JPH01110257A - Detection of cracking defect inside continuous cast piece - Google Patents

Detection of cracking defect inside continuous cast piece

Info

Publication number
JPH01110257A
JPH01110257A JP62268776A JP26877687A JPH01110257A JP H01110257 A JPH01110257 A JP H01110257A JP 62268776 A JP62268776 A JP 62268776A JP 26877687 A JP26877687 A JP 26877687A JP H01110257 A JPH01110257 A JP H01110257A
Authority
JP
Japan
Prior art keywords
vibration
time
slab
detection
cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62268776A
Other languages
Japanese (ja)
Inventor
Tomoharu Shimokasa
知治 下笠
Takafumi Matsuzaki
松崎 孝文
Kenji Maekawa
健二 前川
Kougi Motomatsu
元松 広議
Shigenori Koga
古賀 成典
Kazumi Seki
関 和巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP62268776A priority Critical patent/JPH01110257A/en
Publication of JPH01110257A publication Critical patent/JPH01110257A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To detect a non-planar cracking defect at a high accuracy, by vibrating an end of a piece to be inspected to judge the arrival of a longitudinal wave extracting a high frequency vibration component of vibration at an end face as opposed to a vibrating surface. CONSTITUTION:An impulse impact signal containing an even frequency component is applied with a hammer 2 to a vibrating surface 1a of a piece 1 to be inspected such as stainless slab. A sensor 4 is fixed on a surface 1b to be detected as opposed to the vibrating surface 1a of the piece 1 being inspected to detect vibration caused in the piece 1 being inspected. After a high frequency component alone is extracted with a high pass filter, for example, exceeding 40kHz, a vibration detection output is inputted into a time difference detection circuit which calculates a time length to the detection of vibration from the time of applying a vibration. When the results coincide with the arrival time of a longitudinal wave, the absence of a cracking is determined and when it does with the arrival time of a lateral wave, a cracking is determined as present.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、連続鋳造で得られたフェライト系ステンレス
鋼鋳片の内部及び表面まで到達した非平面割れ欠陥を検
出する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for detecting non-planar crack defects that have reached the inside and surface of a ferritic stainless steel slab obtained by continuous casting.

〔従来の技術〕[Conventional technology]

ステンレス鋼鋳片を連続鋳造によって製造する場合、ス
テンレス鋼に特有な物理的性質のため、普通鋼の鋳片と
は異なった鋳片内部の割れ欠陥が生ずる。
When stainless steel slabs are manufactured by continuous casting, due to the physical properties unique to stainless steel, cracking defects occur inside the slabs, which are different from ordinary steel slabs.

連続鋳造で得られたステンレス鋼鋳片(以下、単にステ
ンレススラブという)の内部に発生する割れ欠陥の主な
種類について、模式図を第5図に示す。
FIG. 5 shows a schematic diagram of the main types of crack defects that occur inside stainless steel slabs obtained by continuous casting (hereinafter simply referred to as stainless steel slabs).

これは、ステンレススラブの表裏面に対し平行に発生す
る平面割れ(A)と垂直方向に発生する非平面割れ(B
)、 (C)とに大別される。
These are plane cracks (A) that occur parallel to the front and back surfaces of the stainless steel slab, and non-plane cracks (B) that occur perpendicularly to the front and back surfaces of the stainless steel slab.
) and (C).

そこで前記割れをc−c’断面(スラブの幅方向>、L
−L’断面(スラブの長さ方向) 及びZ−2′投投影
面(スラブの厚み方向)について観察すると、それぞれ
の断面で異なった形態を有する。
Therefore, the crack is
When observed on the -L' cross-section (lengthwise direction of the slab) and the Z-2' projection plane (thickness direction of the slab), each cross-section has a different form.

平面割れ(A)は、第6図の(a)、ら)、(C)のよ
うに、非平面割れ(B)は第7図の(a)、の)、 (
C)のように、同様に非平面割れ(C)は第8図の(a
)、(6)、(C)のようにそれぞれ表現される。
Planar cracks (A) are as shown in (a), ra), and (C) in Figure 6, and non-plane cracks (B) are as shown in (a), ra), and (C) in Figure 7.
Similarly, non-planar cracks (C) are shown in Figure 8 (a).
), (6), and (C), respectively.

