JPH01110224A - Photoelectric transducer - Google Patents

Photoelectric transducer

Info

Publication number
JPH01110224A
JPH01110224A JP26894487A JP26894487A JPH01110224A JP H01110224 A JPH01110224 A JP H01110224A JP 26894487 A JP26894487 A JP 26894487A JP 26894487 A JP26894487 A JP 26894487A JP H01110224 A JPH01110224 A JP H01110224A
Authority
JP
Japan
Prior art keywords
photosynthetic
granule
electrode
membrane
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26894487A
Other languages
Japanese (ja)
Inventor
Toshikazu Majima
真島 利和
Atsushi Miyake
淳 三宅
Masayuki Hara
正之 原
Hideo Suzuki
英雄 鈴木
Hideki Toyotama
英樹 豊玉
Hiroaki Sugino
杉野 弘明
Shuichi Ajiki
秀一 安食
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Stanley Electric Co Ltd
Original Assignee
Agency of Industrial Science and Technology
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Stanley Electric Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP26894487A priority Critical patent/JPH01110224A/en
Publication of JPH01110224A publication Critical patent/JPH01110224A/en
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To eliminate the complication in adjustment of an photoelectric transducer, by interposing a photosynthetic granule between electrodes. CONSTITUTION:An electrode 2 is provided on a substrate 1 and a dry immobilized film 3 of a photosynthetic granule and an electrode 4 as opposed pole are arranged sequentially thereon 2. A lead 5 is led out of electrodes 2 and 4. A photosynthetic granule employs chlorophyll or chromatophore. A supply source of a photosynthetic granule is most preferably from photosynthetic bacteria. The general photosynthetic bacteria is exemplified by Rhodopseudomonas bilidis (ATCC19567), Rhodospirillum rubrum (ATCC11170) and Rhodobacteriaceae ferroidis (ATCC17023). Other than the photosynthetic bacteria, the photosynthetic granule can be obtained from cyanophycean chlorella, aquatic plants, terrestrial plants and the like.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は生体材料を用いた光電気変換素子に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a photoelectric conversion element using biomaterials.

(従来技術の問題点) 植物、光合成細菌等の光合成生物の細胞から、光合成反
応に係わる成分を含む生体膜からできた小胞である光合
成顆粒を得ることが出来る。これら光合成顆粒は蛋白質
、脂質などからなる膜から構成されている閉じた小胞で
ある。この種の膜は光電変換反応を行う光合成反応中心
蛋白質複合体を持ち、光刺激によって膜を挟んで電位差
を生じることは広く知られている。これら光合成顆粒の
膜(以下光合成膜と称する)を用いた光電変換デバイス
の構築が検討されている。
(Problems with the Prior Art) Photosynthetic granules, which are vesicles made of biological membranes containing components involved in photosynthetic reactions, can be obtained from cells of photosynthetic organisms such as plants and photosynthetic bacteria. These photosynthetic granules are closed vesicles composed of membranes made of proteins, lipids, etc. It is widely known that this type of membrane has a photosynthetic reaction center protein complex that performs photoelectric conversion reactions, and that a potential difference is generated across the membrane upon light stimulation. Construction of a photoelectric conversion device using a film of these photosynthetic granules (hereinafter referred to as a photosynthetic film) is being considered.

デバイスの構築方法として光合成顆粒に電極を挿入し、
膜電位や収電流を直接測定することや出力を利用するこ
とが考えられるが、光合成顆粒である光合成細菌のクロ
マトボアは、直径約1000オングストロームの閉じた
袋であるため電極をその内部に挿入するには小さすぎて
困難であり、そのような方法で光電変換素子を構築する
ことは不可能であった。
As a method of constructing the device, electrodes are inserted into photosynthetic granules,
It is possible to directly measure the membrane potential or collected current or to use the output, but since the chromatobore of photosynthetic bacteria, which is a photosynthetic granule, is a closed bag with a diameter of about 1000 angstroms, it is difficult to insert an electrode into it. was too small and difficult, and it was impossible to construct a photoelectric conversion element by such a method.

