JPH01109783A - Spectroscope - Google Patents

Spectroscope

Info

Publication number
JPH01109783A
JPH01109783A JP26724087A JP26724087A JPH01109783A JP H01109783 A JPH01109783 A JP H01109783A JP 26724087 A JP26724087 A JP 26724087A JP 26724087 A JP26724087 A JP 26724087A JP H01109783 A JPH01109783 A JP H01109783A
Authority
JP
Japan
Prior art keywords
light beam
optical
holder
temperature
supporting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26724087A
Other languages
Japanese (ja)
Inventor
Tadashi Kitahara
正 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP26724087A priority Critical patent/JPH01109783A/en
Publication of JPH01109783A publication Critical patent/JPH01109783A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/008Mountings, adjusting means, or light-tight connections, for optical elements with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation

Landscapes

  • Physics & Mathematics (AREA)
  • Lasers (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To stabilize the optical path of an optical beam by constructing an optical element which separates and reflects the injected optical beam and the supporting member thereof, rotating means whose thermal contact with the supporting member is large and which allows the supporting member to rotate at a predetermined angle as the temperature changes. CONSTITUTION:Optical elements 3, 4 are inserted into a supporting member 2, the thermal contact between the optical elements 3, 4 and the supporting member 2 being made large. An optical beam is injected onto such optical elements 3, 4, separated and reflected, only the optical beam of a specific wavelength is returned along the original optical path. When the temperatures of the optical elements 3, 4 increase by the injection of the optical beam, changes in the temperatures are transferred to a rotating means 27 so that the supporting member 2 may be rotated at a predetermined angle in a direction offsetting the change in the optical beam path, whereby any changes in the temperatures of the optical elements 3, 4 allow the optical path of the diffracted optical beam having the specific wavelength to be stable along the original path after a predetermined time. According to the constitution, the optical path of the optical beam can quickly be stabilized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アルゴンレーザ等のレーザ発振装置などに利
用される分光装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a spectroscopic device used in a laser oscillation device such as an argon laser.

〔従来の技術〕[Conventional technology]

従来、アルゴンレーザ等のレーザ発振装置からレーザ発
振された多波長の光ビームを分光し、分光した光ビーム
の一部を元の光ビームと重ねるよう反射する形成の分光
装置が知られている。
BACKGROUND ART Conventionally, a spectroscopic device is known that separates a multi-wavelength light beam oscillated from a laser oscillation device such as an argon laser, and reflects a portion of the separated light beam so as to overlap the original light beam.

第4図はこの種の従来の分光装置50の部分構成図であ
る。
FIG. 4 is a partial configuration diagram of a conventional spectroscopic device 50 of this type.

第4図の分晃装置は、石英ガラスで形成された三角柱状
の1リズム51と、プリズム51で分光された光ビーム
を反射する全反射ミラー52と、プリズム51および全
反射ミラー52を支持するホルダ53と、ホルダ53を
基板54に取付ける2種類のネジ55.56とを備えて
いる。ネジ55.56は熱膨張係数が互いに異なり例え
ばネジ55はステンレス製、ネジ56は真鍮製である。
The splitting device shown in FIG. 4 includes one triangular prism-shaped rhythm 51 made of quartz glass, a total reflection mirror 52 that reflects the light beam separated by the prism 51, and supports the prism 51 and the total reflection mirror 52. It includes a holder 53 and two types of screws 55 and 56 for attaching the holder 53 to the substrate 54. The screws 55 and 56 have different coefficients of thermal expansion; for example, the screw 55 is made of stainless steel, and the screw 56 is made of brass.

真鍮はステンレスよりも熱膨張係数が大きい。Brass has a higher coefficient of thermal expansion than stainless steel.

このような構成の分光装置50では、レーザ発振した多
波長の光ビームLBがプリズム51に入射すると分光さ
れて全反射ミラー52に入射する。
In the spectroscopic device 50 having such a configuration, when the laser-oscillated multi-wavelength light beam LB is incident on the prism 51, it is split into spectra and is incident on the total reflection mirror 52.

全反射ミラー52では分光された各光ビームのうちで全
反射ミラー52に垂直に入射する特定の波長の光ビーム
LBOだけを元の光ビームLBの光路に沿って反射する
。これにより、特定の波長の光°ビームLBOを元の光
ビームLBに重ねることができる。
Of the separated light beams, the total reflection mirror 52 reflects only the light beam LBO of a specific wavelength that is perpendicularly incident on the total reflection mirror 52 along the optical path of the original light beam LB. This allows the light beam LBO of a specific wavelength to be superimposed on the original light beam LB.