また、このときの割れの定義を第1表に示す。Furthermore, the definition of cracking at this time is shown in Table 1.

第  1  表 ここで、普通鋼のスラブにおいては、(A)及び(B)
が主であり、(C)はほとんど発生しない。
Table 1 Here, for ordinary steel slabs, (A) and (B)
is the main one, and (C) almost never occurs.

一方、ステンレススラブの場合は、凝固組織も粗く、冷
却の進行と共に脆化が進展するために、(C)タイプの
割れ(以下、単に置き割れという)が発生し易い。
On the other hand, in the case of a stainless steel slab, the solidified structure is rough and embrittlement progresses as cooling progresses, so type (C) cracks (hereinafter simply referred to as cracks) are likely to occur.

この置き割れ発生防止対策の一つに、スラブの高温維持
管理がある。しかし、ステンレス鋼においては、圧延加
熱炉でのスケールオフが小さいため、スラブの表面性状
が直接成品に関与することになる。このため、スラブ表
面の手入れが必要となる。
One of the measures to prevent this occurrence of cracking is to maintain the slab at high temperatures. However, in the case of stainless steel, the scale-off in the rolling heating furnace is small, so the surface texture of the slab directly affects the finished product. Therefore, it is necessary to take care of the slab surface.

このようなスラブの手入れとしては、大きく分けて溶剤
手入れとグラインダー手入れとがある。
Such slab maintenance can be broadly divided into solvent maintenance and grinder maintenance.

このうち、溶剤手入れは、高炭素鋼等の割れ感受性の高
いもの以外の普通鋼に対して一般的に採用されている。
Among these, solvent treatment is generally adopted for ordinary steels other than those with high crack susceptibility such as high carbon steel.

しかし、ステンレス鋼の場合には、鉄の酸化燃焼による
溶融を利用する鉄パウダー法での溶剤による手入れは不
可能である。そこで、ステンレス鋼の手入れには、グラ
インダーが使用されている。このグラインダーによる手
入れは、冷間又は温間が主流であり、熱聞手入れはそれ
相応の設備対策が必要となる。特に、ステンレススラブ
の場合には、微小な欠陥も問題となるため、人による官
能検査も必要とされるように手入れ・検査が厳格となり
、高温スラブの状態での検査は困難である。
However, in the case of stainless steel, it is impossible to clean it with a solvent using the iron powder method, which utilizes melting through oxidative combustion of iron. Therefore, a grinder is used to clean stainless steel. Cleaning using a grinder is mainly performed in cold or warm conditions, and hot grinding requires appropriate equipment measures. In particular, in the case of stainless steel slabs, minute defects can be a problem, so care and inspection are strict enough to require sensory inspection by humans, and inspection in the state of high-temperature slabs is difficult.

また、ステンレス鋼は、一般的にいって鋳造組織が粗く
、金属間化合物や炭化物等が結晶粒界に析出し、偏析、
マイクロクラック等の欠陥が発生し易い。その結果、本
質的に靭性が低く、特にスラブ中心部は割れ感受性が高
くなる。また、シャルピー衝撃エネルギーは、200 
℃近傍で遷移温度を示す。
In addition, stainless steel generally has a coarse cast structure, and intermetallic compounds and carbides precipitate at grain boundaries, causing segregation and
Defects such as microcracks are likely to occur. As a result, the toughness is inherently low and the core of the slab is particularly susceptible to cracking. In addition, the Charpy impact energy is 200
The transition temperature is around ℃.

