JPH0110914Y2 - - Google Patents

Info

Publication number
JPH0110914Y2
JPH0110914Y2 JP1983080430U JP8043083U JPH0110914Y2 JP H0110914 Y2 JPH0110914 Y2 JP H0110914Y2 JP 1983080430 U JP1983080430 U JP 1983080430U JP 8043083 U JP8043083 U JP 8043083U JP H0110914 Y2 JPH0110914 Y2 JP H0110914Y2
Authority
JP
Japan
Prior art keywords
wires
rectangular
adhesive
wire
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983080430U
Other languages
Japanese (ja)
Other versions
JPS59185815U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8043083U priority Critical patent/JPS59185815U/en
Publication of JPS59185815U publication Critical patent/JPS59185815U/en
Application granted granted Critical
Publication of JPH0110914Y2 publication Critical patent/JPH0110914Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

この考案は、変圧器、リアクトル等のコイルの
機械的強度を高めた経済的な紙巻線に関する。 一般に変圧器やリアクトル等の電気機器では、
自己コイルあるいは他のコイルによつて形成され
る交番磁界の中で使用されることが多い。そのた
め、この交番磁界によつて導体中に生ずる渦電流
損失を低減させるため、強度上、許容される範囲
で素線を細分割し、その紙巻素線を数本束ねて、
更に絶縁紙で共通巻した紙巻線が一般に使われて
いる。 しかし、渦電流損失を更に低減させるために更
なる導体の細分割が望まれる。ところが導体を細
分割すればする程、素線に巻いた絶縁紙によつ
て、いわゆる着ぶくれで導体の占積率が低下す
る。また、導体の機械的強度が低下して、短絡大
電流が生じた時、発生する強力な電磁力による応
力によつて、コイルが変形する恐れがある。この
ような事態を防ぐため、細分割された導体を接着
剤で接着し、一体化すると実用上有利である。 このような観点から平角線の場合、実開昭53−
28475号、実公昭57−17681号の複合紙巻線あるい
は実公昭57−43292号の複合絶縁電線、実開昭56
−26306号の絶縁電線などにみられるように自己
融着性のものを使つた接着導体が既に開示されて
いる。 これらの接着導体はいずれも第1図に示すよう
に、平角エナメル線に接着剤を塗布した自己融着
性平角エナメル線1を並列に重ねて絶縁物2によ
つて複合し、加熱後冷却して一体化した接着導体
を得ている。 ところが、接着剤を塗布していない平角エナメ
ル線に比べると接着剤を塗布した自己融着性平角
エナメル線は接着剤を塗布しただけ、かなり割高
になるので第1図のような従来のものは経済性の
面で不利である欠点がある。 しかるに、この考案はこのような欠点に鑑み、
機械的強度が優れていて、なおかつ安価な紙巻線
を提供することを目的とするものである。 以下、この考案を第2図および第3図に示した
実施例について説明する。 第2図において、1は平角エナメル線に接着剤
を塗布してなる自己融着性平角エナメル線、3は
平角エナメル線、4はこれらを共通巻する絶縁紙
である。またFは短絡電流が生じた時、発生する
電磁力による応力、wはせん断応力が最大になる
位置である。 ところで、複数の平角線を互いに接着してなる
接着導体Aにかかる応力Fとせん断応力Fsを模
型的に示すと第4図のようになる。このような応
力のかかり方をすると、せん断応力Fsの分布は
放物線状になり、真中で最も大きい。なお、第4
図において5は支点である。 したがつて、第2図に示すように平角線の数が
偶数の場合、真中の隣接する二本の平角線を平角
エナメル線に接着剤を塗布してなる自己融着性平
角エナメル線1とし、他は接着剤を塗布してない
平角エナメル線3と自己融着性平角エナメル線1
とを交互に配列する。また平角線の数が奇数の場
合には第3図に示すように真中の一本の平角線を
接着剤を塗布していない平角エナメル線3とし、
他は自己融着性平角エナメル線1と接着剤を塗布
していない平角エナメル線3とを交互に配列す
る。奇数の場合において、平角エナメル線3を中
央に配置することにより割高な自己融着性平角エ
ナメル線1の本数が少なくなる。また、偶数の場
合において、真中の隣接する二本の平角線を自己
融着性平角エナメル線1とするのは、せん断応力
Fsが最も大きい中央部で平角線間の接着強度を
大きくするためである。即ち、平角エナメル線3
のエナメル被膜は、ワニスの表面張力の影響で、
コーナー部が厚くなつている。一方、自己融着性
平角エナメル線1についてはエナメル被膜の上に
接着剤を厚く上塗りするのは困難で接着剤の層の
厚さは通常15μm前後である。従つて、このよう
な平角エナメル線3と自己融着性平角エナメル線
1とを隣接させるとエナメル被膜の厚さの大きい
コーナー部同士が接着されて大きなせん断応力に
耐えるに十分な接着面積、従つてまた十分な接着
強度が得られにくい。そこで、この考案において
は、せん断応力Fsの最も大きい真中の隣接する
二本の平角線はいずれも自己融着性平角エナメル
線1として接着剤同士を接着させることで両者の
接着面積を大きくし、接着強度を大きくしている
ものである。 第1表に、第5図のような複合紙巻線(平角線
の本数も図示のとおり)を150℃、15時間で接着
したテストピースの3点曲げ試験結果を示す。イ
は第1図の従来のもの、ロは第2図のこの考案に
よるもの、ハは平角線の数が偶数の場合に平角エ
ナメル線3と自己融着性平角エナメル線1とを交
互に配列した参考例、ニは第3図のこの考案によ
るものであり、導体1本のサイズは厚さ1.4mm、
幅6.0mm、長さ150mmであり、3点曲げ試験の支点
間距離は100mmである。また、曲げ試験はオート
グラフで行つた。測定温度は23℃であつた。
This invention relates to an economical paper winding wire that increases the mechanical strength of coils for transformers, reactors, etc. Generally, in electrical equipment such as transformers and reactors,
It is often used in alternating magnetic fields created by self-coils or other coils. Therefore, in order to reduce the eddy current loss that occurs in the conductor due to this alternating magnetic field, the strands are divided into small pieces within the allowable range in terms of strength, and several of the paper-wrapped strands are bundled.
Furthermore, paper-wound wires commonly wound with insulating paper are commonly used. However, further conductor subdivision is desired to further reduce eddy current losses. However, the more the conductor is divided into smaller pieces, the more the conductor's space factor decreases due to so-called blisters caused by the insulating paper wrapped around the wires. Furthermore, when the mechanical strength of the conductor decreases and a short circuit generates a large current, the coil may be deformed due to the stress caused by the strong electromagnetic force generated. In order to prevent such a situation, it is practically advantageous to bond the finely divided conductors with an adhesive and integrate them. From this point of view, in the case of flat wires,
No. 28475, composite paper winding wire of Utility Model No. 17681, or composite insulated wire of Utility Model No. 57-43292,