また、平板上に間隔をおいて並へた2枚のグラファイト
電極に゛跨ってクロマトボア乾燥固化膜を作り、電極間
に高電圧をかけ、光刺激によってクロマトボア膜の導電
性が変化する現象は見いだされている[Proc、Na
tl、Acad、  Sc i、。
In addition, we created a dried solidified Chromatobore membrane across two graphite electrodes spaced apart on a flat plate, applied a high voltage between the electrodes, and found no phenomenon in which the conductivity of the Chromatobore membrane changed due to optical stimulation. [Proc, Na
tl, Acad, Sci.

46巻、769−776頁 (1960年)]が、クロ
マトボアから直接的に光誘起電位を得ることはこれまで
報告されていない。
46, pp. 769-776 (1960)], it has not been reported so far to obtain a photoinduced potential directly from a chromatobore.

一方、クロマトボアなどの光合成膜を展開し、電極上に
膜の表裏の方向をそろえて固定化すれば光刺激に対し、
電位を観測できることは容易に推察されるところである
。しかし、そのためには、微小な袋状をなすクロマトボ
ア等の光合成膜を膜の表裏の方向を電極に対して一定に
そろえて展開すること、或は光合成膜の構成成分を電極
に対して配向させて固定化することが必要であるが、こ
れを現有の技術で実現することは困難であり、これまで
に研究されたところでも特殊な性質を持つものについて
のみ可能となっている。例えば、好塩性の光合成細菌で
あるへロバクテリウムハロビウムの光合成[、Iの膜で
ある紫膜を界面活性剤で部分的に分解した断片は膜の裏
表の電荷が大きく異なる性質を利用して電極上に電気泳
動によって配向・付着させ、光刺激による電位生成の観
測を可能にした技術[特開昭62−63823]がある
。クロマトボアの構成成分である光合成反応中心を単離
し、ラングミューア=プロジェット法で水面に展開して
単分子膜或は積層膜を電極上に作るものなども知られて
いるが、光合成反応中心を任意に配向させるまでには至
っていない[Biochim、Biophys、Act
a、681巻。
On the other hand, if a photosynthetic membrane such as Chromatoboa is developed and immobilized on the electrode with the front and back sides of the membrane aligned, it will respond to optical stimulation.
It is easy to infer that the potential can be observed. However, in order to do this, it is necessary to deploy a photosynthetic membrane such as a microscopic bag-shaped chromatoboa with the front and back sides of the membrane aligned with the electrode, or to orient the constituent components of the photosynthetic membrane with respect to the electrode. However, it is difficult to achieve this with current technology, and research to date has only made it possible for materials with special properties. For example, fragments of the purple membrane of the halophilic photosynthetic bacterium Helobacterium halobium, which is the membrane of the photosynthetic membrane I There is a technique [Japanese Patent Application Laid-Open No. 62-63823] that utilizes the technique to orient and adhere on electrodes by electrophoresis, making it possible to observe potential generation by optical stimulation. It is known that the photosynthetic reaction center, which is a component of the chromatobore, is isolated and spread on the water surface using the Langmuir-Prodgett method to create a monomolecular film or a laminated film on the electrode. It has not yet been possible to achieve arbitrary orientation [Biochim, Biophys, Act
a, 681 volumes.

191−201頁(1982年)、Chem、Phys
、Lett、、116巻、405−410頁(1985
年)、Biochim、Biophys。
pp. 191-201 (1982), Chem, Phys.
, Lett, vol. 116, pp. 405-410 (1985
), Biochim, Biophys.

Acta、851巻、3B−48頁(1986年)コ。Acta, Vol. 851, pp. 3B-48 (1986).

これらの方法は、光合成膜の分解、成分の精製、薄膜の
調製等の繁雑な作業工程を要し、産業上利用されるには
至っていないのが実状である。
These methods require complicated work steps such as decomposition of photosynthetic membranes, purification of components, and preparation of thin films, and the reality is that these methods have not yet been used industrially.