ステンレス鋼がもつこのような傾向及び物性とスラブに
発生する熱応力とが相俟って、前述の置き割れが発生す
る。すなわち、一般的にスラブの温度分布は、厚み中央
及び幅中央が最も高く、工□  ッジ部で低くなる。こ
の温度分布をもつステンレススラブが均一に冷却されて
温度降下するとき、その温度差に応じた熱応力が発生す
る。そして、この降温の過程で割れ感受性の高い領域を
通過するため、熱応力に起因した割れ、すなわち置き割
れが発生する。この置き割れがあると、圧延前の加熱炉
内及び粗圧延時にそれが表面まで進展し、板破断等のト
ラブルが起こり、その処置に長時間要することになる。
These tendencies and physical properties of stainless steel, combined with the thermal stress generated in the slab, cause the above-mentioned placement cracks to occur. That is, in general, the temperature distribution of a slab is highest at the center of thickness and center of width, and lower at the cutting edge. When a stainless steel slab with this temperature distribution is uniformly cooled and its temperature drops, thermal stress is generated in accordance with the temperature difference. Then, in the process of cooling down, the material passes through a region with high crack susceptibility, so cracks caused by thermal stress, that is, place cracks occur. If these cracks are present, they propagate to the surface in the heating furnace before rolling and during rough rolling, causing troubles such as plate breakage, which requires a long time to deal with.

したがって、従来は、圧延時の板破断等の発生をできる
限り抑えるため、トラブルを起こしたスラブと同一のチ
ャージの伴ずれスラブは、事前に分塊にて試験圧延を行
い、再び精整を実施し、本圧延を行うこととしていた。
Therefore, in the past, in order to minimize the occurrence of plate breakage during rolling, slabs with the same charge as the slab that caused the trouble were tested in advance by blooming, and then refinished. Then, it was decided that the final rolling would be carried out.

この余分な工程を避けるため、スラブ内部の割れ欠陥を
検出する方法が考えられており、一般に超音波探傷法が
用いられている。たとえば、特開昭59−52750号
公報においては、鋼板端部に垂直探触子を配設して、板
幅方向に縦波を伝播させて欠陥部を検出することが記載
されている。
In order to avoid this extra step, methods have been developed to detect cracks inside the slab, and ultrasonic flaw detection is generally used. For example, Japanese Unexamined Patent Publication No. 59-52750 discloses that a vertical probe is disposed at the end of a steel plate to propagate longitudinal waves in the width direction of the plate to detect defects.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、前記方法は、ステンレス鋼の場合、−般に鋳造
組織が脆いために超音波の減衰が激しく、検出信号にノ
イズが多量に混入して電気的処理が複雑になる。しかも
超音波の場合、スラブの表面性状(鋳型振動等に起因し
た凹凸等)による影響を受は易く、手入れ精整後は特に
部分的手入れによる凹凸が残り、該方法を用いることが
困難である。
However, in the case of stainless steel, the ultrasonic waves are attenuated rapidly due to the generally brittle cast structure, and a large amount of noise is mixed into the detection signal, complicating the electrical processing. Moreover, in the case of ultrasonic waves, it is easily affected by the surface properties of the slab (such as unevenness caused by mold vibration, etc.), and even after cleaning and finishing, unevenness remains especially due to partial cleaning, making it difficult to use this method. .

したがって、本発明は、ステンレス鋼特有の鋳片内部の
割れ欠陥に対して適切な検出を行うことを目的とする。
Therefore, an object of the present invention is to appropriately detect crack defects inside a cast slab, which are unique to stainless steel.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の内部割れ検出方法は、この目的を達成するため
、鋳片の端部に所定の強さの衝撃力を与え、この衝撃力
によって励振された鋳片の振動を、加振面と対向する端
面において検出し、この検出出力の中から高周波振動成
分のみを抽出し、前記衝撃力を与えた時刻から該高周波
振動成分の振動の立ち上がり時刻までの時間を監視し、
その時間が縦波の到達時間に相当するときは割れ欠陥な
しと判定し、前記時間が横波の到達時間に相当するとき
は割れ欠陥ありと判定することを特徴とする。
In order to achieve this objective, the internal crack detection method of the present invention applies an impact force of a predetermined strength to the end of the slab, and directs the vibration of the slab excited by this impact force to a direction opposite to the excitation surface. extracting only the high frequency vibration component from this detection output, monitoring the time from the time when the impact force is applied to the time when the vibration of the high frequency vibration component rises,
When the time corresponds to the arrival time of longitudinal waves, it is determined that there is no cracking defect, and when the time corresponds to the arrival time of transverse waves, it is determined that there is a cracking defect.