ところで、環境の温度が変化しプリズム51の温度が変
化すると、この変化に比例してプリズム51を形成する
石英ガラスの屈折率が変わり、プリズム51で分光され
た光ビームの光路が変化する0例えば、環境の温度が上
昇するとプリズム51で分光され全反射ミラー52で反
射された光ビームは、第4図に示すものに比べてより上
方に曲げられる。この結果、元の光ビームLBに重ねら
れる光ビームは、光ビームLBOではなくなり、光ビー
ムLBOと異なる波長のものになる。温度上昇に伴なう
光ビームのこのような光路の変化は、ホルダ53番反時
計方向に回転した場合と等価であるので、温度上昇に伴
なってホルダ53を時計方向に回転させれば、温度上昇
による光ビームの光路変化を相殺することができる。第
4図の分光装置では、温度が上昇するとネジ56の方が
ネジ55よりも伸びてホルダ53を時計方向に回転させ
ることができる。これにより環境の温度が変化しても特
定の波長の光ビームLBOだけを元の光ビームLBに常
に重ねることができる。
By the way, when the temperature of the environment changes and the temperature of the prism 51 changes, the refractive index of the quartz glass forming the prism 51 changes in proportion to this change, and the optical path of the light beam separated by the prism 51 changes. When the temperature of the environment rises, the light beam separated by the prism 51 and reflected by the total reflection mirror 52 is bent more upward than that shown in FIG. As a result, the light beam superimposed on the original light beam LB is no longer the light beam LBO, but has a wavelength different from that of the light beam LBO. Such a change in the optical path of the light beam as the temperature rises is equivalent to rotating the holder 53 counterclockwise, so if the holder 53 is rotated clockwise as the temperature rises, Changes in the optical path of the light beam due to temperature rise can be offset. In the spectroscopic device shown in FIG. 4, when the temperature rises, the screw 56 stretches more than the screw 55, allowing the holder 53 to rotate clockwise. As a result, even if the temperature of the environment changes, only the light beam LBO of a specific wavelength can always be superimposed on the original light beam LB.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上述した従来の分光装置では、ネジ55
.56とホルダ53との熱的接触がこれらの結合部にお
いてしかなされないために、レーザ発振開始後光学素子
としてのプリズム51.全反射ミラー52が光ビームに
より加熱され、ホルダ53が昇温してからしばらく経過
しないとネジ55.56は定常的な温度に達しない、さ
らに光学素子としてのプリズム、全反射ミラー52はそ
れぞれ別個にホルダ53に機械的に取付けられているの
で、温度変化により互いの角度がずれ易く、また迅速に
定常的な温度となるよう光学素子全体を熱容量の小さな
小型のものにするには限度がある。またこれらの光学素
子が取付けられているホルダ53自体も小型化できず、
さらには光学素子との接触面積を大きくしにくいので、
ホルダ53は光学素子の温度変化に迅速に追従できない
、このように、レーザ発振開始後、ネジ55.56の温
度が安定するまでには相当の時間を要し、この結果、分
光9反射された光ビームの光路を安定した最適な状態に
させるまでには相当の時間がかかるという問題があった
However, in the conventional spectrometer described above, the screw 55
.. Since the thermal contact between the prism 51.56 and the holder 53 is made only at these joints, the prism 51. The screws 55 and 56 do not reach a steady temperature until some time has passed after the total reflection mirror 52 is heated by the light beam and the temperature of the holder 53 has increased.Furthermore, the prism as an optical element and the total reflection mirror 52 are each separated. Since the optical elements are mechanically attached to the holder 53, their mutual angles tend to shift due to temperature changes, and there is a limit to making the entire optical element compact with a small heat capacity so that the temperature can quickly reach a steady state. . Furthermore, the holder 53 itself to which these optical elements are attached cannot be made smaller;
Furthermore, since it is difficult to increase the contact area with the optical element,
The holder 53 cannot quickly follow the temperature change of the optical element.As such, it takes a considerable amount of time for the temperature of the screws 55 and 56 to stabilize after the laser oscillation starts, and as a result, the spectrometer 9 is reflected. There is a problem in that it takes a considerable amount of time to bring the optical path of the light beam into a stable and optimal state.