(発明が解決しようとする問題点) そこで、本発明者らは、より簡便な光電変換素子調製方
法について検討を重ねたところ、電極をなす導電性物質
表面に光合成顆粒溶液を塗布、乾燥させ、その表面に上
記導電性物質とは異なる材料からなる導電性物質を接触
させても、電極間に光刺激に対し光電応答が認められる
ことを見いだすに至った。
(Problems to be Solved by the Invention) Therefore, the present inventors repeatedly investigated a simpler method for preparing a photoelectric conversion element, and found that a photosynthetic granule solution was applied to the surface of a conductive material forming an electrode, dried, and It has been found that even when a conductive substance made of a material different from the above-mentioned conductive substance is brought into contact with the surface, a photoelectric response to optical stimulation is observed between the electrodes.

この現象は、分子配向に重きを置〈従来の観点からは全
く意外とも言える知見である。これまでは光刺激により
光合成膜の表裏を挟んで生じる電位や電流の利用が考え
られていたため、電極上で分子配向をおこなわせるため
に、光合成膜の分解、成分の精製、薄膜の調製等の繁雑
な作業を要求されてきた。
This phenomenon places emphasis on molecular orientation (a finding that can be said to be completely unexpected from a conventional perspective). Up until now, it has been considered to utilize the potential and current generated between the front and back sides of the photosynthetic membrane due to optical stimulation, but in order to align molecules on the electrode, it is necessary to decompose the photosynthetic membrane, purify its components, prepare thin films, etc. Complicated work has been required.

本発明はこのような知見に基づいてなされたものであり
、従来の光電変換素子の調製上の繁雑さを一挙に解決し
た新規な光電変換素子を提供するものである。
The present invention has been made based on such knowledge, and provides a novel photoelectric conversion element that solves the complexity of preparing conventional photoelectric conversion elements at once.

(問題点を解決するための手段) 光合成顆粒として、葉緑体或はクロマトボアが用いられ
るが、光合成顆粒の供給源として最も好適には光合成細
菌に求められ、−船釣光合成細菌として、ロドシュード
モナスビリシス(ATCC19567)、ロドスピリラ
ムルブラム(ATCC11170)、S− ロドバクタ−スフェロイデス(ATCC17023)を
例示できる。又、光合成細菌以外の藍藻、クロレラ、水
生植物、陸上植物等からも求めることが可能である。電
極にはIndium  Tin  0xide(ITO
)、酸化スズ(NESA) 、金属蒸着膜、半導体など
を用いることができる。本発明に適用される電極は異種
の材質であることが必要である。この理由として、光刺
激によりクロマトボアの光合成反応中心で分離された電
子が電極に移動した結果として二つの電極間に電位差が
生じるためには、移動の容易さに係わる仕事関数が二つ
の電極で異なっていることが必要であると考えられるこ
とによる。このような電極の一例を示せば、NESAと
水銀、ITOと金、金と水銀などがあげられる。
(Means for solving the problem) Chloroplasts or chromatobore are used as photosynthetic granules, but the most suitable source of photosynthetic granules is photosynthetic bacteria. Examples include S. viridis (ATCC 19567), Rhodospirillum rubrum (ATCC 11170), and S-Rhodobacter sphaeroides (ATCC 17023). It can also be obtained from other sources than photosynthetic bacteria, such as blue-green algae, chlorella, aquatic plants, and terrestrial plants. Indium Tin Oxide (ITO) is used for the electrode.
), tin oxide (NESA), metal vapor deposited film, semiconductor, etc. can be used. The electrodes applied to the present invention need to be made of different materials. The reason for this is that in order for a potential difference to occur between the two electrodes as a result of electrons separated at the photosynthetic reaction center of the chromatobore moving to the electrodes due to light stimulation, the work functions related to the ease of movement are different between the two electrodes. depending on what is considered necessary. Examples of such electrodes include NESA and mercury, ITO and gold, and gold and mercury.

