684 U JP6266684 U JP 6266684U JP 6266684 U JP6266684 U JP 6266684U JP H0111040 Y2 JPH0111040 Y2 JP H0111040Y2
Authority
JP
Japan
Prior art keywords
vacuum
crystal
pressure
cans
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6266684U
Other languages
Japanese (ja)
Other versions
JPS60174600U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6266684U priority Critical patent/JPS60174600U/en
Publication of JPS60174600U publication Critical patent/JPS60174600U/en
Application granted granted Critical
Publication of JPH0111040Y2 publication Critical patent/JPH0111040Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Fluid Pressure (AREA)

Description

【考案の詳細な説明】 〈産業上の利用分野〉 本考案は、糖精製に用いられる真空結晶缶を複
数並列運転するプラントにおける、各真空結晶缶
内の圧力を相互干渉なしに調節する制御装置に関
する。
[Detailed description of the invention] <Industrial field of application> The present invention is a control device that adjusts the pressure inside each vacuum crystallizer without mutual interference in a plant in which multiple vacuum crystallizers used for sugar refining are operated in parallel. Regarding.

〈従来の技術〉 第3図〜第5図に基づいて従来技術を説明す
る。第3図は真空結晶缶の基本構成図である。
<Prior art> The prior art will be explained based on FIGS. 3 to 5. FIG. 3 is a basic configuration diagram of a vacuum crystal can.

真空結晶缶による煎糖処理は例えば第3図に示
すように、カランドリア型の加熱部2を有する直
立型結晶缶1内に、煎糖されるべき糖液3が調節
弁4を介して下部より供給される。加熱用蒸気5
は調節弁6を介して結晶缶1内の加熱部2に与え
られる。糖液を加熱蒸発させて濃縮すると共に糖
液の補充を行ない、結晶析出が可能な起晶濃度に
達した時に、その糖液に対して種糖を投入器7か
ら弁8を介して添加して各品種に適した結晶核を
発生させる。その後はこの結晶核が相互に結合し
たり、希望しない種の結晶核(偽晶)が新らたに
発生することを避けるため、缶内の様子を監視し
ながら差水あるいは糖液を供給し、濃縮と育晶を
続ける。或る程度まで結晶が成長し、単位体積当
りの白下(糖液と結晶の混合液)内の結晶の体積
が或る値以上になり、結晶が互に可成り接近して
くると、偽晶が比較的発生し難くなり、これより
更に濃縮し、結晶が成長し易くすると共に糖液の
供給を行ない缶内のその容積が一定値まで増加
し、結晶の粒度が所要の大きさまで成長すると、
缶内の白下9が排出弁10より排出される。排出
された白下は遠心分離機により結晶と糖液とに分
離され、その糖液は再び煎糖に利用されることが
繰返される。煎糖中に白下の濃度を適当な値にす
るため、差水11を調節弁12を通じて缶1内に
供給することができる。13は白下の流動物を検
出する固さ計、14はこの検出信号に基づいて糖
液弁4、差水弁12の開閉を制御するプログラム
調節計である。缶1内の蒸気はコンデンサ15に
真空ポンプ16により引かれ、このコンデンサ1
5は水17により冷却される。
For example, as shown in FIG. 3, the sugar solution 3 to be roasted is poured into an upright crystallizer 1 having a calandria-type heating section 2 from the bottom via a control valve 4. Supplied. Heating steam 5
is applied to the heating section 2 in the crystal can 1 via the control valve 6. The sugar solution is concentrated by heating and evaporated, and at the same time, the sugar solution is replenished, and when a crystallization concentration that allows crystal precipitation is reached, seed sugar is added to the sugar solution from the feeder 7 through the valve 8. to generate crystal nuclei suitable for each variety. After that, in order to prevent these crystal nuclei from combining with each other and from generating new crystal nuclei of undesired species (pseudocrystals), add water or sugar solution while monitoring the inside of the can. , continue concentration and crystal growth. When the crystals grow to a certain extent, the volume of the crystals per unit volume in the white (mixture of sugar solution and crystals) exceeds a certain value, and the crystals come quite close to each other, it becomes false. It becomes relatively difficult for crystals to form, and it is further concentrated, making it easier for crystals to grow, and by supplying sugar solution, the volume in the can increases to a certain value, and the grain size of the crystals grows to the required size. ,
The white matter 9 inside the can is discharged from the discharge valve 10. The discharged white flour is separated into crystals and sugar solution using a centrifuge, and the sugar solution is repeatedly used to make decoction sugar. In order to adjust the concentration of white flour in the roasted sugar to an appropriate value, a difference water 11 can be supplied into the can 1 through a control valve 12. Reference numeral 13 is a hardness meter that detects the fluid under the white, and reference numeral 14 is a program controller that controls opening and closing of the sugar solution valve 4 and the differential water valve 12 based on this detection signal. The steam in the can 1 is drawn to a condenser 15 by a vacuum pump 16, and the condenser 1
5 is cooled by water 17.