本発明は、レーザ発振開始に伴ない、支持部材すなわち
ホルダに支持された光学素子に温度変化があった場合に
も、光ビームの光路を速やかに安定した最適な状態にさ
せることの可能な分光装置を提供することを目的として
いる。
The present invention provides a spectroscopy system that can quickly bring the optical path of a light beam into a stable and optimal state even if there is a temperature change in the optical element supported by the support member, that is, the holder, with the start of laser oscillation. The purpose is to provide equipment.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、入射する光ビームを分光し反射する単体の光
学素子と、該光学素子を大きな熱接触で支持する支持部
材と、該支持部材との熱接触が大きく、温度変化により
前記支持部材を所定の角度で回転させる回転手段とを備
えていることを特徴とする分光装置によって、上記従来
技術の問題点を改善するものである。
The present invention provides a single optical element that separates and reflects an incident light beam, a support member that supports the optical element with a large thermal contact, and a large thermal contact between the support member and the support member that is caused by temperature changes. The above-mentioned problems of the prior art are improved by a spectroscopic device characterized by comprising a rotation means for rotating at a predetermined angle.

〔作用〕[Effect]

本発明では、光ビームを分光し反射する単体の光学素子
を支持部材に支持させている。例えば支持部材内に光学
素子を嵌着させ光学素子と支持部材との熱接触を大きく
している。光学素子に光ビームを入射させ、そこで分光
させて反射させ、例えば特定の波長の光ビームだけを元
の光ビームの光路に沿って逆進させる。しかしながら光
ビームの入射により光学素子の温度が上昇すると、光学
素子の屈折率が変化するので、特定の波長の光ビームの
光路が変化し元の光ビームの光路に沿わなくなるが、本
発明では、光学素子の温度変化を支侍部材を介して回転
手段に伝達し、回転手段にこの温度変化を受けさせて光
ビームの光路の前記変化を相殺する方向に前記支持部材
を所定角度回転させる。これによって、光学素子の温度
が変化した場合にも所定時間経過後、分光された特定の
波長の光ビームの光路は元の光ビームの光路に沿った安
定した状態となる。ところで、本発明では、単体の光学
素子と支持部材との熱接触を大きくし、また支持部材と
回転手段との熱接触をも大きくしているので、光学素子
の温度変化を支持部材を介し回転手段に伝達して回転手
段を定常的な温度にさせるまでの時間を著しく短縮させ
ることができる。これによって光ビームの光路を速やか
に安定した状態にさせることができる。
In the present invention, a single optical element that separates and reflects a light beam is supported by a support member. For example, the optical element is fitted within the support member to increase thermal contact between the optical element and the support member. A light beam is made incident on an optical element, where it is separated and reflected, and, for example, only a light beam of a specific wavelength is caused to travel backward along the optical path of the original light beam. However, when the temperature of the optical element increases due to the incidence of the light beam, the refractive index of the optical element changes, so the optical path of the light beam of a specific wavelength changes and no longer follows the optical path of the original light beam. The temperature change of the optical element is transmitted to the rotating means via the supporting member, and the rotating means is caused to receive this temperature change, thereby rotating the supporting member by a predetermined angle in a direction that offsets the change in the optical path of the light beam. As a result, even if the temperature of the optical element changes, after a predetermined period of time, the optical path of the separated light beam of a specific wavelength becomes stable along the optical path of the original light beam. By the way, in the present invention, the thermal contact between the single optical element and the support member is increased, and the thermal contact between the support member and the rotating means is also increased, so that the temperature change of the optical element is reflected by the rotation through the support member. The time it takes to transmit the temperature to the rotating means and bring the rotating means to a steady temperature can be significantly shortened. This allows the optical path of the light beam to be quickly stabilized.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明に係る分光装置の一実施例の構成図、第
2図は角度調整装置に取付けられる側の分光装置の概略
斜視図である。第1図を参照すると本実施例の分光装置
1では、アルミニウム合金製の支持部材すなわちホルダ
2内に穿設された六8にプリズム部3が嵌められている
。プリズム部3は、石英ガラスで作られており、プリズ
ム部3の後端部にはプリズム部3内における光の進行方
向と垂直にミラー4が取付けられている。ミラー4は、
例えばプリズム部3に直接形成された誘電体多層IIa
であり、これに入射する光ビームのほとんどを反射する
ようになっている。
FIG. 1 is a configuration diagram of an embodiment of a spectroscopic device according to the present invention, and FIG. 2 is a schematic perspective view of the spectroscopic device attached to an angle adjustment device. Referring to FIG. 1, in the spectroscopic device 1 of this embodiment, the prism section 3 is fitted into a hole 68 formed in a support member or holder 2 made of aluminum alloy. The prism section 3 is made of quartz glass, and a mirror 4 is attached to the rear end of the prism section 3 perpendicularly to the traveling direction of light within the prism section 3. Mirror 4 is
For example, a dielectric multilayer IIa formed directly on the prism part 3
, and is designed to reflect most of the light beam that enters it.