素子の調製は一般的には、真空蒸着などの手段により、
基板上に導電性膜を形成されることにより行われる。次
いで、光合成顆粒の調製は光照射下で培養した光合成細
菌等を超音波などの方法で破壊してクロマトボア等の光
合成顆粒を採取し、前記電極にへヶ塗、浸漬、スピンコ
ード、スクリーン印刷、オフセット印刷等の手法を用い
塗布後、乾燥させる。
Devices are generally prepared by means such as vacuum evaporation.
This is done by forming a conductive film on a substrate. Next, to prepare photosynthetic granules, photosynthetic bacteria etc. cultured under light irradiation are destroyed by a method such as ultrasonication, photosynthetic granules such as chromatoboa are collected, and the photosynthetic granules are coated on the electrode, dipping, spin cording, screen printing, etc. After coating using a technique such as offset printing, it is dried.

この場合の乾燥は、自然乾燥、減圧乾燥、加熱乾燥等の
手法があり、減圧乾燥が望ましい。乾燥後、対極をなす
電極を重ね、完了する。
In this case, drying may be carried out by natural drying, vacuum drying, heating drying, etc., and vacuum drying is preferable. After drying, the opposite electrode is placed on top of the other, and the process is completed.

このように調製された光電変換素子の画電極端部より、
電線等により引き出すことにより、ストロボ、LED、
レーザー、アーク燈等の光照射に対する電位及び電流変
化を取出すことができる。
From the end of the picture electrode of the photoelectric conversion element prepared in this way,
By pulling out with electric wire etc., strobe, LED,
Potential and current changes in response to light irradiation from lasers, arc lights, etc. can be extracted.

(実施例) 以下に実施例をあげて、本発明をさらに詳細に説明する
(Example) The present invention will be explained in further detail by giving examples below.

1)[光合成細菌の培養とクロマトボアの調製]光合成
細菌を破砕して得られる細胞内膜系からなる光合成顆粒
をクロマトボアと称する。光合成細菌としてロドシュー
ドモナスビリシス(ATCC19567)を用い、嫌気
、光照射下、30℃で培養した。面体を遠心で集め、超
音波で破壊した。低速遠心によって菌体破片等を除いた
後、10万xg以上の超遠心によってクロマトボアを集
め、ホモジナイザーを用いて緩衝液に懸濁した後、再度
超遠心で集めた。この操作を3回繰り返して精製した。
1) [Culture of photosynthetic bacteria and preparation of chromatobore] Photosynthetic granules consisting of an endomembrane system obtained by crushing photosynthetic bacteria are called chromatobore. Rhodopseudomonas bilisis (ATCC 19567) was used as a photosynthetic bacterium and cultured at 30° C. under anaerobic light irradiation. The facepieces were collected by centrifugation and destroyed using ultrasound. After removing bacterial body debris and the like by low-speed centrifugation, chromatobore were collected by ultracentrifugation at 100,000×g or more, suspended in a buffer solution using a homogenizer, and then collected by ultracentrifugation again. This operation was repeated three times for purification.

2)[スフェロプラスト膜小胞の調製コ一般に、植物・
細菌などの細胞から細胞壁を除いたものはスフェロプラ
ストと呼ばれるが、光合成細菌のスフェロプラストより
以下で示す方法で調製することにより、クロマトボア類
似の膜小胞である光合成顆粒を得ることができる。スフ
ェロプラスト膜小胞の調製は[Arch、Bioche
m、Bj。
2) [Preparation of spheroplast membrane vesicles generally
A cell such as a bacterium with its cell wall removed is called a spheroplast, and photosynthetic granules, which are membrane vesicles similar to chromatobore, can be obtained by preparing spheroplasts from photosynthetic bacteria using the method shown below. . Preparation of spheroplast membrane vesicles [Arch, Bioche
m, Bj.

phys、、1985巻、526−534頁(1979
年)]に従った。即ち、ロドバクタ−スフェロイデス(
ATCC17023)の菌体をリゾチームで処理してス
フェロプラストとした後、溶菌させ、ショ糖密度勾配遠
心等の遠心分画法によって膜小胞を調製した。
phys, vol. 1985, p. 526-534 (1979
year)]. That is, Rhodobacter sphaeroides (
ATCC 17023) cells were treated with lysozyme to form spheroplasts, which were then lysed and membrane vesicles were prepared by centrifugal fractionation such as sucrose density gradient centrifugation.