〔作用〕[Effect]

剛体に振動を加えると、加振された方向と同一方向の剛
体中の粒子の粗密により縦波が発生する。
When vibration is applied to a rigid body, longitudinal waves are generated due to the density of particles in the rigid body in the same direction as the direction of vibration.

また、加振された方向と直角方向の粒子のずれにより横
波も発生する。したがって、剛体中を伝わる振動は縦波
と横波とからなる。スラブ中における縦波の伝搬速度は
5900 m /秒であり、横波のそれは3200 m
 /秒である。
In addition, transverse waves are also generated due to the displacement of particles in the direction perpendicular to the direction of vibration. Therefore, vibrations transmitted through a rigid body consist of longitudinal waves and transverse waves. The propagation speed of longitudinal waves in the slab is 5900 m/s, and that of transverse waves is 3200 m/s.
/second.

剛体内部の割れを検出する方法として、加振された面と
対向する面の振動検出信号の中から指向性の強い高周波
成分を抽出する。加振点と検出点とを結ぶ直線間に割れ
等の空間が存在すると、疎密による粒子の動きは起こら
ないため、縦波は伝わらない。一方、横波は直線間に空
間が存在しても、連続する部分が存在すれば粒子の歪み
は起きるため、指向性の強弱に拘わりなく伝わる。した
がって、指向性の強い高周波成分を抽出するようにした
とき、割れが存在する場合は縦波は伝わらないので抽出
されず、横波のみが抽出されることになる。
As a method for detecting cracks inside a rigid body, highly directional high-frequency components are extracted from the vibration detection signal of the surface facing the excited surface. If a space such as a crack exists between the straight line connecting the excitation point and the detection point, no movement of particles due to density will occur, and no longitudinal waves will be transmitted. On the other hand, transverse waves propagate regardless of the strength of the directivity, because even if there is space between straight lines, if there is a continuous part, the particles will be distorted. Therefore, when a highly directional high frequency component is extracted, if a crack exists, longitudinal waves will not be transmitted and will not be extracted, and only transverse waves will be extracted.

前述のように、縦波の伝搬速度と横波の伝搬速度とは異
なり、縦波は横波に比べ約1.8倍の時間で伝わる。
As mentioned above, the propagation speed of longitudinal waves is different from the propagation speed of transverse waves, and longitudinal waves propagate in about 1.8 times longer than transverse waves.

したがって、加振から振動が検出されるまでの時間に基
づいて縦波の有無が判別でき、これにより剛体中の割れ
の有無が判定可能となる。
Therefore, the presence or absence of longitudinal waves can be determined based on the time from excitation to the detection of vibration, and thereby the presence or absence of cracks in the rigid body can be determined.

〔実施例〕〔Example〕

以下、本発明の特徴を、図面に示す実施例に基づいて具
体的に説明する。
Hereinafter, features of the present invention will be specifically explained based on embodiments shown in the drawings.

第1図は、スラブ内部に存在する割れの例を示す図で、
第2図は第1図に示すスラブの割れを含む部分をX方向
に分割した断面図である。
Figure 1 is a diagram showing an example of cracks existing inside a slab.
FIG. 2 is a cross-sectional view of a portion of the slab shown in FIG. 1 including cracks, divided in the X direction.

第1図及び第2図に示すように、ステンレススラブ1の
一方の端面を加振面1aとし、他方の端面を検出面1b
とする。加振面1aより、−様な周波数成分を含むイン
パルス衝撃信号をノ\ンマ2で加える。ハンマ2には、
加振力を検出し、電気信号を検出して出力を発生するロ
ードセルセンサー3が取り付けられている。加振面1a
と対向する検出面1bには、圧電型センサー、動電型セ
ンサー等のセンサー4が固定されており、これにより励
振されたステンレススラブ1に生ずる振動を検出し、電
気信号として検出出力を発生するようにしている。
As shown in FIGS. 1 and 2, one end surface of the stainless steel slab 1 is an excitation surface 1a, and the other end surface is a detection surface 1b.
shall be. An impulse shock signal containing a -like frequency component is applied from the excitation surface 1a by a normalizer 2. Hammer 2 has
A load cell sensor 3 is attached that detects an excitation force, detects an electric signal, and generates an output. Excitation surface 1a
A sensor 4, such as a piezoelectric sensor or an electrodynamic sensor, is fixed on the detection surface 1b facing the stainless steel slab 1, which detects vibrations generated in the excited stainless steel slab 1 and generates a detection output as an electric signal. That's what I do.