このようなミラー4の取付けられたプリズム部3は、テ
フロン製のクツション5.加圧金属6゜ネジ7によって
ホルダ2内にしっかりと固定され、広い面積にわたって
ホルダ2と接触している。なお、クツション5.加圧金
H36,ネジ7には中央に直径4間程度の孔が開けられ
ており、ミラー4を透過する僅かな光ビームを窓30か
ら観測することによって外部から分光装置lの取付は状
態等を調節することができる。すなわち、角度調整装置
27によってホルダ2を機械的に回転させてホルダ2内
のプリズム部3とレーザ管20との角度を調整すること
ができる。
The prism part 3 to which such a mirror 4 is attached has a cushion 5 made of Teflon. It is firmly fixed in the holder 2 by a pressurized metal 6° screw 7 and is in contact with the holder 2 over a large area. In addition, cushion 5. A hole with a diameter of about 4 mm is drilled in the center of the pressure metal H36 and the screw 7, and by observing the slight light beam that passes through the mirror 4 through the window 30, the spectrometer l can be installed from the outside to determine its condition. can be adjusted. That is, by mechanically rotating the holder 2 using the angle adjustment device 27, the angle between the prism section 3 inside the holder 2 and the laser tube 20 can be adjusted.

またホルダ2には、プリズム部3に光ビームを入出射さ
せるための貫通孔10が穴8の前面9と所定の角度をな
して設けられている。
Further, the holder 2 is provided with a through hole 10 that makes a predetermined angle with the front surface 9 of the hole 8 for allowing a light beam to enter and exit the prism portion 3 .

さらに第2図を参照すると、ホルダ2は、角度調整装置
27の基板22に取付けられる側において、下側にアル
ミニウム合金製の突起部11を有し、また上側には温度
補償部材12の一部が嵌め込まれている。突起部11は
、ホルダ2と一体であるのが良い、また温度補償部材1
2は、例えば石英ガラスで作られ、その形状は例えば3
X7.5x7.5amの直方体となっている。ホルダ2
に嵌め込まれている温度補償部材12の部分はホルダ2
と広い接触面積を有している。すな。
Further, referring to FIG. 2, the holder 2 has an aluminum alloy protrusion 11 on the lower side on the side to be attached to the substrate 22 of the angle adjustment device 27, and a part of the temperature compensating member 12 on the upper side. is embedded. The protrusion 11 is preferably integrated with the holder 2, and the temperature compensating member 1
2 is made of, for example, quartz glass, and its shape is, for example, 3.
It is a rectangular parallelepiped with dimensions of 7.5 x 7.5 am. Holder 2
The part of the temperature compensating member 12 that is fitted into the holder 2
It has a wide contact area. sand.

わち第1図、第2図では、温度補償部材12の両側面1
3,14.底面15.端面16がホルダ2に接触してい
る。なお、ホルダ2から突出している温度補償部材12
の部分と突起部11の断面形状および断面積はほぼ同じ
であるとし、温度補償部材12と突起部11との間の間
隔は17rImであるとする。
That is, in FIGS. 1 and 2, both sides 1 of the temperature compensating member 12
3,14. Bottom surface 15. End surface 16 is in contact with holder 2. Note that the temperature compensating member 12 protruding from the holder 2
It is assumed that the cross-sectional shape and cross-sectional area of the portion and the protrusion 11 are almost the same, and the distance between the temperature compensating member 12 and the protrusion 11 is 17rIm.

第3図はこのような構成の分光装置1を用いたレーザ発
振装置の概略構成図である。第3図のレーザ発振装−で
は、レーザ管20として例えば多波長の光を出力するア
ルゴンレーザを用い、レーザ管20からの多波長の光ビ
ームを分光し反射させてそのうち特定の波長の光ビーム
のみを元の光ビームと重ね合わせるよう分光装置1を作
動させ、分光装置1と出力ミラー21との間で特定の波
長の光ビームのみを繰返し往復させることによって出力
ミラー21から特定の波長の光ビームのみを発振出力さ
せるようになっている。
FIG. 3 is a schematic configuration diagram of a laser oscillation device using the spectroscopic device 1 having such a configuration. In the laser oscillator shown in FIG. 3, for example, an argon laser that outputs light with multiple wavelengths is used as the laser tube 20, and the multiple wavelength light beams from the laser tube 20 are separated and reflected to select a light beam with a specific wavelength. The spectroscope 1 is operated to overlap only the original light beam with the original light beam, and only the light beam of a specific wavelength is repeatedly sent back and forth between the spectroscope 1 and the output mirror 21. It is designed to oscillate only the beam.

