JPH01108226A - Block, copolymer, its production, copolymer film and copolymer fiber - Google Patents

Block, copolymer, its production, copolymer film and copolymer fiber

Info

Publication number
JPH01108226A
JPH01108226A JP62262894A JP26289487A JPH01108226A JP H01108226 A JPH01108226 A JP H01108226A JP 62262894 A JP62262894 A JP 62262894A JP 26289487 A JP26289487 A JP 26289487A JP H01108226 A JPH01108226 A JP H01108226A
Authority
JP
Japan
Prior art keywords
polypropylene glycol
weight
copolymer
formula
segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62262894A
Other languages
Japanese (ja)
Other versions
JPH082955B2 (en
Inventor
Hiroshi Matsuzaki
裕志 松崎
Yoshiharu Kimura
良晴 木村
Toshio Kitao
北尾 敏男
Hideki Yamane
秀樹 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP62262894A priority Critical patent/JPH082955B2/en
Publication of JPH01108226A publication Critical patent/JPH01108226A/en
Publication of JPH082955B2 publication Critical patent/JPH082955B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain the title copolymer excellent in hydrophilicity etc., and useful as a medical fiber or film, by polymerizing a (d)l-lactide with polypropylene glycol in the presence of a specified catalyst. CONSTITUTION:100pts.wt. (d)l-lactide (i) is mixed with 2-100pts.wt. polypropylene glycol (ii) either of whose ends is preferably terminated with a secondary OH group and reacted at 60-250 deg.C for several hr in the presence of a cationic polymerization catalyst (iii) which is preferably a trimethylaluminum-water system catalyst to obtain a block copolymer comprising 70-98wt.% polylactic acid segment (A) and 2-30wt.% polypropylene glycol segment (B) and represented by the formula (wherein m and m' are positive integers, including 0, provided that they cannot be simultaneously 0, and n is a positive integer).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、医療外科用、特に生体内分解性フィルムや繊
維に適した、ポリ乳酸を主成分としたブロック共重合体
、その製造方法、共重合体フィルムおよび共重合体繊維
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a block copolymer mainly composed of polylactic acid suitable for medical and surgical applications, particularly biodegradable films and fibers, a method for producing the same, The present invention relates to copolymer films and copolymer fibers.

〔従来の技術および問題点〕[Conventional technology and problems]

従来、ポリ乳酸は、l−ラクタイドまたはa−ラクタイ
ドの開環重合により得られ、種々の重合度のものが知ら
れている。
Conventionally, polylactic acid has been obtained by ring-opening polymerization of l-lactide or a-lactide, and polylactic acids with various degrees of polymerization are known.

しかしながら、ポリ乳酸をフィルムや繊維に加工すると
、脆く、柔軟性に乏しく、生体内で使用するには吸水性
に欠けるという問題がある。
However, when polylactic acid is processed into films or fibers, there are problems in that they are brittle, have poor flexibility, and lack water absorption for use in vivo.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、これらの問題点はポリ乳酸の高分子鎖中
に親水性および柔軟性の高いポリプロピレングリコール
基を導入するならば解決されることを見出し、本発明に
到達した。
The present inventors have discovered that these problems can be solved by introducing a highly hydrophilic and highly flexible polypropylene glycol group into the polymer chain of polylactic acid, and have arrived at the present invention.

すなわち、本発明は下記式 %式% (式中、m、m’ は両方が同時に零になることのない
零を含む正の整数であり、nは正の整数である。) で表されるポリ乳酸セグメ“ント (A)70〜98重
量%とポリプロピレングリコールセグメント (B)2
〜3帽1%とからなることを特徴とするブロック共重合
体であり、また、その製造方法、それから製造されるフ
ィルムおよび繊維である。
That is, the present invention is expressed by the following formula % (where m and m' are positive integers including zero that cannot both be zero at the same time, and n is a positive integer). Polylactic acid segment (A) 70-98% by weight and polypropylene glycol segment (B) 2
It is a block copolymer characterized in that it consists of 1% to 3%, a method for producing the same, and films and fibers produced therefrom.