第3図は、センサー3.4の検出出力s、、  S2に
よりステンレススラブ1の内部割れの有無を判別するブ
ロック図である。前述のセンサー3.4の出力s、、 
 S2は、それぞれ増幅器5,6で増幅される。ステン
レススラブ1の振動検出出力S2は、例えば40 k 
Hz以上の高域通過フィルター7で高周波成分のみを抽
出した後、加振された時刻から振動が検出されるまでの
時間を算出する時間差検出回路8に人力される。
FIG. 3 is a block diagram for determining the presence or absence of internal cracks in the stainless steel slab 1 based on the detection outputs s and S2 of the sensors 3.4. The output s of the sensor 3.4 mentioned above,
S2 is amplified by amplifiers 5 and 6, respectively. The vibration detection output S2 of the stainless steel slab 1 is, for example, 40 k.
After extracting only high frequency components using a high-pass filter 7 of Hz or higher, the components are manually inputted to a time difference detection circuit 8 that calculates the time from the time of vibration until the vibration is detected.

一方、被検査ステンレススラブ1の長さしは、判定器9
に人力され、被検査ステンレススラブ1の加振点から振
動検出点までの縦波の到達時間と横波の到達時間が計算
され、前述の時間差検出回路8の出力と比較し、縦波の
到達時間と一致或いは近似しておれば割れ無しと判定さ
れ、横波の到達時間と一致或いは近似しておれば割れ有
りと判定される。
On the other hand, the length of the stainless steel slab 1 to be inspected is determined by the judge 9
The arrival time of the longitudinal wave and the arrival time of the transverse wave from the excitation point to the vibration detection point of the stainless steel slab to be inspected 1 are calculated manually, and compared with the output of the time difference detection circuit 8 described above, the arrival time of the longitudinal wave is calculated. If it matches or approximates, it is determined that there is no crack, and if it matches or approximates the arrival time of the transverse wave, it is determined that there is a crack.

第4図は加振時の加振力検出信号(a−1)、 (a−
2)、振動検出信号(b−1)、(b−2) 、振動検
出信号を高域通過フィルター7で高周波成分のみを抽出
した信号(c−1)、 (c−2)をそれぞれ示すもの
であり、(a−1)。
Figure 4 shows the excitation force detection signal (a-1), (a-
2), Vibration detection signals (b-1), (b-2), and signals (c-1) and (c-2), which are obtained by extracting only high frequency components from the vibration detection signal using a high-pass filter 7, respectively. And (a-1).

(b−1)、 (C−1)  は割れのないスラブの出
力例、(a−2)。
(b-1), (C-1) are output examples of slabs without cracks, (a-2).

(b−2)、 (c−2)  は割れのあるスラブの出
力例である。
(b-2) and (c-2) are output examples of slabs with cracks.

この実験に用いた一方のステンレススラブの鋳片長さは
L =5415 mであり、理論上の縦波伝搬時間はT
p =0.918 ms 、横波伝搬時間はT s −
1,692msである。信号波形(C−1)  を見る
と、高周波成分のみを抽出した信号波形の立ち上がり時
刻は加振時刻より0.9570m5となっており、これ
は縦波の伝搬時間に相当するため、割れのないステンレ
ススラブであると判断することができる。他方のステン
レススラブの鋳片長さは、L =5350 mであり、
同じく理論上の縦波伝搬時間はT、 =0.907 m
s 、横波伝搬時間はT5=1.672m5である。信
号波形(C−2>  を見ると、信号波形の立ち上がり
時刻は加振時刻より1.5586m5となっており、こ
れは横波の到達時間であって縦波は到達していないこと
から、このスラブは、内部に割れがあるということが判
別できる。このようにして、励振された振動の高周波成
分を抽出することにより、伝搬された振動が縦波か横波
かの判別ができ、゛割れの有無を明確に検出することが
できる。
The slab length of one of the stainless steel slabs used in this experiment was L = 5415 m, and the theoretical longitudinal wave propagation time was T
p = 0.918 ms, and the transverse wave propagation time is T s −
It is 1,692ms. Looking at the signal waveform (C-1), the rise time of the signal waveform with only high frequency components extracted is 0.9570 m5 from the excitation time, which corresponds to the propagation time of the longitudinal wave, so there is no cracking. It can be determined that it is a stainless steel slab. The slab length of the other stainless steel slab is L = 5350 m,
Similarly, the theoretical longitudinal wave propagation time is T, =0.907 m
s, the transverse wave propagation time is T5=1.672m5. Looking at the signal waveform (C-2>), the rise time of the signal waveform is 1.5586 m5 from the excitation time, and this is the arrival time of the transverse wave and not the longitudinal wave, so this slab It can be determined that there is a crack inside. By extracting the high frequency component of the excited vibration in this way, it is possible to determine whether the propagated vibration is a longitudinal wave or a transverse wave, and it is possible to determine whether there is a crack or not. can be clearly detected.