このようなレーザ発振装置において分光装置1は、第1
図に示すように角度調整装置27の基板2′2にセラミ
ックス製の断熱部材23を介してネジ24によって取付
けられている。すなわち、ネジ24は、基板22の側か
ら断熱部材23を貫通しホルダ2に螺合し、バネ25に
よって基板22をホルダ2に向かつて付勢している。こ
れによってホルダ2の突起部11と温度補償部材12と
を基板22にしっかりと当接させている一方で、ホルダ
2.突起部11.温度補償部材12が温度変化で伸縮し
たときにホルダ2を基板22に対して回転させることが
できるようになっている。
In such a laser oscillation device, the spectroscopic device 1 has a first
As shown in the figure, it is attached to the substrate 2'2 of the angle adjustment device 27 with screws 24 via a ceramic heat insulating member 23. That is, the screw 24 penetrates the heat insulating member 23 from the side of the board 22 and is screwed into the holder 2, and the spring 25 urges the board 22 toward the holder 2. This allows the protrusion 11 of the holder 2 and the temperature compensating member 12 to firmly contact the substrate 22, while the holder 2. Projection 11. The holder 2 can be rotated with respect to the substrate 22 when the temperature compensating member 12 expands and contracts due to temperature changes.

このような分光装Tt1をアルゴンレーザのレーザ管2
0に適用したときの動作を次に説明する。
Such a spectrometer Tt1 is connected to an argon laser laser tube 2.
The operation when applied to 0 will be explained next.

レーザ管20からの炙波長の光ビームを分光して、その
うち例えば波長5145人の光ビームのみを元の光ビー
ムに重ねて逆進させるよう分光装′f11を設定する。
The spectrometer 'f11' is set so that the light beam of the blazing wavelength from the laser tube 20 is separated, and only the light beam with a wavelength of, for example, 5,145 is superimposed on the original light beam and travels backwards.

すなわち、石英ガラスで作られたプリズム部3の波長5
145人の光ビームに対する屈折率は1.461なので
、ブリュースタ角は55.61°となり、波長5145
への光ビームがプリズム部3にこのブリュースタ角で入
射するよう角度調整装置27を調整し、分光装置1をレ
ーザ管20に対して配置する。これにより、プリズム部
3に入射する波長5145人の光ビームは、プリズム部
3の表面でほとんど反射されずに屈折率34.39°で
曲げられてプリズム部3内を進行しミラー4に垂直に入
射しそこで垂直に反射されて、元の光路に沿って逆進し
、元の光ビームに重なる。これに対して他の波長の光ビ
ーム、例えば波長4880Aの光ビームは屈折率34.
31°でプリズム部3に入り、ミラー4には垂直に入射
しないので、ミラー4により反射された波長4880人
の光ビームは元の光路に沿っては進まず、元の光ビーム
には重ならない。
In other words, the wavelength 5 of the prism part 3 made of quartz glass
Since the refractive index for the light beam of 145 people is 1.461, the Brewster angle is 55.61°, and the wavelength is 5145 degrees.
The angle adjusting device 27 is adjusted so that the light beam enters the prism section 3 at this Brewster angle, and the spectroscopic device 1 is placed relative to the laser tube 20. As a result, the light beam of 5145 wavelengths incident on the prism section 3 is hardly reflected on the surface of the prism section 3, is bent with a refractive index of 34.39 degrees, and travels inside the prism section 3 perpendicularly to the mirror 4. It is incident, is reflected vertically, travels back along the original optical path, and overlaps the original optical beam. On the other hand, a light beam of other wavelengths, for example a light beam of wavelength 4880A, has a refractive index of 34.
Since it enters the prism part 3 at an angle of 31 degrees and does not enter the mirror 4 perpendicularly, the light beam of wavelength 4880 reflected by the mirror 4 does not proceed along the original optical path and does not overlap with the original light beam. .

このようにして分光装置1は、分光した光ビームのうち
で特定の波長5145人の光ビームだけを元の光路に沿
って反射させることができて、第3図のレーザ発振装置
において分光装置1と出力ミラー21との間を繰返し往
復しうるのは波長5145人の光ビームのみとなり、こ
れを出力ミラー21から出力させることができる。
In this way, the spectroscopic device 1 can reflect only the light beams of 5145 specific wavelengths out of the separated light beams along the original optical path. Only a light beam with a wavelength of 5145 people can repeatedly travel back and forth between the output mirror 21 and the output mirror 21, and this can be output from the output mirror 21.

