JPH01109109A - Tire pressure regulator - Google Patents

Tire pressure regulator

Info

Publication number
JPH01109109A
JPH01109109A JP62266557A JP26655787A JPH01109109A JP H01109109 A JPH01109109 A JP H01109109A JP 62266557 A JP62266557 A JP 62266557A JP 26655787 A JP26655787 A JP 26655787A JP H01109109 A JPH01109109 A JP H01109109A
Authority
JP
Japan
Prior art keywords
pressure
tire
valve
port
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62266557A
Other languages
Japanese (ja)
Other versions
JP2540745B2 (en
Inventor
Shuntaro Yoshida
俊太郎 吉田
Yozo Mashima
要三 間嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP62266557A priority Critical patent/JP2540745B2/en
Publication of JPH01109109A publication Critical patent/JPH01109109A/en
Application granted granted Critical
Publication of JP2540745B2 publication Critical patent/JP2540745B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/001Devices for manually or automatically controlling or distributing tyre pressure whilst the vehicle is moving
    • B60C23/003Devices for manually or automatically controlling or distributing tyre pressure whilst the vehicle is moving comprising rotational joints between vehicle-mounted pressure sources and the tyres
    • B60C23/00354Details of valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Fluid Pressure (AREA)

Abstract

PURPOSE:To arrange so as to be able to conduct in a short time the regulation of the air pressure of a tire by arranging between a pressure mechanism generating a predetermined pressure and the tire, a housing provided with the 1st and the 2nd valve mechanisms which are opened in the states of respectively different pressures. CONSTITUTION:This tire pressure regulation valve 300 assembled to the end surface of the outside of an axle shaft, conducts the control of feeding and discharging the pressure from an external pressure mechanism and the air pressure within a tire, and has a housing 310 provided with the 1st port 311 connected to the pressure mechanism and the 2nd port 312 connected to the tire. Also, the housing 310 has a passage 313 which is capable of being connected to respective ports 311, 312 and is opened/closed by means of the 1st, 2nd valve mechanisms 330, 340. And a constitution is so made that the 1st valve mechanism 330 is opened when the pressure of the 1st port 311 is more than a predetermined valve, and the 2nd valve mechanism 340 is closed when the pressure difference of both ports 311, 312, at the opening time of the 1st valve mechanism 330, is more than a predetermined value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は車両用タイヤの空気圧を調整する装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for adjusting the air pressure of a vehicle tire.

〔従来の技術および問題点〕[Conventional technology and problems]

従来タイヤ圧調整装置として、車輪に配設され、例えば
運転者が運転席に設けられたスイッチを扱作してタイヤ
の空気圧を変更させるものが知られている。このような
タイヤ圧調整装置は、圧力源とタイヤを連結する通路の
途中に設けられ、例えば、ダイヤフラムに固定された弁
体の開閉動作によりタイヤ圧調整し、弁体の開度は例え
ばこの弁体に形成された絞りの前後に発生する圧力差に
より定まるようになっている。
2. Description of the Related Art Conventionally known tire pressure adjusting devices are devices that are disposed on wheels and that allow a driver to change the tire air pressure by operating a switch provided at the driver's seat, for example. Such a tire pressure adjustment device is installed in the middle of a passage connecting a pressure source and a tire, and adjusts the tire pressure by, for example, opening and closing a valve body fixed to a diaphragm. It is determined by the pressure difference that occurs before and after a restriction formed in the body.

ところが、このように圧力源とタイヤの間の流路の途中
に絞りが設けられる構造の場合、この絞りのために空気
の流動が妨げられ、タイヤ圧の調整に要する時間が長い
という問題を有する。
However, in the case of a structure in which a restriction is provided in the middle of the flow path between the pressure source and the tire, this restriction obstructs the flow of air and has the problem that it takes a long time to adjust the tire pressure. .

本発明は、タイヤの空気圧の調整を短時間で行なうこと
のできるタイヤ圧調整装置を得ることを目的としてなさ
れたものである。
The present invention has been made for the purpose of providing a tire pressure adjustment device that can adjust tire air pressure in a short time.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係るタイヤ圧調整装置は、所定の圧力を発生す
る圧力機構と、この圧力機構とタイヤの間に設けられる
ハウジングと、このハウジング内に設けられる第1およ
び第2弁機構とを備える。
A tire pressure adjustment device according to the present invention includes a pressure mechanism that generates a predetermined pressure, a housing provided between the pressure mechanism and the tire, and first and second valve mechanisms provided within the housing.

ハウジングは、圧力機構に連結される第1ポートと、タ
イヤに連結される第2ポートと、これらの第1および第
2ポートに連通可能な通路とを有する。
The housing has a first port coupled to the pressure mechanism, a second port coupled to the tire, and a passageway communicating with the first and second ports.