3)[素子の構成コ 一方の電極として面積約6平方センチメートルのガラス
基板に酸化スズ、ITOl或は金蒸着膜を用い、その上
に1020ナノメートルにおける吸光度を100に調製
したクロマトボア或はスフェロプラスト膜小胞溶液20
0マイクロリットルを均一にのせた後、常温で蒸発乾燥
させた。乾燥同化膜の上にさらに金属を蒸着する、水銀
玉をのせる、或はスズ等の金属箔膜な圧着するなどの方
法を用い、対極を作成した(図1)。
3) [Structure of the device: A glass substrate with an area of about 6 square centimeters is coated with a tin oxide, ITOl, or gold vapor-deposited film as one electrode, and a chromatobore or spheroplast prepared with an absorbance of 100 at 1020 nanometers is placed on top of the glass substrate with an area of about 6 square centimeters. Membrane vesicle solution 20
After 0 microliter was evenly placed on it, it was evaporated and dried at room temperature. A counter electrode was created by depositing a metal on top of the dried assimilation film, placing a mercury ball on top, or press-bonding a film of metal foil such as tin (Figure 1).

4)[光電変換の測定] 光刺激はストロボランプ、或はLEDを用いて行った。4) [Measurement of photoelectric conversion] Optical stimulation was performed using a strobe lamp or LED.

光強度はモニターをおき、毎回の発光毎に測定して規格
化した。素子は各々の電極に電線をつなぎ、電位変化を
オッシロスコープで観測した。
A monitor was set up to measure the light intensity each time the light was emitted, and the light intensity was standardized. Electric wires were connected to each electrode of the device, and potential changes were observed using an oscilloscope.

図2に光刺激に対する電位応答を示す。ストロボ光の刺
激に対し、ミリ秒以下の早い応答の立上りを示した。図
3に光刺激に対する素子の電流応答を示す。本方法で調
製された素子の電位応答の波長依存性は図4に示すとお
りであり、光合成顆粒の乾燥同化膜の光吸収と同様のス
ペクトルを持つ。
Figure 2 shows the potential response to optical stimulation. In response to strobe light stimulation, they showed a rapid response time of less than a millisecond. Figure 3 shows the current response of the device to optical stimulation. The wavelength dependence of the potential response of the device prepared by this method is as shown in FIG. 4, and has a spectrum similar to the light absorption of the dried assimilated membrane of photosynthetic granules.

(発明の効果) 本発明による光電変換素子は、容易に培養可能な微生物
を材料の供給源とでき、しかも、半導体材料に比べて極
めて簡便な方法で精製できる光合成顆粒をそのまま用い
ることができるという点で産業上の利用に於て有用な技
術と考えられる。
(Effects of the Invention) The photoelectric conversion element according to the present invention can use microorganisms that can be easily cultivated as a material source, and can also use photosynthetic granules as they are, which can be purified by an extremely simple method compared to semiconductor materials. Therefore, it is considered to be a useful technology for industrial use.