18は缶内の圧力を検出する圧力センサで、そ
の出力PVが圧力調節計19に測定値として導か
れる。SVは圧力設定値、MVは調節出力で、真
空ポンプに接続される管路20の途中に設けた空
気22のブリード弁21の開度が制御され、測定
値PVが設定値SVに一致するように制御される。
18 is a pressure sensor that detects the pressure inside the can, and its output PV is led to a pressure regulator 19 as a measured value. SV is the pressure set value, MV is the adjustment output, and the opening degree of the air 22 bleed valve 21 provided in the middle of the pipe line 20 connected to the vacuum pump is controlled so that the measured value PV matches the set value SV. controlled by.

このような構成の真空結晶缶が複数設けられる
プラントでは、各真空結晶缶毎に真空ポンプ16
を設けるのは不経済であり、スペースもとるの
で、共通に一台の真空ポンプを設けるか、又は他
の設備で用いられている真空ポンプに余力がある
場合はそれを用いることが行なわれる。
In a plant where a plurality of vacuum crystal cans with such a configuration are installed, a vacuum pump 16 is installed for each vacuum crystal can.
Since it is uneconomical to provide a vacuum pump and takes up a lot of space, it is common practice to provide a single vacuum pump, or to use a vacuum pump used in other equipment if there is surplus capacity.

第4図は共通の真空ポンプ16による従来構成
を示す。11〜1oはn個の真空結晶缶であり、第
3図に対応する要素は同一符号に各缶に対応する
サフイツクス記号を付して示してある。23は真
空ポンプ16に接続される主管路で、241…2
oは、この主管路と各真空結晶缶のコンデンサ
151…15oを結ぶ枝管路である。
FIG. 4 shows a conventional configuration using a common vacuum pump 16. 1 1 to 1 o are n vacuum crystal cans, and elements corresponding to those in FIG. 3 are indicated by the same reference numerals with a suffix symbol corresponding to each can. 23 is a main pipe connected to the vacuum pump 16, 24 1 ...2
4 o is a branch pipe connecting this main pipe to the capacitors 15 1 . . . 15 o of each vacuum crystal can.

第5図は従来構成の他の例を示し、缶内の圧力
調節の手段として、コンデンサ151…15oに対
する冷却水171…17oを調節する調節弁251
…25oを設け、調節計191…19oの出力MV1
…MVoで冷却水量を制御するように構成した例
であり、基本構成は第4図と同一である。
FIG. 5 shows another example of the conventional configuration, in which a regulating valve 25 1 is used as a means for regulating the pressure inside the can, regulating the amount of cooling water 17 1 ... 17 o to the condenser 15 1 ... 15 o.
...25 o is provided, and the output MV 1 of the controller 19 1 ...19 o
...This is an example of a configuration in which the amount of cooling water is controlled by MV o , and the basic configuration is the same as that in Fig. 4.