〔作 用〕[For production]

第1弁機構は、第1ポートと通路の間を連通遮断し、第
1ポートの圧力が所定値以上の時開弁する。第2弁機構
は、第2ポートと通路の間を連通遮断し、第1弁機構が
開弁じている時、第1および第2ポートの圧力差が所定
値以上の時開弁する。
The first valve mechanism blocks communication between the first port and the passage, and opens when the pressure of the first port is equal to or higher than a predetermined value. The second valve mechanism blocks communication between the second port and the passage, and opens when the first valve mechanism is open and the pressure difference between the first and second ports is equal to or greater than a predetermined value.

〔実施例〕〔Example〕

以下図示実施例により本発明を説明する。 The present invention will be explained below with reference to illustrated embodiments.

第2図は、本発明の一実施例に係るタイヤ圧調整装置を
適用した車輪を示す。
FIG. 2 shows a wheel to which a tire pressure adjustment device according to an embodiment of the present invention is applied.

この図において、タイヤ101の支持板102は、図示
しないボルトによりアクスルシャフト201に連結され
る。ベアリングケース202は、キャリヤ203の円筒
部204に嵌着され、これによりキャリヤ203に一体
的に固定される。ベアリングケース202内にはベアリ
ング205が収容され、アクスルシャフト201はベア
リング205により回転自在に支持される。ベアリング
205の外輪は、ベアリングケース202とキャリヤの
円筒部204の端面とにより支持され、ベアリング20
5の内輪は、アクスルシャフト201とこのアクスルシ
ャフトの先端に螺着されたナツト206とにより支持さ
れる。キャリヤ203、ベアリング205、アクスルシ
ャフト201およびナツト206により環状室208が
形成される。耐圧回転軸シール207は、ベアリングケ
ース202とアクスルシャフト201の間に設けられ、
環状室208を外部に対してシールする。またO IJ
ソング09はベアリングケース202とキャリヤの円筒
部204との間に設けられて環状室208を外部に対し
てシールする。
In this figure, a support plate 102 of a tire 101 is connected to an axle shaft 201 by a bolt (not shown). The bearing case 202 is fitted into the cylindrical portion 204 of the carrier 203 and is thereby integrally fixed to the carrier 203. A bearing 205 is housed in the bearing case 202, and the axle shaft 201 is rotatably supported by the bearing 205. The outer ring of the bearing 205 is supported by the bearing case 202 and the end surface of the cylindrical portion 204 of the carrier.
The inner ring of No. 5 is supported by an axle shaft 201 and a nut 206 screwed onto the tip of the axle shaft. An annular chamber 208 is formed by the carrier 203, the bearing 205, the axle shaft 201 and the nut 206. A pressure-resistant rotary shaft seal 207 is provided between the bearing case 202 and the axle shaft 201,
The annular chamber 208 is sealed to the outside. Also O IJ
A song 09 is provided between the bearing case 202 and the cylindrical part 204 of the carrier to seal the annular chamber 208 to the outside.

タイヤ圧調整弁300は、圧力機構350の発生する圧
力をタイヤ101内に導き、あるいはタイヤ101内の
空気圧を圧力機構350を介して外部へ解放することに
より、タイヤ101の空気圧を調整するものである。圧
力機構350は制御ライン351を介してキャリヤ20
3に連結され、キャリヤ203に穿設された孔211を
介して環状室208に連通ずる。
The tire pressure adjustment valve 300 adjusts the air pressure of the tire 101 by guiding the pressure generated by the pressure mechanism 350 into the tire 101 or by releasing the air pressure inside the tire 101 to the outside via the pressure mechanism 350. be. The pressure mechanism 350 is connected to the carrier 20 via a control line 351.
3 and communicates with the annular chamber 208 via a hole 211 drilled in the carrier 203.

タイヤ圧調整弁300は、アクスルシャフト201の外
側端面の中央部に形成された凹部212に取付けられ、
耐圧チューブ301により、アクスルシャフト201に
穿設された通路213に連結される。通路213は環状
室208に連通し、したがって圧力機構350の圧力は
、制御ライン351、孔211、環状室208、通路2
13、および耐圧チューブ301を介してタイヤ圧調整
弁300に導かれる。タイヤ圧調整弁300は耐圧チュ
ーブ302を介してタイヤ101に連結される。
The tire pressure regulating valve 300 is attached to a recess 212 formed in the center of the outer end surface of the axle shaft 201.
The pressure tube 301 is connected to a passage 213 bored in the axle shaft 201 . Passage 213 communicates with annular chamber 208 and therefore the pressure of pressure mechanism 350 is transferred to control line 351, hole 211, annular chamber 208, passage 2
13 and is led to the tire pressure regulating valve 300 via a pressure tube 301. The tire pressure regulating valve 300 is connected to the tire 101 via a pressure tube 302.