ところで、レーザ発振開始後、プリズム部3およびミラ
ー4は、入射する光ビームによって加熱され、プリズム
部3の屈折率が変化する。石英ガラスの屈折率の温度係
数は1.0xlO’/’Cであるので、反射された光ビ
ームの光路はプリズム部3の屈折率変化に伴なって温度
係数2.0X10−5ラジアン/℃でずれる。これによ
り、当初元の光路に沿って反射されていた波長5145
人の光ビームは、元の光路に沿っては進まないようにな
る。
By the way, after the laser oscillation starts, the prism part 3 and the mirror 4 are heated by the incident light beam, and the refractive index of the prism part 3 changes. Since the temperature coefficient of the refractive index of quartz glass is 1.0xlO'/'C, the optical path of the reflected light beam changes with a temperature coefficient of 2.0x10-5 radian/°C as the refractive index of the prism section 3 changes. It shifts. This causes the wavelength 5145 that was originally reflected along the original optical path to be
The person's light beam no longer follows the original optical path.

一方、プリズム部3.ミラー4の温度変化は、これらに
広い面積で接触しているホルダ2に迅速に伝達され、ホ
ルダ2をプリズム部3.ミラー4の温度と同じ温度に変
化させる。これにより、ホルダ2自木、ホルダ2の突起
部11.並びにホルダ2に嵌め込まれている温度補償部
材12が伸張するが、ホルダ2およびホルダ2の突起部
11はアルミニウム合金製、温度補償部材12は石英ガ
ラス製であり、それぞれ異なる熱膨張係数23X10 
 /’C,0,4X10’/’Cを有しているので、長
さ1の温度補償部材12に対してこの長さ1に相当する
ホルダ2の部分(長さj−hの部分)、突起部11(長
さh)の方がより多く伸びる。従って温度上昇により分
光装置1は、これらの伸びの差で定まる角度で角度調整
装置27の基板22に対し時計方向に回転して、プリズ
ム部3の屈折率変化に伴なう光ビームの光路のずれを相
殺し、これにより温度が変化しても波長5145人め光
ビームを元の光路に沿って進ませることができる。
On the other hand, the prism section 3. The temperature change of the mirror 4 is quickly transmitted to the holder 2 which is in contact with the mirror over a wide area, and the holder 2 is moved to the prism part 3 . The temperature is changed to the same as that of mirror 4. As a result, the holder 2's own tree, the protrusion 11 of the holder 2. The temperature compensating member 12 fitted into the holder 2 also expands, but the holder 2 and the protrusion 11 of the holder 2 are made of aluminum alloy, and the temperature compensating member 12 is made of quartz glass, each having a different coefficient of thermal expansion of 23×10.
/'C,0,4X10'/'C, so for the temperature compensation member 12 of length 1, the part of the holder 2 corresponding to this length 1 (length j-h part), The protrusion 11 (length h) extends more. Therefore, due to the temperature rise, the spectroscope 1 rotates clockwise with respect to the substrate 22 of the angle adjustment device 27 at an angle determined by the difference in these elongations, and the optical path of the light beam due to the change in the refractive index of the prism section 3 is changed. This offsets the shift, allowing the wavelength 5145 second light beam to continue along the original optical path even if the temperature changes.

なおプリズム部3.ミラー4が温度変化した後、この温
度変化を補償するよう分光装置1がレーザ管20に対し
所定角度回転するまでの間に所定の時間を要するが、本
実施例では、突起部11がホルダ2と一体のものであり
、また温度補償部材12はホルダ2と広い接触面積を有
しているので、ホルダ2.突起部11.温度補償部材1
2が定常的な温度になるまでの時間は短かく、分光装置
1を迅速に回転させることができる。
Note that the prism section 3. After the temperature of the mirror 4 changes, a predetermined time is required until the spectroscope 1 rotates by a predetermined angle with respect to the laser tube 20 to compensate for this temperature change. Since the temperature compensating member 12 has a wide contact area with the holder 2, the temperature compensating member 12 has a large contact area with the holder 2. Projection 11. Temperature compensation member 1
The time it takes for the spectroscopic device 1 to reach a steady temperature is short, and the spectroscopic device 1 can be rotated quickly.

さらに本実施例では、ミラー4がプリズム部3上に形成
されているので、光学素子としてのプリズム部3.ミラ
ー4を小型の熱容量の小さなものにすることができて、
ホルダ2自体をも小型かつ熱容量の小さなものにするこ
とができる。これによりプリズム部3.ミラー4の温度
変化を突起部11、温度補償部材12に一層迅速に伝達
させることが可能となる。なお光学素子としてのプリズ
ム部3.ミラー4は単体として構成されているので、温
度変化によるこれらの間の角度ずれは生じない。
Furthermore, in this embodiment, since the mirror 4 is formed on the prism section 3, the prism section 3. The mirror 4 can be made small and has a small heat capacity.
The holder 2 itself can also be made small and have a small heat capacity. As a result, the prism section 3. It becomes possible to transmit the temperature change of the mirror 4 to the protrusion 11 and the temperature compensating member 12 more quickly. Note that the prism section 3 as an optical element. Since the mirror 4 is constructed as a single unit, there is no angular deviation between them due to temperature changes.