本発明のブロック共重合体は、ポリ乳酸セグメント (
A)がmとmoの両方の合計で70〜98重量%であり
、ポリプロピレングリコールセグメント(B)の量が2
〜30重盪%であるものであり、mとmoは零を含む正
の整数で、かつ、mとmoは同時に零になることのない
ABAまたはABの形のブロック共重合体あるいはこれ
らの混合物である。
The block copolymer of the present invention has a polylactic acid segment (
A) is 70 to 98% by weight in total of both m and mo, and the amount of polypropylene glycol segment (B) is 2
~30% by weight, m and mo are positive integers including zero, and m and mo cannot be zero at the same time: a block copolymer in the form of ABA or AB, or a mixture thereof It is.

なお、ここでポリプロピレングリコールセグメント (
B)の大きさとしては、通常、数平均分子量で100〜
10000程度であり、好ましくは、400〜4000
程度である。
In addition, here the polypropylene glycol segment (
The size of B) is usually 100 to 100 in number average molecular weight.
approximately 10,000, preferably 400 to 4,000
That's about it.

また、このポリプロピレングリコールセグメント (B
)の量が共重合体中21i1%未満では充分な柔軟性お
よび親水性が得られず、逆に30重量%を越えるとフィ
ルム化や繊維化が困難となるので好ましくない。
In addition, this polypropylene glycol segment (B
) is less than 21i1% in the copolymer, sufficient flexibility and hydrophilicity cannot be obtained, and on the other hand, if it exceeds 30% by weight, it becomes difficult to form into a film or fiber, which is not preferable.

本発明のブロック共重合体は、ポリプロピレングリコー
ルの存在下に2−ラクタイドまたはd−ラクタイドある
いはこれらの混合物をカチオン重合触媒により重合する
ことにより得られる。
The block copolymer of the present invention can be obtained by polymerizing 2-lactide or d-lactide or a mixture thereof using a cationic polymerization catalyst in the presence of polypropylene glycol.

ここで使用するポリプロピレングリコールとしては、上
記ポリプロピレングリコールセグメント(B)を与える
分子量のものが支障なく使用でき、また、オキシプロピ
レン単位がどのようにつながっているものでもかまわな
いが、好ましくは、少な(とも−末端が二級OH基とな
っているものが適している。
As the polypropylene glycol used here, those having a molecular weight that gives the above-mentioned polypropylene glycol segment (B) can be used without any problem, and it does not matter how the oxypropylene units are connected, but preferably a Those having secondary OH groups at both ends are suitable.

また、ポリプロピレングリコールの使用量は目的の共重
合体の組成に応じ上記ラクタイド100重量部に対し2
〜100重量部の範囲から適宜選ばれる。
The amount of polypropylene glycol used is 2 parts by weight per 100 parts by weight of the lactide, depending on the composition of the desired copolymer.
The amount is appropriately selected from the range of 100 parts by weight.

重合の触媒としては、カチオン重合触媒が用いられ、具
体的には、トリアルキルアルミニウム系の触媒が挙げら
れ、好ましくは、トリメチルアルミニウムー水系触媒で
ある。また、その使用量は特に限定されないが、単量体
組成、使用溶媒、重合温度等により適宜決定される。
As the polymerization catalyst, a cationic polymerization catalyst is used, specifically a trialkylaluminium-based catalyst, and preferably a trimethylaluminum-aqueous catalyst. Further, the amount used is not particularly limited, but is appropriately determined depending on the monomer composition, the solvent used, the polymerization temperature, etc.

重合は、ラクタイドとポリプロピレングリコールを不活
性ガス気流下に加熱溶融して混合したのち、触媒を加え
、通常60〜250’C1好ましくは、100〜160
”Cで数時間反応させることで達成できる。
Polymerization is carried out by heating and melting lactide and polypropylene glycol under a stream of inert gas and then adding a catalyst to the reaction mixture, usually at 60 to 250'C1, preferably at 100 to 160'C.
This can be achieved by reacting with C for several hours.

上記で得られたブロック共重合体を、例えば、溶媒に溶
解し、キャスト法によりフィルムとすることにより、本
発明のフィルムが製造できる。
The film of the present invention can be produced by, for example, dissolving the block copolymer obtained above in a solvent and forming a film by a casting method.

さらに、上記ブロック共重合体を、常法により繊維とす
ることにより、本発明の繊維が製造できる。
Furthermore, the fiber of the present invention can be produced by forming the block copolymer into fiber by a conventional method.