圧力機構350は、コンプレッサ352によりフィルタ
353を介して空気を取込んで加圧し、この高圧空気を
空気ボンベ354に蓄圧するとともに圧力制御弁355
によりタイヤ圧調整弁300に供給するように構成され
ている。すなわち圧力制御弁355は圧力ライン356
を介してコンプレッサ352および空気ボンベ354に
接続され、制御ライン351を介してタイヤ圧調整弁3
00に接続される。制御ライン351の途中には解放ラ
イン357が連結され、この解放ライン357には圧力
放出弁358が接続される。圧力制御弁355および圧
力放出弁358は、マイクロコンピュータを備えた電子
制御部(ECII)370により切換制御される。
The pressure mechanism 350 takes in air through a filter 353 with a compressor 352 and pressurizes it, accumulates this high pressure air in an air cylinder 354, and operates a pressure control valve 355.
It is configured to supply the tire pressure regulating valve 300 with the tire pressure regulating valve 300. That is, the pressure control valve 355 is connected to the pressure line 356.
is connected to a compressor 352 and an air cylinder 354 via a control line 351, and a tire pressure regulating valve 3 is connected via a control line 351.
Connected to 00. A release line 357 is connected to the middle of the control line 351, and a pressure release valve 358 is connected to the release line 357. The pressure control valve 355 and the pressure release valve 358 are switched and controlled by an electronic control unit (ECII) 370 equipped with a microcomputer.

圧力制御弁355は、非作動時、図示された中立位置に
あり、圧力ライン356と制御ライン351 とを遮断
する。圧力制御弁355は、図の左方へ切換えられる第
1の位置にある時、圧力ライン356と制御ライン35
1 とを連通させ、これにより高圧空気がタイヤ圧調整
弁300を通ってタイヤ101に供給される。また圧力
制御弁355は、図の右方へ切換えられて第2の位置に
ある時、制御ライン351を消音器361を介して大気
へ連通させる。
When inactive, pressure control valve 355 is in the neutral position shown, blocking pressure line 356 and control line 351 . When the pressure control valve 355 is in a first position switched to the left in the figure, the pressure line 356 and the control line 35 are connected to each other.
1 , thereby supplying high pressure air to the tire 101 through the tire pressure regulating valve 300 . The pressure control valve 355 also connects the control line 351 to the atmosphere through the silencer 361 when the pressure control valve 355 is switched to the right in the figure and is in the second position.

圧力放出弁358は、非作動時、図示された第1の位置
にあり、解放ライン357を消音器362を介して大気
へ連通させる。圧力放出弁358は、図の右方へ切換え
られて第2の位置にある時、解放ライン357を大気か
ら遮断する。
Pressure release valve 358 , when inactive, is in the first position shown, communicating release line 357 to atmosphere through silencer 362 . Pressure release valve 358 isolates release line 357 from the atmosphere when switched to the right in the figure and in a second position.

制御ライン351の途中であって、解放ライン357と
の接続部分と車輪との間には、圧力センサ365と流量
センサ366が設けられる。これらのセンサ365.3
66はECU370 ニ接続される。またEC[l37
0には、車速センサ367と、車両の重量分布を検出す
る荷重センサ368と、路面杖態を感知する路面センサ
369とが接続される。 ECU370は、後述するよ
うに、圧力センサ365、流量センサ366、車速セン
サ367、荷重センサ368および路面センサ369の
出力信号に応じて圧力制御弁355および圧力放出弁3
58を切換制御する。
A pressure sensor 365 and a flow rate sensor 366 are provided in the middle of the control line 351 between the connection part with the release line 357 and the wheels. These sensors 365.3
66 is connected to the ECU 370. Also, EC[l37
A vehicle speed sensor 367, a load sensor 368 that detects the weight distribution of the vehicle, and a road surface sensor 369 that detects the road surface condition are connected to the vehicle 0. ECU 370 operates pressure control valve 355 and pressure release valve 3 according to output signals from pressure sensor 365, flow rate sensor 366, vehicle speed sensor 367, load sensor 368, and road surface sensor 369, as described later.
58 is switched and controlled.

第1図はタイヤ圧調整弁300の構造を示す。FIG. 1 shows the structure of a tire pressure regulating valve 300.

ハウジング310には、第1ポート311と第2ポー)
312が形成される。第1ポート311には、耐圧チュ
ーブ301のコネクタ303(第2図)が連結され、ま
た第2ポート312には、耐圧チューブ302のコネク
タ304(第2図)が連結される。すなわち、第1ポー
)311は圧力機構350に連結され、第2ポート31
2はタイヤ101に連結される。
The housing 310 has a first port 311 and a second port)
312 is formed. The connector 303 (FIG. 2) of the pressure tube 301 is connected to the first port 311, and the connector 304 (FIG. 2) of the pressure tube 302 is connected to the second port 312. That is, the first port 311 is connected to the pressure mechanism 350, and the second port 31
2 is connected to the tire 101.

ハウジング310には、第1および第2ボー)311゜
312に連通可能な通路313が形成される。この通路
313は、第1および第2弁機構330.340により
開閉される。
A passage 313 is formed in the housing 310 and can communicate with the first and second bows 311 and 312. This passage 313 is opened and closed by first and second valve mechanisms 330 and 340.