このような従来構成では、各真空結晶缶の枝管
路が主管路を介して直接的に結合されるため、各
缶内の圧力の調節値が異なる場合、又は缶内の圧
力が外乱により変動した場合等の影響が他の缶内
の圧力に影響を与えやすく、各真空結晶缶毎に高
精度で安定した缶内圧力制御が実現しにくい欠点
があつた。
In such a conventional configuration, the branch pipes of each vacuum crystal can are directly connected via the main pipe, so if the pressure adjustment value in each can is different or the pressure in the can fluctuates due to disturbance. This has the disadvantage that it is difficult to achieve highly accurate and stable internal pressure control for each vacuum crystallization can, as the effects of this type of vacuum crystallization can easily affect the pressure in other cans.

〈目的〉 本考案は、共通の真空ポンプを用いる場合に生
ずる上記問題点を解決し、各真空結晶缶を他との
相互干渉なしに高精度で安定した圧力制御を可能
にした制御装置を実現することを目的とする。
<Purpose> The present invention solves the above problems that occur when a common vacuum pump is used, and realizes a control device that enables highly accurate and stable pressure control of each vacuum crystal can without mutual interference with others. The purpose is to

〈考案の構成〉 本考案の構成上の特徴は、複数の真空結晶缶と
これら真空結晶缶に対して共通に設けられた真空
ポンプと、この真空ポンプに接続される主管路に
対して上記各真空結晶缶を接続する複数の枝管路
と、各枝管路に設けた複数個の絞り弁と、各枝管
路において上記絞り弁と真空結晶缶の途中に設け
た複数のブリード弁と、上記各真空結晶缶に対応
して設けられた複数の圧力調節計及び複数の圧力
センサとを有し、上記各調節計は上記圧力センサ
よりのPV値と各真空結晶缶毎に設定されるSV値
に基づいて上記各枝管路の絞り弁とブリード弁の
開度をその出力の50%近傍を境界に互いに互方向
に制御するように構成した点にある。
<Configuration of the invention> The structural features of the invention include a plurality of vacuum crystal cans, a vacuum pump commonly provided to these vacuum crystal cans, and a main pipe connected to the vacuum pumps with the above-mentioned components. A plurality of branch pipes connecting the vacuum crystal cans, a plurality of throttle valves provided in each branch pipe, and a plurality of bleed valves provided in each branch pipe between the throttle valve and the vacuum crystal can, It has a plurality of pressure regulators and a plurality of pressure sensors provided corresponding to each of the vacuum crystal cans, and each of the regulators uses the PV value from the pressure sensor and the SV set for each vacuum crystal can. The opening degree of the throttle valve and bleed valve of each branch pipe is controlled in the opposite direction based on the value, with a border around 50% of the output.

〈実施例〉 以下第1図に示した実施例及び第2図に示した
動作説明図に従つて本考案を説明する。第4図、
第5図に示した従来構成と同一要素には同一符号
を付して説明を省略する。
<Embodiment> The present invention will be described below with reference to the embodiment shown in FIG. 1 and the operational diagram shown in FIG. Figure 4,
Elements that are the same as those in the conventional configuration shown in FIG. 5 are given the same reference numerals and explanations will be omitted.

本考案の特徴は、各枝管241…24oにおい
て、コンデンサ151…15oまでの途中に絞り弁
251…25oを設け、調節計の出力MV1…MVo
でこれら絞り弁とブリード弁211…21oの開度
を調節して各真空結晶缶内の圧力を設定圧力SV1
…SVoに制御するようにしたものである。
The feature of the present invention is that a throttle valve 25 1 ... 25 o is provided in each branch pipe 24 1 ... 24 o on the way to the condenser 15 1 ... 15 o , and the output of the controller MV 1 ... MV o
Set the pressure inside each vacuum crystal can by adjusting the opening degrees of these throttle valves and bleed valves 21 1 ... 21 o to set the pressure SV 1
...It is controlled by SV o .