Adhesive conductors using self-bonding materials have already been disclosed, such as the insulated wire of No. 26306. As shown in Figure 1, these adhesive conductors are made by stacking self-bonding rectangular enameled wires 1 in parallel and bonding them together with an insulator 2, heating and then cooling them. This results in an integrated adhesive conductor. However, compared to rectangular enameled wire without adhesive, self-bonding rectangular enameled wire coated with adhesive is considerably more expensive because it is coated with adhesive, so conventional wires as shown in Figure 1 are It has the disadvantage of being disadvantageous in terms of economy. However, in view of these drawbacks, this idea
The purpose of this invention is to provide a paper winding wire that has excellent mechanical strength and is inexpensive. This invention will be described below with reference to the embodiments shown in FIGS. 2 and 3. In FIG. 2, 1 is a self-bonding flat enameled wire made by coating a flat enameled wire with an adhesive, 3 is a flat enameled wire, and 4 is an insulating paper used to commonly wrap these wires. Further, F is the stress due to the electromagnetic force generated when a short circuit current occurs, and w is the position where the shear stress is maximum. By the way, the stress F and shear stress Fs applied to a bonded conductor A made by bonding a plurality of rectangular wires to each other are schematically shown in FIG. 4. When stress is applied in this way, the distribution of shear stress Fs becomes parabolic, with the largest value in the middle. In addition, the fourth
In the figure, 5 is a fulcrum. Therefore, when the number of rectangular wires is even as shown in Fig. 2, the two adjacent rectangular wires in the middle are used as the self-bonding rectangular enameled wire 1, which is made by applying adhesive to the rectangular enameled wire. , the others are flat enameled wire 3 with no adhesive applied and self-bonding flat enameled wire 1.
and arranged alternately. If the number of flat wires is odd, as shown in Fig. 3, one flat wire in the middle is used as a flat enameled wire 3 without adhesive applied.
In other cases, self-bonding rectangular enameled wires 1 and rectangular enameled wires 3 to which no adhesive is applied are arranged alternately. In the case of an odd number, by arranging the rectangular enameled wire 3 in the center, the number of relatively expensive self-fusing rectangular enameled wires 1 is reduced. In addition, in the case of an even number, the reason why the two adjacent rectangular wires in the middle are made into self-bonding rectangular enameled wire 1 is due to shear stress.
This is to increase the adhesive strength between the rectangular wires at the center where Fs is greatest. That is, the rectangular enameled wire 3
Due to the surface tension of the varnish, the enamel coating of
The corners are thicker. On the other hand, with respect to the self-bonding rectangular enameled wire 1, it is difficult to overcoat a thick layer of adhesive on the enamel coating, and the thickness of the adhesive layer is usually around 15 μm. Therefore, when the rectangular enameled wire 3 and the self-bonding rectangular enameled wire 1 are placed adjacent to each other, the thick corners of the enamel coating are bonded to each other, resulting in a bonding area sufficient to withstand large shear stress. Furthermore, it is difficult to obtain sufficient adhesive strength. Therefore, in this invention, the two adjacent rectangular wires in the middle with the largest shear stress Fs are bonded together as self-bonding rectangular enameled wires 1, thereby increasing the bonding area between them. This increases adhesive strength. Table 1 shows the results of a three-point bending test on a test piece in which a composite paper winding wire (the number of rectangular wires is as shown) as shown in FIG. 5 was bonded at 150° C. for 15 hours. A is the conventional one as shown in Fig. 1, B is the one according to this invention as shown in Fig. 2, and C is the arrangement in which the rectangular enameled wires 3 and the self-bonding rectangular enameled wires 1 are arranged alternately when the number of rectangular wires is even. Reference example 2 is based on this idea in Figure 3, and the size of one conductor is 1.4 mm thick.
It has a width of 6.0 mm and a length of 150 mm, and the distance between the supporting points for the three-point bending test is 100 mm. In addition, the bending test was performed using an autograph. The measurement temperature was 23°C.