〔実施例〕〔Example〕

以下、実施例により本発明を説明する。 The present invention will be explained below with reference to Examples.

なお、本発明において、ポリマーの物性は下記の方法で
分析した。
In the present invention, the physical properties of the polymer were analyzed by the following method.

(1)数平均分子量 ポリマー1gをテトラヒドロフラン100dに溶解し、
GPCを測定し、ポリスチレン標準により分子量を求め
た。
(1) Dissolve 1 g of number average molecular weight polymer in 100 d of tetrahydrofuran,
GPC was measured and the molecular weight was determined using a polystyrene standard.

(2)H−NM R ポリマーをテトラメチルシラン1重量%含む重クロロホ
ルムに溶解して、測定した。
(2) H-NMR It was measured by dissolving the polymer in deuterated chloroform containing 1% by weight of tetramethylsilane.

(3)粘度 クロロホルムを溶媒として用い、0.5g/aの溶液で
30±0.1℃で測定し、η1./Cを算出した。
(3) Viscosity Measured at 30±0.1°C with a 0.5 g/a solution using chloroform as a solvent, η1. /C was calculated.

(4)引張強度、初期ヤング率、伸度 ラム型押出機を用いて200°Cに加熱しながらポリマ
ーを紡糸した後、引張試験機にて測定した。
(4) Tensile strength, initial Young's modulus, and elongation The polymer was spun using a ram extruder while heating at 200°C, and then measured using a tensile tester.

実施例1〜4、比較例1 !−ラクタイドと数平均分子14000のポリプロピレ
ングリコール(以下、PPGと表す、)を表−1に示す
比率で仕込み、アルゴン気流下で130゛Cで30分間
加熱溶融して混合した。その後トリメチルアルミニウム
ー水系触媒を1重量%となるように添加し、150°C
,100閣Hgで3時間重合を行った0重合終了後、無
水酢酸を加えてポリマー末端をアセチル化した。そして
生成物をクロロホルムに溶解し、エーテル中に再沈澱さ
せたのち、真空乾燥してポリマーを得た。
Examples 1 to 4, Comparative Example 1! -Lactide and polypropylene glycol (hereinafter referred to as PPG) having a number average molecular weight of 14,000 were charged in the ratio shown in Table 1, and mixed by heating and melting at 130°C for 30 minutes under an argon stream. Thereafter, trimethylaluminum-aqueous catalyst was added to 1% by weight, and heated to 150°C.
After the polymerization was completed, the polymer terminals were acetylated by adding acetic anhydride. The product was then dissolved in chloroform, reprecipitated in ether, and then dried under vacuum to obtain a polymer.

得られたポリマーの諸物性は上記に従って測定し、表−
1の結果を得た。なお、ポリマー中のポリプロピレンゲ
リールセグメントとポリ乳酸の比はH−N M Rより
算出したものである。
The various physical properties of the obtained polymer were measured according to the above, and are shown in Table-
1 result was obtained. Note that the ratio of polypropylene gelyl segment to polylactic acid in the polymer was calculated from H-NMR.

なお、上記諸物性の測定に用いた繊維の内、実施例1と
比較例1の試料を試料をリン酸緩衝溶液(pH7,2、
30℃)中に浸漬し、1週間後の糸の引張強度減少率(
加水分解性)を測定したところ、それぞれ13.8%、
1.8%であり、実施例1のものの方が分解性が良好で
あった。
Among the fibers used to measure the above physical properties, the samples of Example 1 and Comparative Example 1 were mixed with a phosphate buffer solution (pH 7, 2,
Tensile strength reduction rate of yarn after 1 week (30℃)
When the hydrolyzability) was measured, they were 13.8% and 13.8%, respectively.
It was 1.8%, and the decomposability of Example 1 was better.

実施例5〜10 PPGとして数平均分子量2000または1oooのも
のを表−1に示す1用いる他は実施例1と同様にしてポ
リマーを得た。得られたポリマーの諸物性を表−1に示
す。
Examples 5 to 10 Polymers were obtained in the same manner as in Example 1, except that PPG having a number average molecular weight of 2000 or 100 as shown in Table 1 was used. Table 1 shows the physical properties of the obtained polymer.