第1弁機構330は、ハウジング310とこのハウジン
グ310にボルト314により固定されたカバー315
との間に設けられ、ダイヤフラム331とディスク33
2とばね333とを有する。ダイヤフラム331の外周
縁は、ハウジング310とカバー315により挟持され
、ダイヤフラム331の中央に形成された厚肉部334
は、ハウジング310の隆起部316に接離して通路3
13を開閉する。ディスク332は厚肉部334の背面
に接着される。ばね333はディスク332とカバー3
15の間に設けられ、ダイヤフラム331を通路313
を閉塞する側へ付勢する。ダイヤフラム331とハウジ
ング310の間に形成された変圧室321は、連通孔3
17を介して第1ポート311に連通する。一方、ダイ
ヤフラム331とカバー315の間に形成された大気室
322は、カバー315に穿設された連通孔318を介
して大気に連通し、常時大気圧が導かれる。
The first valve mechanism 330 includes a housing 310 and a cover 315 fixed to the housing 310 with bolts 314.
between the diaphragm 331 and the disk 33
2 and a spring 333. The outer peripheral edge of the diaphragm 331 is sandwiched between the housing 310 and the cover 315, and a thick wall portion 334 is formed at the center of the diaphragm 331.
The passageway 3 is connected to and away from the raised portion 316 of the housing 310.
13 is opened and closed. Disk 332 is glued to the back side of thickened portion 334. Spring 333 connects disk 332 and cover 3
15, and the diaphragm 331 is connected to the passage 313.
is biased toward the side that closes it. A variable pressure chamber 321 formed between the diaphragm 331 and the housing 310 is connected to the communication hole 3.
17 to the first port 311 . On the other hand, the atmospheric chamber 322 formed between the diaphragm 331 and the cover 315 communicates with the atmosphere through a communication hole 318 formed in the cover 315, and is constantly guided to atmospheric pressure.

したがって、変圧室321に高圧が導かれない時、ダイ
ヤフラム331はばね333に付勢されて通路313を
閉塞する。これに対し、変圧室321すなわち′Fp、
1ポート311内の圧力が所定値以上である時、ダイヤ
フラム331はばね333に抗して大気室322側へ変
位し、通路313を開放させる。この結果、通路313
は変圧室321および連通孔317を介゛して第1ポー
ト311に連通ずる。
Therefore, when high pressure is not introduced into the variable pressure chamber 321, the diaphragm 331 is biased by the spring 333 and closes the passage 313. On the other hand, the transformation chamber 321, that is, 'Fp,
When the pressure within port 1 311 is equal to or higher than a predetermined value, diaphragm 331 is displaced toward atmospheric chamber 322 against spring 333, opening passage 313. As a result, passage 313
communicates with the first port 311 via the variable pressure chamber 321 and the communication hole 317.

第2弁機構340は、ハウジング310に穿設されたボ
ア341に摺動自在に支持されたスプール弁342を有
する。ボア341の開口部はプラグ343により閉塞さ
れる0通路313はボア341の略中央に開口し、この
通路313の開口部とは反対側には、第2ポート312
に連通する連通孔323が開口する。
The second valve mechanism 340 includes a spool valve 342 that is slidably supported in a bore 341 formed in the housing 310 . The opening of the bore 341 is closed by a plug 343. A passage 313 opens approximately at the center of the bore 341, and a second port 312 is located on the opposite side of the opening of the passage 313.
A communication hole 323 that communicates with is opened.

スプール弁342は、中立位置にある時、通路313お
よび連通孔323を閉塞し、左右方向へ変位した時、ス
プール弁342の外周面に形成された2つの環状溝34
4.345を介して通路313と連通孔323を連通さ
せる。
When the spool valve 342 is in the neutral position, it closes the passage 313 and the communication hole 323, and when it is displaced in the left-right direction, the two annular grooves 34 formed on the outer peripheral surface of the spool valve 342 close the passage 313 and the communication hole 323.
4. The passage 313 and the communication hole 323 are communicated through the hole 345.

ボア341内であってスプール弁342の両端側には第
1および第2室324 、325が形成され、第1およ
び第2室324.325内にはそれぞればね346.3
47が設けられる。第1室324は絞り326により通
路313に連通し、第2室325は絞り327により第
2ポート312に連通する。しかして第1室324内に
は絞り326を介して通路313内の圧力が導かれ、第
2室325には絞り327を介して第2ポート312の
圧力が導かれる。スプール弁342は第1および第2室
324,325内の圧力差に応じて変位する。
First and second chambers 324 and 325 are formed within the bore 341 and on both end sides of the spool valve 342, and springs 346.3 are formed in the first and second chambers 324 and 325, respectively.
47 are provided. The first chamber 324 communicates with the passage 313 through a throttle 326 , and the second chamber 325 communicates with the second port 312 through a throttle 327 . Thus, the pressure in the passage 313 is guided into the first chamber 324 via the throttle 326, and the pressure in the second port 312 is guided into the second chamber 325 via the throttle 327. The spool valve 342 is displaced in response to the pressure difference within the first and second chambers 324,325.