【表】 表中、曲げ強度が400Kg/cm2以上とはテストピ
ースの「くの字」となつて、歪が20mm以上なつて
もなお接着面で破断しなかつた場合の結果であ
る。 第1表の結果から、この考案の紙巻線の接着力
は自己融着性平角エナメル線だけの紙巻線に比べ
ても、遜色ないことが認められる。 特に、平角線が偶数の場合、第5図ハの参考例
におけるように、接着剤を塗布していない平角エ
ナメル線3と接着剤を塗布した自己融着性平角エ
ナメル線1とを単に交互に配列したものと、第5
図ロの本考案によるものとでは、参考例の場合に
は曲げ強度が370Kg/cm2であるのに対し、本考案
によるものでは400Kg/cm2以上と明瞭な差があり、
真中の隣接する二本の平角線を自己融着性平角エ
ナメル線1とすることにより、前述のように中央
部で大きな接着強度が得られることを明瞭に裏付
けている。 以上のように、この考案によれば、接着剤を塗
布していない平角エナメル線と接着剤を塗布した
自己融着性平角線とを複合することにより、全て
の平角線を自己融着性平角エナメル線とする場合
に比較して、機械的強度を実質的に低下させるこ
となく、割高な自己融着性エナメル線の数が減少
するだけ安価になる紙巻線が得られるという効果
がある。 なお、自己融着性平角エナメル線の接着剤とし
ては例えばポリエステル、ポリアミド、フエノキ
シ樹脂、ウレタン樹脂などがあり、エナメルとし
ては例えばポリビニルホルマール、ポリエステ
ル、ポリウレタンなどがある。
[Table] In the table, a bending strength of 400 Kg/cm 2 or more is a result when the test piece becomes "dog-shaped" and does not break at the bonded surface even if the strain is 20 mm or more. From the results shown in Table 1, it is recognized that the adhesive strength of the paper-wound wire of this invention is comparable to that of a paper-wound wire made only of self-bonding rectangular enameled wire. In particular, when the number of rectangular wires is even, as in the reference example in Fig. 5C, the rectangular enameled wire 3 without adhesive and the self-bonding rectangular enameled wire 1 coated with adhesive are simply alternated. The arranged one and the fifth
There is a clear difference between the bending strength of the reference example and that of the invention shown in Figure B, which is 370Kg/ cm2 , while the bending strength of the invention is more than 400Kg/ cm2 .
This clearly supports that by using the self-bonding flat rectangular enameled wire 1 as the two adjacent rectangular wires in the middle, a large adhesive strength can be obtained in the central portion as described above. As described above, according to this invention, all rectangular wires are made into self-adhesive rectangular wires by combining a rectangular enameled wire without adhesive and a self-adhesive rectangular wire coated with adhesive. Compared to the case of using enameled wire, there is an effect that a paper-wound wire can be obtained which is less expensive as the number of relatively expensive self-bonding enameled wires is reduced without substantially lowering the mechanical strength. Note that adhesives for self-bonding rectangular enameled wire include, for example, polyester, polyamide, phenoxy resin, and urethane resin, and examples of enamel include polyvinyl formal, polyester, and polyurethane.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の複合絶縁電線を示す横断面
図、第2図はこの考案の一実施例を示す横断面
図、第3図はこの考案の他の実施例を示す横断面
図、第4図はこの考案を説明するための図、第5
図は曲げ試験に供したテストピースの横断面図で
ある。なお各図中、同一符号は同一または相当部
分を示し、1は自己融着性平角エナメル線、3は
平角エナメル線、4は絶縁紙である。
FIG. 1 is a cross-sectional view showing a conventional composite insulated wire, FIG. 2 is a cross-sectional view showing one embodiment of this invention, and FIG. 3 is a cross-sectional view showing another embodiment of this invention. Figure 4 is a diagram to explain this idea, Figure 5
The figure is a cross-sectional view of a test piece subjected to a bending test. In each figure, the same reference numerals indicate the same or corresponding parts; 1 is a self-bonding rectangular enameled wire, 3 is a rectangular enameled wire, and 4 is an insulating paper.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 複数の平角線を並列に重ねたものを絶縁紙で共
通巻してなる紙巻線において、前記平角線が偶数
の場合は真中の隣接する二本の平角線を平角エナ
メル線に接着剤を塗布してなる自己融着性平角エ
ナメル線とし、他は接着剤を塗布していない平角
エナメル線と自己融着性平角エナメル線とを交互
に配列し、前記平角線が奇数の場合には真中の一
本の平角線を接着剤を塗布していない平角エナメ
ル線とし、他は自己融着性平角エナメル線と接着
剤を塗布していない平角エナメル線とを交互に配
列したことを特徴とする紙巻線。
In a paper-wound wire made of multiple flat wires stacked in parallel and commonly wound with insulating paper, if the number of flat wires is even, two adjacent flat wires in the middle are coated with adhesive on the flat enamelled wire. The other parts are flat rectangular enameled wires with no adhesive applied and self-fusing rectangular enameled wires arranged alternately, and if the number of flat wires is odd, one in the middle is used. A paper-wound wire characterized in that the rectangular wire of the book is a rectangular enameled wire to which no adhesive is applied, and the other parts are alternately arranged self-bonding rectangular enameled wires and rectangular enamelled wires to which no adhesive is applied. .
JP8043083U 1983-05-27 1983-05-27 paper wound wire Granted JPS59185815U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8043083U JPS59185815U (en) 1983-05-27 1983-05-27 paper wound wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8043083U JPS59185815U (en) 1983-05-27 1983-05-27 paper wound wire