上記実施例1〜10および比較例1のポリマーをクロロ
ホルム溶媒に溶解し、ステンレス板の上に流延すること
によりフィルムとすることができたが、実施例のものの
方が比較例1のものより良好な柔軟性を有していた。
The polymers of Examples 1 to 10 and Comparative Example 1 were dissolved in a chloroform solvent and cast onto a stainless steel plate to form a film, but the polymers of Examples 1 to 10 and Comparative Example 1 were better than those of Comparative Example 1. It had good flexibility.

〔発明の効果〕〔Effect of the invention〕

本発明のブロック共重合体は、ポリ乳酸と同様の生体内
加水分解性を有しており、また、柔軟性および親水性も
充分改善されおり、医療用繊維、フィルムとして極めて
良好である。
The block copolymer of the present invention has in-vivo hydrolyzability similar to that of polylactic acid, and also has sufficiently improved flexibility and hydrophilicity, making it extremely suitable as medical fibers and films.

また、本発明の製造方法は重合体の重合度のコントロー
ルが容易に行えるので、目的に応じた重合度の共重合体
を得ることが可能であり、極めて好ましいものである。
In addition, the production method of the present invention is extremely preferable because the degree of polymerization of the polymer can be easily controlled, making it possible to obtain a copolymer with a degree of polymerization depending on the purpose.

更に、本発明のフィルムおよび繊維は充分な柔軟性と強
度があり、医療用途に極めて価値がある。
Additionally, the films and fibers of the present invention have sufficient flexibility and strength to be extremely valuable for medical applications.

本発明のブロック共重合体に薬剤を含有せしめておくこ
とににより、徐放性を付与することが可能であり、これ
も本発明の効果である。
By incorporating a drug into the block copolymer of the present invention, it is possible to impart sustained release properties, which is also an effect of the present invention.

特許出願人  三井東圧化学株式会社Patent applicant: Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】 1、下記式 ▲数式、化学式、表等があります▼ (式中、m、m’は両方が同時に零になることのない零
を含む正の整数であり、nは正の整数である。) で表されるポリ乳酸セグメント(A)70〜98重量%
とポリプロピレングリコールセグメント(B)2〜30
重量%とからなることを特徴とするブロック共重合体。 2、l−ラクタイドおよびまたはdl−ラクタイドをポ
リプロピレングリコールの存在下にカチオン重合触媒を
用いて重合することを特徴とする下記式 ▲数式、化学式、表等があります▼ (式中、m、m’は両方が同時に零になることのない零
を含む正の整数であり、nは正の整数である。) で表されるポリ乳酸セグメント(A)70〜98重量%
とポリプロピレングリコールセグメント(B)2〜30
重量%とからなるブロック共重合体の製造方法。 3、下記式 ▲数式、化学式、表等があります▼ (式中、m、m’は両方が同時に零になることのない零
を含む正の整数であり、nは正の整数である。) で表されるポリ乳酸セグメント(A)70〜98重量%
とポリプロピレングリコールセグメント(B)2〜30
重量%とからなるブロック共重合体からなることを特徴
とする生体内分解性フィルム。 4、下記式 ▲数式、化学式、表等があります▼ (式中、m、m’は両方が同時に零になることのない零
を含む正の整数であり、nは正の整数である。) で表されるポリ乳酸セグメント(A)70〜98重量%
とポリプロピレングリコールセグメント(B)2〜30
重量%とからなるブロック共重合体からなることを特徴
とする生体内分解性繊維。
[Claims] 1. The following formula ▲ Numerical formula, chemical formula, table, etc. ▼ (In the formula, m and m' are positive integers including zero that cannot both be zero at the same time, and 70 to 98% by weight of polylactic acid segment (A) represented by
and polypropylene glycol segment (B) 2-30
A block copolymer characterized by consisting of % by weight. 2. The following formula is characterized by polymerizing l-lactide and or dl-lactide using a cationic polymerization catalyst in the presence of polypropylene glycol ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (In the formula, m, m' is a positive integer including zero, both of which cannot be zero at the same time, and n is a positive integer.) Polylactic acid segment (A) 70 to 98% by weight
and polypropylene glycol segment (B) 2-30
A method for producing a block copolymer consisting of % by weight. 3. The following formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (In the formula, m and m' are positive integers including zero that cannot both be zero at the same time, and n is a positive integer.) Polylactic acid segment (A) represented by 70 to 98% by weight
and polypropylene glycol segment (B) 2-30
A biodegradable film comprising a block copolymer consisting of % by weight. 4. The following formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (In the formula, m and m' are positive integers including zero that cannot both be zero at the same time, and n is a positive integer.) Polylactic acid segment (A) represented by 70 to 98% by weight
and polypropylene glycol segment (B) 2-30
A biodegradable fiber comprising a block copolymer consisting of % by weight.
JP62262894A 1987-10-20 1987-10-20 Block copolymer and method for producing the same Expired - Lifetime JPH082955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62262894A JPH082955B2 (en) 1987-10-20 1987-10-20 Block copolymer and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62262894A JPH082955B2 (en) 1987-10-20 1987-10-20 Block copolymer and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01108226A true JPH01108226A (en) 1989-04-25
JPH082955B2 JPH082955B2 (en) 1996-01-17