次に本実施例の作用を説明する。Next, the operation of this embodiment will be explained.

非作動時、第2図に示されるように、圧力制御弁355
は中立位置にあり、圧力放出弁358は解放ライン35
7を大気中に解放する第1の位置にある。
When inactive, pressure control valve 355 is shown in FIG.
is in the neutral position and the pressure release valve 358 is in the release line 35.
7 into the atmosphere.

したがって制御ライン351は、コンプレッサ352お
よび空気ボンベ354から遮断され、圧力放出弁358
を介して大気1二連通する。一方、タイヤ圧調整弁30
0において、変圧室321には制御ライン351から大
気圧が導かれており、この結果、ダイヤフラム331は
ばね333に付勢されて通路313を閉塞する。またス
プール弁342は通路313と連通孔323を遮断して
いる。したがって、タイヤ101内は外部から遮断され
、その時の圧力が保持される。
Control line 351 is therefore isolated from compressor 352 and air cylinder 354 and pressure release valve 358
1 and 2 communicate with the atmosphere through. On the other hand, the tire pressure regulating valve 30
0, atmospheric pressure is introduced into the variable pressure chamber 321 from the control line 351, and as a result, the diaphragm 331 is biased by the spring 333 and closes the passage 313. Further, the spool valve 342 blocks the passage 313 and the communication hole 323. Therefore, the inside of the tire 101 is isolated from the outside, and the pressure at that time is maintained.

ここで、車速、あるいは車体に作用する荷重および路面
状態から、タイヤ101内の圧力を高める必要がある場
合、ECU 370は、まず圧力放出弁358を解放ラ
イン357が大気から遮断される第2の位置に切換え、
次いで、圧力制御弁355をデユーティ比制御により所
定の割合で、図中の左方へ切換えられる第1の位置と中
立位置に切換える。
Here, if it is necessary to increase the pressure inside the tires 101 due to the vehicle speed, the load acting on the vehicle body, or the road surface condition, the ECU 370 first releases the pressure release valve 358 and releases the pressure release valve 358 from the second line where the line 357 is cut off from the atmosphere. Switch to position,
Next, the pressure control valve 355 is switched at a predetermined rate by duty ratio control between a first position, which is switched to the left in the figure, and a neutral position.

したがって制御ライン351にはコンプレッサ352お
よび空気ボンベ354から所定の高圧空気が導かれる。
Therefore, a predetermined high pressure air is introduced into the control line 351 from the compressor 352 and the air cylinder 354.

すなわち第1ポート311および変圧室321にはこの
高圧空気が導かれ、ダイヤフラム331がこの空気の圧
力により通路313を開放する。このため第1ポート3
11および変圧室321が通路313に連通する。この
結果、第2弁機構340の第1室324には絞り326
を介して高圧が作用し、スプール弁340はこの高圧と
第2室325の圧力との差により第1図の左方へ変位す
る。したがって第2ポー)312と通路313は環状溝
345および連通孔323を介して相互に連通し、タイ
ヤ101に高圧空気が圧送される。
That is, this high pressure air is introduced into the first port 311 and the variable pressure chamber 321, and the diaphragm 331 opens the passage 313 due to the pressure of this air. Therefore, the first port 3
11 and a variable pressure chamber 321 communicate with the passage 313 . As a result, the first chamber 324 of the second valve mechanism 340 has the throttle 326.
A high pressure acts through the spool valve 340, and the spool valve 340 is displaced to the left in FIG. 1 due to the difference between this high pressure and the pressure in the second chamber 325. Therefore, the second port 312 and the passage 313 communicate with each other via the annular groove 345 and the communication hole 323, and high pressure air is fed to the tire 101.