第4図に示すような従来の分光装置50をレーザ発振装
置に用いた場合には安定したレーザ発振光を得るまでに
約30分を要したが、上述したような本実施例の分光装
′I11を用いると、15分以内で安定したレーザ光を
得ることができた。
When the conventional spectroscopic device 50 as shown in FIG. Using I11, stable laser light could be obtained within 15 minutes.

上述の実施例では、分光装置1は、レーザ発振装置に用
いられ、分光装置1に入射した光ビームを分光し、特定
の波長の光ビームを元の光ビームの光路に沿って反射さ
せ逆進させるようになっているとして説明したが、レー
ザ発振装置以外の用途に使用されても良く、例えば入射
した光ビームから特定の波長の光ビームを所定の方向(
元の光ビームの光路とは異なった方向)に単に取出すよ
うな用途にも用いることができる。
In the above-described embodiment, the spectrometer 1 is used in a laser oscillation device, splits the light beam incident on the spectrometer 1, reflects the light beam of a specific wavelength along the optical path of the original light beam, and reverses the light beam. Although it has been explained that it is designed to direct a light beam of a specific wavelength from an incident light beam in a predetermined direction (
It can also be used in applications where the light beam is simply extracted in a direction different from the optical path of the original light beam.

また上述の実施例では、突起部11.温度補償部材12
の形状、大きさ等を具体的な数値で特定したが、これら
の数値に限定されずに種々の変形を施すことも可能であ
る。
Further, in the above-described embodiment, the protrusion 11. Temperature compensation member 12
Although the shape, size, etc. are specified using specific numerical values, various modifications can be made without being limited to these numerical values.

さらに、上述の実施例では、温度補償部材12とホルダ
2との熱接触を大きくとるようにしていたが、ホルダ2
からの熱が温度補償部材12に伝わらなくても良い、す
なわち、石英ガラスはアルミニウム合金に比べて熱膨脹
係数が特に小さいので温度補償部材12に熱が伝わらな
くても分光装置1の回転には差程影響せず、突起部11
の迅速な伸縮によって分光装置1を迅速に回転させるこ
とができる。また、突起部11は、ホルダ2と−゛体の
ものでなくても良いが、その場合にもホルダ2との熱接
触を大きくする必要がある。
Furthermore, in the above embodiment, the thermal contact between the temperature compensating member 12 and the holder 2 is large, but the holder 2
In other words, quartz glass has a particularly small coefficient of thermal expansion compared to aluminum alloy, so even if heat is not transmitted to the temperature compensation member 12, there is no difference in the rotation of the spectrometer 1. It does not affect the protrusion 11
The spectroscopic device 1 can be rapidly rotated by the rapid expansion and contraction of. Further, the protrusion 11 does not have to be integral with the holder 2, but even in that case, it is necessary to increase the thermal contact with the holder 2.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明によれば、単体の光学素
子を大きな熱接触で支持部材に支持させ、また支持部材
と回転手段との熱接触を大きくしているので、光学素子
の温度変化を極めて迅速に回転手段に伝達することがで
きて、光ビームの光路を速やかに安定した最適な状態に
することができる。
As explained above, according to the present invention, a single optical element is supported by the support member with a large thermal contact, and the thermal contact between the support member and the rotating means is increased, so that the temperature of the optical element changes. can be transmitted to the rotating means extremely quickly, and the optical path of the light beam can be quickly brought into a stable and optimal state.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る分光装置の一実施例の構成図、第
2図は角度調整装置に取付けられる側からの分光装置の
斜視図、第3図は分光装置を用いたレーザ発振装置の概
略構成図、第4図は従来の分光装置の構成図である。 1・・・分光装置、2・・・支持部材(ホルダ)、3・
・・プリズム部、4・・・ミラー、11・・・突起部、
12・・・温度補償部材 特許出願人   浜松ホトニクス株式会社代理人  弁
理士  植  本 雅  治第2図
Fig. 1 is a configuration diagram of an embodiment of a spectroscopic device according to the present invention, Fig. 2 is a perspective view of the spectroscopic device from the side where it is attached to an angle adjustment device, and Fig. 3 is a diagram of a laser oscillation device using the spectroscopic device. A schematic configuration diagram, FIG. 4, is a configuration diagram of a conventional spectroscopic device. DESCRIPTION OF SYMBOLS 1... Spectroscope, 2... Support member (holder), 3...
... Prism part, 4... Mirror, 11... Protrusion part,
12...Temperature compensating member patent applicant Masaharu Uemoto Representative Hamamatsu Photonics Co., Ltd. Patent attorney Figure 2