Family

ID=17382091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62262894A Expired - Lifetime JPH082955B2 (en) 1987-10-20 1987-10-20 Block copolymer and method for producing the same

Country Status (1)

Country Link
JP (1) JPH082955B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0558965A2 (en) * 1992-03-02 1993-09-08 American Cyanamid Company Reduced friction coatings for articles in contact with human or animal tissues
JPH06298917A (en) * 1993-03-16 1994-10-25 Sam Yang Co Ltd Biodegradable copolymer for medical use
JPH07205278A (en) * 1994-01-11 1995-08-08 Mitsubishi Plastics Ind Ltd Production of stretched film of polylactic acid polymer
JPH07207041A (en) * 1994-01-11 1995-08-08 Mitsubishi Plastics Ind Ltd Polylactic acid film
WO1996021056A1 (en) * 1995-01-04 1996-07-11 Mitsubishi Chemical Corporation Fiber, film, bioabsorbable surgical suture and bioabsorbable adhesion inhibitor each comprising biocompatible block copolymer
US5546851A (en) * 1993-12-27 1996-08-20 Alco Industries Kabushiki Kaisha Electric cooking apparatus
JP2003002984A (en) * 2002-06-14 2003-01-08 Mitsubishi Plastics Ind Ltd Polylactic acid film
WO2004046221A1 (en) * 2002-11-15 2004-06-03 Mnemoscience Gmbh Amorphous polymer networks
FR2912752A1 (en) * 2007-02-16 2008-08-22 Arkema France Preparing copolymer of cyclic monomer, useful as antistatic additive of resins polymer and electrochemical energy storage systems, comprises reacting cyclic monomer with polymer in presence of compound comprising sulfonic acid function
WO2012029710A1 (en) * 2010-08-30 2012-03-08 国立大学法人岡山大学 Nanofiber exerting excellent biodegradability and biocompatibility, and method for producing said nanofiber
US8883957B2 (en) 2007-02-16 2014-11-11 Arkema France Process for the preparation of polylactones and polylactams