タイヤ101内の圧力が制御ライン351から供給され
る所定の高圧に近づくと、第1および第2室324.3
25内の圧力差がほとんどなくなるため、スプール弁3
42は中立位置に復帰し、通路313と連通孔323を
遮断するようになる。また、ECU 370は、圧力セ
ンサ365による圧力の変化、あるいは流量センサ36
6による制御ライン351内の空気の流量から、タイヤ
101内の圧力がほぼ制御ライン351内の圧力に達し
たことを検知し、圧力制御弁355を中立位置に固定す
るとともに、圧力放出弁358を第1の位置へ切換える
。これにより、制御ライン351は大気へ解放され、第
1ポート311および変圧室321の圧力は急激に低下
して大気圧に近づく、一方、絞り326.327の絞り
効果のため第1および第2室324 、325内の圧力
の低下は遅く、このためスプール弁342はほとんど変
位せずほぼ中立位置を維持する。しかしてダイヤフラム
331は、この間に変圧室321の圧力低下により、ば
ね333に付勢されて通路313を閉塞する。
When the pressure within the tire 101 approaches a predetermined high pressure supplied from the control line 351, the first and second chambers 324.3
Since the pressure difference within 25 is almost eliminated, the spool valve 3
42 returns to the neutral position and blocks the passage 313 and the communication hole 323. The ECU 370 also monitors pressure changes caused by the pressure sensor 365 or the flow rate sensor 36.
6, it is detected from the flow rate of air in the control line 351 that the pressure in the tire 101 has almost reached the pressure in the control line 351, and the pressure control valve 355 is fixed at the neutral position, and the pressure release valve 358 is Switch to the first position. As a result, the control line 351 is released to the atmosphere, and the pressure in the first port 311 and the variable pressure chamber 321 rapidly decreases and approaches atmospheric pressure, while the pressure in the first and second chambers due to the throttling effect of the throttles 326 and 327. The pressure within 324 and 325 decreases slowly, so spool valve 342 remains almost neutral with little displacement. During this time, the diaphragm 331 is biased by the spring 333 due to the pressure drop in the variable pressure chamber 321 and closes the passage 313.

これに対し、タイヤ101内の圧力を低下させる必要が
ある場合、fICO370は、まず圧力放出弁358を
第2の位置に切換えて制御ライン351内を大気から遮
断し、次いで圧力制御弁355を第1の位置に切換え、
これにより制御ライン351に高圧の空気を導く、この
高圧空気はタイヤ圧調整弁300の変圧室321に導か
れ、これによりダイヤフラム331は通路313を解放
する0次いでECU 370は、圧力制御弁355をデ
ユーティ比制御により所定の割合で第2の位置と中立位
置に切換え、制御ライン351内を所定の圧力に制御す
る。この圧力はタイヤ101内の圧力の目標値に略等し
く、実際のタイヤ圧よりも低い。したがって、第1室3
24の圧力は第2室325の圧力よりも低くなり、スプ
ール弁342は第1図の右方に変位する。この結果、通
路313と連通孔323は相互に連通し、タイヤ101
内の空気はタイヤ圧調整弁300および制御ライン35
1から圧力制御弁355を通って大気中へ解放される。
On the other hand, when it is necessary to reduce the pressure inside the tire 101, the fICO 370 first switches the pressure release valve 358 to the second position to isolate the inside of the control line 351 from the atmosphere, and then switches the pressure control valve 355 to the second position. Switch to position 1,
This leads high pressure air to the control line 351. This high pressure air is led to the variable pressure chamber 321 of the tire pressure regulating valve 300, which causes the diaphragm 331 to open the passage 313.Then, the ECU 370 controls the pressure control valve 355. The duty ratio control switches between the second position and the neutral position at a predetermined rate, and the pressure inside the control line 351 is controlled to a predetermined pressure. This pressure is approximately equal to the target value of the pressure within the tire 101 and is lower than the actual tire pressure. Therefore, the first chamber 3
24 becomes lower than the pressure in the second chamber 325, and the spool valve 342 is displaced to the right in FIG. As a result, the passage 313 and the communication hole 323 communicate with each other, and the tire 101
The air inside the tire pressure regulating valve 300 and the control line 35
1 to the atmosphere through a pressure control valve 355.

ここでタイヤ圧調整弁300から圧力制御弁355まで
の配管が比較的長く、また圧力制御弁355の近傍の配
管の流路面積が小さく定められており、このためタイヤ
101の空気は大気中へ徐々に解放される。
Here, the piping from the tire pressure regulating valve 300 to the pressure control valve 355 is relatively long, and the flow path area of the piping near the pressure control valve 355 is set small, so that the air in the tire 101 is released into the atmosphere. gradually released.

しかしてタイヤ101内の圧力が目標値に近ずくと、第
1および第2室324.325内の圧力差がほとんどな
くなり、スプール弁342は中立位置に復帰し、連通孔
323と通路313を遮断する。 ECU 370は圧
力センサ365および流量センサ366の出力信号から
タイヤ101内の圧力がほぼ目標値に達したことを検知
し、圧力制御弁355を中立位置に固定させるとともに
、圧力放出弁358を第1の位置に切換える。これによ
り制御ライン351は大気に解放され、変圧室321の
圧力は急激に低下して大気圧に近づき、ダイヤフラム3
31は通路313を閉塞する。一方、絞り326,32
7の絞り効果により、第1および第2室324 、32
5内の圧力低下は遅く、したがってスプール弁342は
ほぼ中立位置を維持している。
When the pressure inside the tire 101 approaches the target value, the pressure difference between the first and second chambers 324 and 325 almost disappears, and the spool valve 342 returns to the neutral position, blocking the communication hole 323 and the passage 313. do. The ECU 370 detects from the output signals of the pressure sensor 365 and the flow rate sensor 366 that the pressure within the tire 101 has almost reached the target value, fixes the pressure control valve 355 at the neutral position, and sets the pressure release valve 358 to the first position. Switch to the position. As a result, the control line 351 is released to the atmosphere, the pressure in the variable pressure chamber 321 rapidly decreases and approaches atmospheric pressure, and the diaphragm 3
31 closes the passage 313. On the other hand, the apertures 326, 32
7, the first and second chambers 324, 32
The pressure drop within 5 is slow, so spool valve 342 remains in a substantially neutral position.