なお、本発明の方法は、超音波探傷と比較して一11= 温間での検出も可能であり、スラブに限らず内部に割れ
が存在する剛体の判別も可能である等、種々の変形も自
在である。
In addition, compared to ultrasonic flaw detection, the method of the present invention enables detection at a warm temperature, and is capable of detecting not only slabs but also rigid bodies with internal cracks. is also free.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明においては、連続鋳造鋳
片の端部を所定の強さで加振し、この加振面と対向する
端面において励振信号を検出し、鋳片内部に存在する非
平面割れの有無に起因して生じる縦波と横波との到達時
間の差に基づき、非平面割れの有無を判別している。こ
れにより、センサーの取付けの問題や音波の減衰の問題
を解決して、高精度で鋳片内部の割れ欠陥を検出するこ
とができる。
As explained above, in the present invention, the end of a continuously cast slab is vibrated with a predetermined strength, and an excitation signal is detected at the end face opposite to this excitation surface, and the excitation signal is detected inside the slab. The presence or absence of a non-planar crack is determined based on the difference in arrival time between longitudinal waves and transverse waves caused by the presence or absence of a non-planar crack. This solves the problems of sensor installation and sound wave attenuation, and allows cracking defects inside the slab to be detected with high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するための斜視図、第2図
はその側面図、第3図はセンサーの出力を処理するため
の電気回路の例を示すブロック図、第4図は割れ欠陥が
ない場合とある場合の出力信号の相違を示すグラフ、第
5図はステンレススラブに発生する欠陥の種類を示す斜
視図、第6図〜第8図は各欠陥の様子を示す説明図であ
る。 特許出願人    新日本製鐵 株式會社代 理 人 
   小 堀  益(ほか2名)第1図 第2図 4:センサー 第3図 し
Fig. 1 is a perspective view for explaining the present invention in detail, Fig. 2 is a side view thereof, Fig. 3 is a block diagram showing an example of an electric circuit for processing the output of the sensor, and Fig. 4 is a A graph showing the difference in output signals when there is no defect and when there is a defect. Figure 5 is a perspective view showing the types of defects that occur in stainless steel slabs. Figures 6 to 8 are explanatory diagrams showing the state of each defect. be. Patent applicant Nippon Steel Corporation Representative
Masu Kobori (and 2 others) Figure 1 Figure 2 Figure 4: Sensor Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、鋳片の端部に所定の強さの衝撃力を与え、この衝撃
力によって励振された鋳片の振動を、加振面と対向する
端面において検出し、この検出出力の中から高周波振動
成分のみを抽出し、前記衡撃力を与えた時刻から該高周
波振動成分の振動の立ち上がり時刻までの時間を監視し
、その時間が縦波の到達時間に相当するときは割れ欠陥
なしと判定し、前記時間が横波の到達時間に相当すると
きは割れ欠陥ありと判定することを特徴とする連続鋳造
鋳片内部の割れ欠陥検出方法。
1. Apply an impact force of a predetermined strength to the end of the slab, detect the vibration of the slab excited by this impact force at the end face facing the excitation surface, and select high-frequency vibration from this detection output. Only the component is extracted, and the time from the time when the above-mentioned equilibrium force is applied to the time when the vibration of the high-frequency vibration component rises is monitored, and when the time corresponds to the arrival time of the longitudinal wave, it is determined that there is no crack defect. . A method for detecting a crack defect inside a continuously cast slab, characterized in that when the time corresponds to the arrival time of a transverse wave, it is determined that a crack defect exists.
JP62268776A 1987-10-23 1987-10-23 Detection of cracking defect inside continuous cast piece Pending JPH01110257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62268776A JPH01110257A (en) 1987-10-23 1987-10-23 Detection of cracking defect inside continuous cast piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62268776A JPH01110257A (en) 1987-10-23 1987-10-23 Detection of cracking defect inside continuous cast piece