第2図はi番目の真空結晶缶1iにおける調節
計出力MViの0〜100%に対応する、ブリード弁
21iの弁開度及び絞り弁25iの弁開度特性を示
すものであつて、MViの0→50%に対応してブリ
ード弁21iは100%→0%の弁開度特性を有し、
MViの50%→100%に対して絞り弁25iは0%→
100%の弁開度特性を有する。このような弁開度
のスプリツト特性により、真空結晶缶内の圧力
は、調節計出力によりブリード弁又は絞り弁の一
方が選択されてその開度により調節されることに
なる。
FIG. 2 shows the valve opening characteristics of the bleed valve 21 i and the throttle valve 25 i corresponding to 0 to 100% of the controller output MV i in the i-th vacuum crystal can 1 i. Therefore, the bleed valve 21 i has a valve opening characteristic of 100% → 0% in response to MV i from 0 → 50%,
Throttle valve 25 i is 0% → 50% → 100% of MV i
Has 100% valve opening characteristics. Due to such a split characteristic of the valve opening degree, the pressure inside the vacuum crystal can is adjusted by selecting one of the bleed valve or the throttle valve according to the output of the controller.

本考案は、枝管路241…24oの途中に絞り弁
251…25oが設けられる構成により、この絞り
弁が主管路23を介して他の真空結晶缶との結合
を隔離する機能を有し、相互干渉が防止される。
即ち、一般に真空ポンプ16の真空能力はブリー
ド弁によるブリード量よりも大きいので通常の使
用状態では絞り弁の開度は極めてわずかの開度で
制御され、その絞り弁の入力側と出力側の圧力差
は大きく、この大きな圧力差によつて他の真空結
晶缶との隔離が効果的に実現される。
The present invention has a configuration in which throttle valves 25 1 ... 25 o are provided in the middle of the branch pipes 24 1 ... 24 o , and the function of this throttle valve is to isolate the connection with other vacuum crystal cans via the main pipe 23. mutual interference is prevented.
That is, in general, the vacuum capacity of the vacuum pump 16 is larger than the amount of bleed by the bleed valve, so in normal use, the opening of the throttle valve is controlled to an extremely small opening, and the pressure on the input and output sides of the throttle valve is controlled to a very small degree. The difference is large, and this large pressure difference effectively achieves isolation from other vacuum crystal cans.

〈効果〉 以上説明したように、本考案によれば、1台の
共通に設けた真空ポンプにより、複数の真空結晶
缶を各々別の圧力に調節して並列的に運転が可能
であり、各結晶缶内の圧力変動が他に影響する相
互干渉を完全に除去し、高精度で安定した圧力制
御装置を実現することができる。
<Effects> As explained above, according to the present invention, multiple vacuum crystal cans can be operated in parallel by adjusting each pressure to a different level using one commonly provided vacuum pump, and each can be operated in parallel. It is possible to completely eliminate mutual interference caused by pressure fluctuations in the crystal can and realize a highly accurate and stable pressure control device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例を示す構成図、第2
図はその動作説明図、第3図は真空結晶缶の基本
構成図、第4図、第5図は従来の制御装置の一例
を示す構成図である。 11〜1o……真空結晶缶、151〜15o……コ
ンデンサ、16……真空ポンプ、171〜17o
…冷却水、181〜18o……圧力センサ、191
〜19o……調節計、211〜21o……ブリード
弁、23……主管路、241〜24o……枝管路、
251〜25o……絞り弁。
Fig. 1 is a configuration diagram showing one embodiment of the present invention;
The figure is an explanatory diagram of its operation, FIG. 3 is a basic configuration diagram of a vacuum crystal can, and FIGS. 4 and 5 are configuration diagrams showing an example of a conventional control device. 1 1 ~ 1 o ... Vacuum crystal can, 15 1 ~ 15 o ... Capacitor, 16 ... Vacuum pump, 17 1 ~ 17 o ...
…Cooling water, 18 1 to 18 o …Pressure sensor, 19 1
~19 o ...Controller, 21 1 ~21 o ...Bleed valve, 23...Main pipe, 241 ~24 o ...Branch pipe,
25 1 ~ 25 o ... Throttle valve.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 複数の真空結晶缶と、これら真空結晶缶に対し
て共通に設けられた真空ポンプと、この真空ポン
プに接続される主管路に対し上記各真空結晶缶を
接続する複数の枝管路と、各枝管路に設けた複数
の絞り弁と、各枝管路において上記絞り弁と真空
結晶缶の途中に設けた複数のブリード弁と、上記
各真空結晶缶に対応して設けられた複数の圧力調
節計及び複数の圧力センサとを有し、上記各調節
計は上記各圧力センサよりのPV値と各真空結晶
缶毎に設定されるSV値に基づいて、上記各枝管
路に設けられ、かつ上記圧力調節計の出力が50%
近傍においてその弁開度がほぼ0%の絞り弁とブ
リード弁の開度をその出力の50%近傍を境界に互
いに逆方向に制御することを特徴とする真空結晶
缶圧力制御装置。
A plurality of vacuum crystal cans, a vacuum pump commonly provided to these vacuum crystal cans, a plurality of branch pipes connecting each of the vacuum crystal cans to the main pipe connected to the vacuum pump, and each A plurality of throttle valves provided in the branch pipes, a plurality of bleed valves provided in each branch pipe between the throttle valves and the vacuum crystal cans, and a plurality of pressure valves provided corresponding to each of the vacuum crystal cans. It has a controller and a plurality of pressure sensors, each of the controllers is provided in each of the branch pipes based on the PV value from each of the pressure sensors and the SV value set for each vacuum crystal can, And the output of the pressure regulator above is 50%.
A vacuum crystal can pressure control device characterized in that the opening degrees of a throttle valve and a bleed valve, whose valve opening degrees are approximately 0% in the vicinity, are controlled in mutually opposite directions with a border around 50% of their output.
JP6266684U 1984-04-27 1984-04-27 Vacuum crystal canister pressure control device Granted JPS60174600U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6266684U JPS60174600U (en) 1984-04-27 1984-04-27 Vacuum crystal canister pressure control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6266684U JPS60174600U (en) 1984-04-27 1984-04-27 Vacuum crystal canister pressure control device