【図面の簡単な説明】[Brief explanation of the drawing]

図IA、図IB、図ICは、本発明素子構成の概念図を
示す。図中1は基板、2は電極、3は光合成顆粒の乾燥
固化膜、4は対極をなす電極、5は電線を示す。本発明
素子の構成として、図IAは4として金蒸着膜を用いた
場合、図IBは4として水銀を用いた場合、図ICは4
としてスズ箔を圧着して用いた場合を示す。 図2は、本発明素子の光位電応答を示す。図2八は、図
1における2としてNESA、3としてクロマトボア、
4として水銀を用いた場合の応答例を示す。図2Bは、
図1における2としてNESA、3としてスフェロプラ
スト膜小胞、4として水銀を用いた場合の光電応答例を
示す。図2Cは、図1における2としてITo、3とし
てクロマトボア、4として金蒸着膜を用いた場合の応答
例を示す。図2Dは、図1における2として金蒸着膜、
3としてクロマトボア、4として水銀を用いた場合の応
答例を示す。縦軸は電圧(ミリボルト)、横軸は時間(
ミリ秒)、矢印は光パルスによる刺激を示す。 図3は、本発明素子の光電流応答例を示す。素子の構成
は、図ICにおける2としてITO13としてクロマト
ボア、4としてスズ箔圧着電極を用いた。 光刺激には、LED (発光中心波長850ナノメート
ル)を用いた。縦軸は電流(ピコアンペア)、横軸は時
間(ミリ秒)であり、図中破線はLEDの発光パルスを
示す。 図4は、本発明素子の光電位応答の波長依存性を示す。 図中、黒丸(・)は照射光のエネルギーに関して補正し
た極大電位応答を示し、実線(−)はクロマトボア乾燥
固化膜の吸光度を示す。縦軸は黒丸に対しては電位、ま
た実線に対しては吸光度を示す。 横軸は波長(ナノメートル)を示す。 特許出願人 工業技術院長 飯塚幸三 (佃/A)図1 図2 A ↓ ゛      B ↓ C↓                     ロ 
  ↓図3 図4
FIG. IA, FIG. IB, and FIG. IC show conceptual diagrams of the device configuration of the present invention. In the figure, 1 is a substrate, 2 is an electrode, 3 is a dry solidified film of photosynthetic granules, 4 is an electrode serving as a counter electrode, and 5 is an electric wire. As for the configuration of the device of the present invention, Figure IA shows the case where a gold vapor deposited film is used as 4, Figure IB shows the case where mercury is used as 4, and Figure IC shows 4.
The case is shown in which tin foil is crimped and used. FIG. 2 shows the photopotential response of the device of the invention. FIG. 28 shows NESA as 2 in FIG. 1, Chromatobore as 3,
An example of the response when mercury is used as 4 is shown below. Figure 2B is
An example of a photoelectric response is shown when 2 in FIG. 1 is NESA, 3 is a spheroplast membrane vesicle, and 4 is mercury. FIG. 2C shows a response example when ITo is used as 2 in FIG. 1, chromatobore is used as 3, and gold vapor-deposited film is used as 4. FIG. 2D shows a gold deposited film as 2 in FIG.
A response example is shown when chromatobore is used as 3 and mercury is used as 4. The vertical axis is voltage (millivolts), and the horizontal axis is time (
ms), arrows indicate stimulation by light pulses. FIG. 3 shows an example of the photocurrent response of the device of the present invention. As for the configuration of the element, 2 in FIG. IC was an ITO 13 chromatobore, and 4 was a tin foil crimp electrode. For optical stimulation, an LED (emission center wavelength: 850 nanometers) was used. The vertical axis is current (picoampere), the horizontal axis is time (milliseconds), and the broken line in the figure shows the light emission pulse of the LED. FIG. 4 shows the wavelength dependence of the photopotential response of the device of the present invention. In the figure, the black circles (.) indicate the maximum potential response corrected for the energy of irradiation light, and the solid line (-) indicates the absorbance of the chromatobore dry solidified membrane. The vertical axis shows electric potential for black circles and absorbance for solid lines. The horizontal axis indicates wavelength (nanometers). Patent applicant: Director of the Agency of Industrial Science and Technology Kozo Iizuka (Tsukuda/A) Figure 1 Figure 2 A ↓ ゛ B ↓ C↓ ro
↓Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 電極間に光合成顆粒を介してなる光電変換素子。A photoelectric conversion element with photosynthetic granules interposed between electrodes.
JP26894487A 1987-10-23 1987-10-23 Photoelectric transducer Expired - Lifetime JPH01110224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26894487A JPH01110224A (en) 1987-10-23 1987-10-23 Photoelectric transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26894487A JPH01110224A (en) 1987-10-23 1987-10-23 Photoelectric transducer