Publications (1)

Publication Number Publication Date
JPH01110257A true JPH01110257A (en) 1989-04-26

Family

ID=17463134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62268776A Pending JPH01110257A (en) 1987-10-23 1987-10-23 Detection of cracking defect inside continuous cast piece

Country Status (1)

Country Link
JP (1) JPH01110257A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109883857A (en) * 2019-03-19 2019-06-14 松下压缩机(大连)有限公司 The rapid detection method of pack alloy internal flaw

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109883857A (en) * 2019-03-19 2019-06-14 松下压缩机(大连)有限公司 The rapid detection method of pack alloy internal flaw
CN109883857B (en) * 2019-03-19 2021-10-26 松下压缩机(大连)有限公司 Method for rapidly detecting internal defects of die-casting aluminum alloy

Similar Documents

Publication Publication Date Title
Zhu et al. Ameliorated longitudinal critically refracted—Attenuation velocity method for welding residual stress measurement
US4534405A (en) Method and an arrangement for inspecting the surface of steel stock having a temperature above the Curie point
Dobmann et al. Industrial applications of 3MA–micromagnetic multiparameter microstructure and stress analysis
Duquennoy et al. Ultrasonic characterization of residual stresses in steel rods using a laser line source and piezoelectric transducers
JP6948297B2 (en) Steel sheet manufacturing method, surface hardness measuring device for magnetic materials, and steel sheet manufacturing equipment line
Javadi et al. Comparison between using longitudinal and shear waves in ultrasonic stress measurement to investigate the effect of post-weld heat-treatment on welding residual stresses
Zhang et al. The measurement of weld morphology and inclusions using ultrasonics
Baillie et al. Implementing an ultrasonic inspection system to find surface and internal defects in hot, moving steel using EMATs
JP2005077298A (en) Electromagnetic ultrasonic probe, damage progression degree evaluation method and damage progression degree evaluation device of conductive material, and axial force measuring method and axial force measuring device of fastening bolt or rivet
Ball et al. Some problems in the use of Lamb waves for the inspection of cold-rolled steel sheet and coil
Hübschen Ultrasonic techniques for materials characterization
JPH01110257A (en) Detection of cracking defect inside continuous cast piece
Javadi et al. Evaluation of hoop residual stress variations in the thickness of dissimilar welded pipes by using the LCR ultrasonic waves
JP6222154B2 (en) Ultrasonic flaw detector, ultrasonic flaw detection method, and steel material manufacturing method
JP2009066656A (en) Method for producing continuously cast slab
Scherleitner et al. Characterization of Microstructure Variations by Laser-Ultrasound during and after the Heat Treatment of Metals
JP3656555B2 (en) Electromagnetic ultrasonic measurement method
Rajendran et al. Ultrasonic Based Non-destructive Testing Technique for Predicting Shape Defects in Rolled Steel Sheets
JPH0215021B2 (en)
Sarris et al. Fatigue State Characterization of Steel Pipes Using Ultrasonic Shear Waves
Zhang et al. Nondestructive Evaluation Method of Average Grain Size in TWIP Steel by Laser Ultrasonic
RU2011195C1 (en) Method of ultrasonic surface inspection of tetrahedral articles
Peterson et al. Characterization of Aluminum and Steel Thin Plates Using Electromagnetic Acoustic Transducers
JPH03245026A (en) Measuring method for internal temperature of cast metal
Kannapiran et al. Study of nodularity measurement of SG iron by using ultrasonic method