Publications (2)

Publication Number Publication Date
JPS60174600U JPS60174600U (en) 1985-11-19
JPH0111040Y2 true JPH0111040Y2 (en) 1989-03-30

Family

ID=30592093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6266684U Granted JPS60174600U (en) 1984-04-27 1984-04-27 Vacuum crystal canister pressure control device

Country Status (1)

Country Link
JP (1) JPS60174600U (en)

Also Published As

Publication number Publication date
JPS60174600U (en) 1985-11-19

Similar Documents

Publication Publication Date Title
CA2453129A1 (en) Method and system for growing plants
US4009045A (en) Continuous crystallization process and apparatus
JPH0111040Y2 (en)
JPS63123422A (en) Dehumidified air feeder
JPH03155718A (en) Device for nutritive solution culture of plant
JPH04720Y2 (en)
JPH0134040B2 (en)
SU1518377A1 (en) System of automatic control of evaporating installation
JPS58175500A (en) Control of crystallization boiler
SU368870A1 (en) METHOD OF AUTOMATIC REGULATION OF THE PROCESS OF OBTAINING CRYSTALLINE PRODUCTS
JPS6190701A (en) Control device for multiple-effect evaporator
SU1271552A1 (en) Method of controlling dehumidification of gas
SU484877A1 (en) The system of automatic control of the process of obtaining crystalline products in a multi-unit vacuum evaporation unit without external steam sampling
JPS63169999A (en) Program control of crystallizing boiler
JPH0552162B2 (en)
SU558042A1 (en) Method for automatic control of heat supply to columns of a screening apparatus
SU1616992A1 (en) Method of automatic control of film-type evaporator
JPH0773518B2 (en) Crystal can program control method
SU958842A1 (en) Evaporator operation mode control method
SU944594A1 (en) Method of control of evaporation process in multi-housing evaporation installation
SU1751591A1 (en) System controlling concentration ratio in steam-releasing stages of drum-type boiler
SU1124036A1 (en) Method for automatically controlling evaporation of sugar massecuites
SU1732001A2 (en) Method of automatic control of compressed air flow rate by multi-stage airlift plant
SU1124035A1 (en) Method for controlling crystallization of sugar-containing solutions
JPS584919B2 (en) Crystal can control method