Publications (2)

Publication Number Publication Date
JPS59185815U JPS59185815U (en) 1984-12-10
JPH0110914Y2 true JPH0110914Y2 (en) 1989-03-29

Family

ID=30210423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8043083U Granted JPS59185815U (en) 1983-05-27 1983-05-27 paper wound wire

Country Status (1)

Country Link
JP (1) JPS59185815U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682525B2 (en) * 1986-09-09 1994-10-19 日立電線株式会社 Double conductor paper winding

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53142655A (en) * 1977-05-18 1978-12-12 Mitsubishi Electric Corp Insulating construction of coil

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328475U (en) * 1976-08-18 1978-03-10

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53142655A (en) * 1977-05-18 1978-12-12 Mitsubishi Electric Corp Insulating construction of coil

Also Published As

Publication number Publication date
JPS59185815U (en) 1984-12-10

Similar Documents

Publication Publication Date Title
US4864266A (en) High-voltage winding for core-form power transformers
US9263181B2 (en) Multi-phase transformer and transformation system
JP2593101B2 (en) Coil device
JPH0110914Y2 (en)
JPH04196507A (en) Thin type transformer
US4859978A (en) High-voltage windings for shell-form power transformers
JPH0442907A (en) Plane composite coil for plane transformer and its manufacture
US3534312A (en) Electrical coil and method of attaching leads
CN112216481A (en) Magnetic induction coil
JPS6128331Y2 (en)
JPS6325709Y2 (en)
JPS6020505A (en) Paper wound wire
JPH02288310A (en) Flat coil
JPS5929307A (en) Method of producing multiconductor wire
CN210325464U (en) Magnetic induction coil
JPH02142107A (en) Coil for electromagnetic induction equipment
JPH048571Y2 (en)
JPH0410168B2 (en)
JPS59143310A (en) Paper covered wire
JPS6111851Y2 (en)
JPH084653Y2 (en) Flat wire for coil
JPS59143311A (en) Paper covered wire
CA1077147A (en) Composite sheet winding for an electromagnetic induction apparatus
KR100260845B1 (en) Flyback transformer coil structure
JPS59143309A (en) Paper-covered wire