なお、タイヤ圧の調整時、圧力制御弁355は必ずしも
デユーティ比制御される必要はなく、圧力源がタイヤ圧
の目標値に略等しい圧力を発生するようにしてもよい。
Note that when adjusting the tire pressure, the duty ratio of the pressure control valve 355 does not necessarily have to be controlled, and the pressure source may generate a pressure substantially equal to the target value of the tire pressure.

またタイヤ圧の調整を運転席に設けた外部スイフチによ
り行なうようにしてもよい。
Further, the tire pressure may be adjusted using an external switch provided in the driver's seat.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明は、第1弁機構が第1ポートに作用
する圧力によって開弁じ、タイヤへ供給される高圧空気
、およびタイヤから外部へ解放される空気が絞りを通過
しない構造を有するものであるから、タイヤ圧の調整時
間が従来に比べて短縮されるという効果が得られる。
As described above, the present invention has a structure in which the first valve mechanism is opened by the pressure acting on the first port, and high-pressure air supplied to the tire and air released from the tire to the outside do not pass through the throttle. Therefore, it is possible to obtain the effect that the tire pressure adjustment time is shortened compared to the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のタイヤ圧調整弁を示す断面
図、 第2図はタイヤの空気圧を調整するための空気圧回路お
よび車輪の断面を示す模式図である。 101・・・タイヤ、 300・・・タイヤ圧調整弁、 311・・・第1ポート、 312・・・第2ポート、 313・・・通 路、 330・・・第1弁機構、 340・・・第2弁機構。
FIG. 1 is a sectional view showing a tire pressure regulating valve according to an embodiment of the present invention, and FIG. 2 is a schematic sectional view showing a pneumatic circuit for adjusting tire air pressure and a wheel. DESCRIPTION OF SYMBOLS 101... Tire, 300... Tire pressure adjustment valve, 311... First port, 312... Second port, 313... Passage, 330... First valve mechanism, 340... -Second valve mechanism.

Claims (1)

【特許請求の範囲】 1、車両のタイヤ内の空気圧を調整する装置であって、
以下の(イ)〜(ニ)の構成要件を備えることを特徴と
するタイヤ圧調整装置。 (イ)所定の圧力を発生する圧力機構、 (ロ)上記圧力機構に連結される第1ポートと、上記タ
イヤに連結される第2ポートと、これらの第1および第
2ポートに連通可能な通路とを有するハウジング、 (ハ)上記第1ポートと通路の間を連通遮断し、上記第
1ポートの圧力が所定値以上の時開弁する第1弁機構、 (ニ)上記第2ポートと通路の間を連通遮断し、上記第
1弁機構が開弁している時、上記第1および第2ポート
の圧力差が所定値以上の時開弁する第2弁機構。 2、上記第2弁機構が、ボア内に摺動自在に支持された
スプール弁を有し、上記ボア内であってスプール弁の両
端側には第1および第2室が形成され、該第1室は絞り
を介して上記第2弁機構より第1ポート側に連通し、該
第2室は絞りを介して上記第2弁機構より第2ポート側
に連通することを特徴とする特許請求の範囲第1項記載
のタイヤ圧調整装置。
[Claims] 1. A device for adjusting air pressure in a vehicle tire, comprising:
A tire pressure adjustment device characterized by having the following structural requirements (a) to (d). (B) A pressure mechanism that generates a predetermined pressure; (B) A first port connected to the pressure mechanism, a second port connected to the tire, and a device capable of communicating with these first and second ports. (c) a first valve mechanism that cuts off communication between the first port and the passage and opens when the pressure in the first port exceeds a predetermined value; (d) the second port and A second valve mechanism that blocks communication between the passages and opens when the pressure difference between the first and second ports is equal to or greater than a predetermined value when the first valve mechanism is open. 2. The second valve mechanism has a spool valve slidably supported in the bore, and first and second chambers are formed in the bore at both ends of the spool valve, and A patent claim characterized in that the first chamber communicates from the second valve mechanism to the first port side via a throttle, and the second chamber communicates from the second valve mechanism to the second port side via the throttle. The tire pressure adjustment device according to item 1.
JP62266557A 1987-10-23 1987-10-23 Tire pressure regulator Expired - Lifetime JP2540745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62266557A JP2540745B2 (en) 1987-10-23 1987-10-23 Tire pressure regulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62266557A JP2540745B2 (en) 1987-10-23 1987-10-23 Tire pressure regulator

Publications (2)

Publication Number Publication Date
JPH01109109A true JPH01109109A (en) 1989-04-26
JP2540745B2 JP2540745B2 (en) 1996-10-09