Publications (1)

Publication Number Publication Date
JPH01110224A true JPH01110224A (en) 1989-04-26

Family

ID=17465453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26894487A Expired - Lifetime JPH01110224A (en) 1987-10-23 1987-10-23 Photoelectric transducer

Country Status (1)

Country Link
JP (1) JPH01110224A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04125425A (en) * 1990-09-18 1992-04-24 Stanley Electric Co Ltd Manufacture of photoelectric conversion member
WO2008114249A1 (en) * 2007-03-16 2008-09-25 T.O.U Millennium Electric Ltd. Solar power generation using photosynthesis

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6263823A (en) * 1985-09-14 1987-03-20 Agency Of Ind Science & Technol Optical sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6263823A (en) * 1985-09-14 1987-03-20 Agency Of Ind Science & Technol Optical sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04125425A (en) * 1990-09-18 1992-04-24 Stanley Electric Co Ltd Manufacture of photoelectric conversion member
WO2008114249A1 (en) * 2007-03-16 2008-09-25 T.O.U Millennium Electric Ltd. Solar power generation using photosynthesis

Similar Documents

Publication Publication Date Title
Sencia et al. Induction of cell fusion of plant protoplasts by electrical stimulation
EP0196334B1 (en) Method for killing cells, and cytocidal agent
Lanyi et al. [35] Light-induced transport in Halobacterium halobium
Packham et al. The charging capacitance of the chromatophore membrane
Motoyuki et al. Two photocycles in Halobacterium halobium that lacks bacteriorhodopsin
Kanner et al. Light-dependent proton and rubidium translocation in membrane vesicles from Halobacterium halobium
Tao et al. Multiporous supramolecular microspheres for artificial photosynthesis
Yasuda et al. Control of protein orientation in molecular photoelectric devices using Langmuir—Blodgett films of photosynthetic reaction centers from Rhodopseudomonas viridis
US20220178050A1 (en) Biopolymer concentration method, crystallization method, and nanostructured substrate
Mangel et al. Dependence of photosensitivity of bileaflet lipid membranes upon the chlorophyll and carotenoid content
Lewis et al. The biophysics of visual photoreception
JPH01110224A (en) Photoelectric transducer
US4514584A (en) Organic photovoltaic device
Chayen Pectinase technique for isolating plant cells
Steiner et al. Characterisation of a B800/1020 antenna from the photosynthetic bacteria Ectothiorhodospira halochloris and Ectothiorhodospira abdelmalekii
Ignatov et al. Visual Perception. Electromagnetic Conception for the Eyesight. Rhodopsin and Bacteriorhodopsin
Kataoka et al. BACTERIORHODOPSIN RECONSTITUTED FROM TWO INDIVIDUAL HELICES AND THE COMPLEMENTARY FIVE‐HELIX FRAGMENT IS PHOTOACTIVE
JPH02281770A (en) Manufacture of optoelectric transducer using functional conjugated protein
Miyake et al. Thermal stability of dried photosynthetic membrane film for photoelectrodes
Ptak et al. Photoelectrical properties of green bacteria cells and cell fragments located in electrochemical cell
Racusen et al. Role of membrane-bound, fixed-charge changes in phytochrome-mediated mung bean root tip adherence phenomenon
JPH065730B2 (en) Method for producing photoelectric response element using functional protein complex
Ignatov et al. New Nano-and Biotechnological Applications of Bacterial and Animal Photoreceptor Pigments Bacteriorhodopsin, Rhodopsin and Iodopsin
Stolarek et al. Effects of UV‐C radiation on membrane potential and electric conductance in internodal cells of Nitellopsis obtusa
Mosin et al. Photochrome Transmembrane Protein Bacteriorhodopsin in Nano-and Biotechnologies

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term