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0558965A2 (en) * 1992-03-02 1993-09-08 American Cyanamid Company Reduced friction coatings for articles in contact with human or animal tissues
JPH0641310A (en) * 1992-03-02 1994-02-15 American Cyanamid Co Coating agent which decreases resistance of tissue
JPH06298917A (en) * 1993-03-16 1994-10-25 Sam Yang Co Ltd Biodegradable copolymer for medical use
US5546851A (en) * 1993-12-27 1996-08-20 Alco Industries Kabushiki Kaisha Electric cooking apparatus
USRE35998E (en) * 1993-12-27 1998-12-22 Alco Kogyo Kabushiki Kaisha Electric cooking apparatus
JPH07205278A (en) * 1994-01-11 1995-08-08 Mitsubishi Plastics Ind Ltd Production of stretched film of polylactic acid polymer
JPH07207041A (en) * 1994-01-11 1995-08-08 Mitsubishi Plastics Ind Ltd Polylactic acid film
WO1996021056A1 (en) * 1995-01-04 1996-07-11 Mitsubishi Chemical Corporation Fiber, film, bioabsorbable surgical suture and bioabsorbable adhesion inhibitor each comprising biocompatible block copolymer
JP2003002984A (en) * 2002-06-14 2003-01-08 Mitsubishi Plastics Ind Ltd Polylactic acid film
WO2004046221A1 (en) * 2002-11-15 2004-06-03 Mnemoscience Gmbh Amorphous polymer networks
FR2912752A1 (en) * 2007-02-16 2008-08-22 Arkema France Preparing copolymer of cyclic monomer, useful as antistatic additive of resins polymer and electrochemical energy storage systems, comprises reacting cyclic monomer with polymer in presence of compound comprising sulfonic acid function
WO2008104724A1 (en) * 2007-02-16 2008-09-04 Arkema France Method for producing a copolymer of at least one cyclic monomer
JP2010519343A (en) * 2007-02-16 2010-06-03 アルケマ フランス Method for producing a copolymer of at least one cyclic monomer
US8883957B2 (en) 2007-02-16 2014-11-11 Arkema France Process for the preparation of polylactones and polylactams
WO2012029710A1 (en) * 2010-08-30 2012-03-08 国立大学法人岡山大学 Nanofiber exerting excellent biodegradability and biocompatibility, and method for producing said nanofiber
CN103154338A (en) * 2010-08-30 2013-06-12 日本Tmt机械株式会社 Nanofiber exerting excellent biodegradability and biocompatibility, and method for producing said nanofiber
JPWO2012029710A1 (en) * 2010-08-30 2013-10-28 国立大学法人 岡山大学 Nanofiber excellent in biodegradability and biocompatibility and method for producing the same
US9321208B2 (en) 2010-08-30 2016-04-26 Tmt Machinery, Inc. Nanofibers with excellent biodegradability and biocompatibility and method for producing the same

Also Published As

Publication number Publication date
JPH082955B2 (en) 1996-01-17

Similar Documents

Publication Publication Date Title
US5194473A (en) Modified polyester composition and preparation process and use thereof
KR960015447B1 (en) Biodegradable polymer
JP3554282B2 (en) Medical biodegradable ternary block copolymer and method for producing the same
US4438253A (en) Poly(glycolic acid)/poly(alkylene glycol) block copolymers and method of manufacturing the same
EP0108933B1 (en) Poly(glycolic acid)/poly(oxyethylene)triblock copolymers and method of manufacturing the same
EP0636639B1 (en) Copolymers of an aromatic anhydride and aliphatic ester
US20030139567A1 (en) Sequentially ordered biodegradable lactide (glycolide or lactide/glycolide)epsilon -caprolactone multi-block copolymer and process for the preparation thereof
JPH01103622A (en) Preparation of dl-lactic acid-glycolic acid copolymer
SI9620067A (en) Heterotelechelic block copolymers and process for producing the same
JPH09512571A (en) Star-block copolymers that are easy to decompose
JPH04212365A (en) Crystalline copolymer of rho-dioxanone and epsilon-caprolactone
JPH01108226A (en) Block, copolymer, its production, copolymer film and copolymer fiber
JPH06184418A (en) Biodegradable polymer composition
WO2021110182A2 (en) Polyesteramide and preparation method therefor
US20030215483A1 (en) Medical materials and porous scaffolds for tissue engineering made from the biodegradable glycolide/epsilon-caprolactone copolymer
JP4702987B2 (en) Absorbable copolylactide and uses thereof
EP3978569A1 (en) Polymer composition, molded body and nerve regeneration inducing tube
Ling et al. Thermoplastic elastomers based on poly (l‐Lysine)‐Poly (ε‐Caprolactone) multi‐block copolymers
Lee et al. Synthesis and degradation behaviors of PEO/PL/PEO tri-block copolymers
CN101461966B (en) Method for preparing degradable flexible medical film material
JP2000508017A (en) Crystal copolymer and method for producing the same
Lee et al. Synthesis and characterization of poly (ethylene oxide)/polylactide/poly (ethylene oxide) triblock copolymer
CN111892703B (en) Biodegradable thermoplastic polyester elastic material and preparation method thereof
Deepa et al. A facile synthesis and characterisation of novel mesoporous bioactive glass nanoparticles/Xylitol based biodegradable polyester composites for in vitro degradation studies and anti-inflammatory activity
CN113881021B (en) Terpolymer, suture and preparation method and application thereof