Family

ID=17432494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62266557A Expired - Lifetime JP2540745B2 (en) 1987-10-23 1987-10-23 Tire pressure regulator

Country Status (1)

Country Link
JP (1) JP2540745B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347802U (en) * 1989-09-20 1991-05-07
JPH04129809A (en) * 1990-09-21 1992-04-30 Toyota Motor Corp Abnormality detection device of pneumatic pressure adjusting device of tire
FR2731655A1 (en) * 1995-03-16 1996-09-20 Giat Ind Sa Remote control for inflation or deflation of vehicular pneumatic tyre
JP2007176364A (en) * 2005-12-28 2007-07-12 Toyota Motor Corp Tire air pressure generating device
WO2016049652A1 (en) * 2014-09-26 2016-03-31 Parker-Hannifin Corporation Central tire inflation/deflation system with a timed function ctis wheel valve
CN107816564A (en) * 2016-09-14 2018-03-20 德纳重型车辆系统集团有限责任公司 Wheel valve assembly with the ventilation part for leading to air and the tire inflation system for being formed with the wheel valve assembly
CN107848349A (en) * 2015-08-06 2018-03-27 德纳重型车辆系统集团有限责任公司 Rotary joint assembly for tire inflation system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347802U (en) * 1989-09-20 1991-05-07
JPH04129809A (en) * 1990-09-21 1992-04-30 Toyota Motor Corp Abnormality detection device of pneumatic pressure adjusting device of tire
FR2731655A1 (en) * 1995-03-16 1996-09-20 Giat Ind Sa Remote control for inflation or deflation of vehicular pneumatic tyre
US7926530B2 (en) 2005-12-28 2011-04-19 Toyota Jidosha Kabushiki Kaisha Device for generating tire air pressure
WO2007077754A1 (en) * 2005-12-28 2007-07-12 Toyota Jidosha Kabushiki Kaisha Device for generating tire air pressure
JP4626765B2 (en) * 2005-12-28 2011-02-09 トヨタ自動車株式会社 Tire pressure generator
JP2007176364A (en) * 2005-12-28 2007-07-12 Toyota Motor Corp Tire air pressure generating device
WO2016049652A1 (en) * 2014-09-26 2016-03-31 Parker-Hannifin Corporation Central tire inflation/deflation system with a timed function ctis wheel valve
US10131192B2 (en) 2014-09-26 2018-11-20 Parker-Hannifin Corporation Central tire inflation/deflation system with a timed function CTIS wheel valve
CN107848349A (en) * 2015-08-06 2018-03-27 德纳重型车辆系统集团有限责任公司 Rotary joint assembly for tire inflation system
CN107816564A (en) * 2016-09-14 2018-03-20 德纳重型车辆系统集团有限责任公司 Wheel valve assembly with the ventilation part for leading to air and the tire inflation system for being formed with the wheel valve assembly
EP3296131A1 (en) * 2016-09-14 2018-03-21 Dana Heavy Vehicle Systems Group, LLC Wheel valve assembly with vent to atmosphere and the tire inflation system made therewith
US10576794B2 (en) 2016-09-14 2020-03-03 Dana Heavy Vehicle Systems Group, Llc Wheel valve assembly with vent to atmosphere and the tire inflation system made therewith

Also Published As

Publication number Publication date
JP2540745B2 (en) 1996-10-09

Similar Documents

Publication Publication Date Title
US4628690A (en) Fluid circuit for operating a bidirectional hydraulic motor with a reduced shock
US4229049A (en) Hydraulic pressure control system for split brake system
JPS6078849A (en) Brake booster
JPS608144A (en) Hydraulic brake system
JPH01109109A (en) Tire pressure regulator
AU706188B2 (en) Pilot relay valve including means to control flow through a balance orifice
HUT56777A (en) Pressure controlling valve unit particularly for the pneumatic brake assemblies of motor vehicles
US5822988A (en) Flow control device of a power steering apparatus
WO1993022173A1 (en) Pilot relay valve with load piston
US4142612A (en) Servo motor with differential pressure controlled and actuated release valve
US5411323A (en) Automatic brake control apparatus and a brake pressure control valve
US4953917A (en) Steering-brake system
JPH05246218A (en) Tire pressure regulating valve
JPH01301933A (en) Controller for controlling operation of fuel control member of engine for vehicle
JP3413641B2 (en) Brake pressure control valve
US4132451A (en) Anti skid control valve
JP7179761B2 (en) Pressure control valve device and method for manufacturing pressure control valve device
JPH0742805Y2 (en) Tire pressure control device
JPH0636973Y2 (en) Active suspension device
JPH07117646A (en) Modulator in fluid pressure brake system
JPH0210053Y2 (en)
JP2925221B2 (en) Damping force adjustment valve
JP2559039B2 (en) Pressurized fluid regulator
JP2643955B2 (en) Anti-lock brake
JPH10332011A (en) Fluid pressure control device