Claims (1)

【特許請求の範囲】 1)入射する光ビームを分光し反射する単体の光学素子
と、該光学素子を大きな熱接触で支持する支持部材と、
該支持部材との熱接触が大きく、温度変化により前記支
持部材を所定の角度で回転させる回転手段とを備えてい
ることを特徴とする分光装置。 2)前記光学素子は、プリズム部と、該プリズム部に形
成された誘電体多層膜のミラーとからなり、前記支持部
材に嵌着されていることを特徴とする特許請求の範囲第
1項に記載の分光装置。 3)前記回転手段は、前記支持部材に取付けられた温度
補償部材と、温度補償部材とは反対の端部に設けられ支
持部材との熱接触の大きな突起部とを有し、突起部は前
記温度補償部材の熱膨脹係数よりも大きな熱膨脹係数を
有していることを特徴とする特許請求の範囲第1項に記
載の分光装置。
[Claims] 1) A single optical element that separates and reflects an incident light beam, and a support member that supports the optical element with large thermal contact;
A spectroscopic device comprising a rotation means that has a large thermal contact with the support member and rotates the support member at a predetermined angle due to a temperature change. 2) The optical element includes a prism portion and a dielectric multilayer mirror formed on the prism portion, and is fitted to the support member. The spectroscopic device described. 3) The rotating means has a temperature compensating member attached to the supporting member, and a protruding portion provided at an end opposite to the temperature compensating member and having a large thermal contact with the supporting member, and the protruding portion has a temperature compensating member attached to the supporting member. 2. The spectroscopic device according to claim 1, wherein the spectroscopic device has a coefficient of thermal expansion larger than that of the temperature compensating member.
JP26724087A 1987-10-22 1987-10-22 Spectroscope Pending JPH01109783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26724087A JPH01109783A (en) 1987-10-22 1987-10-22 Spectroscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26724087A JPH01109783A (en) 1987-10-22 1987-10-22 Spectroscope

Publications (1)

Publication Number Publication Date
JPH01109783A true JPH01109783A (en) 1989-04-26

Family

ID=17442083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26724087A Pending JPH01109783A (en) 1987-10-22 1987-10-22 Spectroscope

Country Status (1)

Country Link
JP (1) JPH01109783A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247655A (en) * 2010-05-25 2011-12-08 Yokogawa Electric Corp Spectrometer and optical spectrum analyzer using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247655A (en) * 2010-05-25 2011-12-08 Yokogawa Electric Corp Spectrometer and optical spectrum analyzer using the same

Similar Documents

Publication Publication Date Title
US6061382A (en) Laser system and method for narrow spectral linewidth through wavefront curvature compensation
US5226050A (en) Small line width tunable laser
US5594744A (en) Singlemode laser source tunable in wavelength with a self-aligned external cavity
US5524012A (en) Tunable, multiple frequency laser diode
JP3726676B2 (en) External cavity mode-locked semiconductor laser device
WO1993005553A1 (en) Pre-aligned diode laser for external cavity operation
US20040109487A1 (en) External cavity laser with dispersion compensation for mode-hop-free tuning
US20070127539A1 (en) Narrow band laser with wavelength stability
AU6343490A (en) Method for ascertaining mode hopping free tuning of resonance frequency and the q-value of an optical resonator and a device for carrying out the method
FI116753B (en) Wavelength adjustable laser arrangement
WO1998056087A1 (en) Laser systems using phase conjugate feedback
JPH01109783A (en) Spectroscope
US3515464A (en) Monochromatic prism assembly for laser application
WO2001073905A1 (en) Wavelength tuning in external cavity lasers
Lynch et al. Bragg-grating-stabilized external cavity lasers for gas sensing using tunable diode laser spectroscopy
US20020163643A1 (en) Optical interference apparatus and method
JP2661147B2 (en) Excimer laser device
JPS63137493A (en) Apparatus for narrowing spectral line width of semiconductor
JPH09129982A (en) External resonator type ld light source
JPS60117694A (en) Light frequency stabilizing device
JPH09260792A (en) External resonator-type wavelength-variable ld light source
JPH01108521A (en) Spectral modulator
JPH05299759A (en) Narrow-band laser apparatus
JPS6350856Y2 (en)
JP3219135B2 (en) Laser oscillator