JPH01107746A - Magnetic resonance imaging - Google Patents

Magnetic resonance imaging

Info

Publication number
JPH01107746A
JPH01107746A JP62263682A JP26368287A JPH01107746A JP H01107746 A JPH01107746 A JP H01107746A JP 62263682 A JP62263682 A JP 62263682A JP 26368287 A JP26368287 A JP 26368287A JP H01107746 A JPH01107746 A JP H01107746A
Authority
JP
Japan
Prior art keywords
magnetic field
slice
magnetic resonance
spin
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62263682A
Other languages
Japanese (ja)
Inventor
Takenobu Sakamoto
豪信 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62263682A priority Critical patent/JPH01107746A/en
Publication of JPH01107746A publication Critical patent/JPH01107746A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To suppress artifacts due to fluid such as of a blood stream and improve the quality of image, by saturating only spin in a region other than a tomographic section without disturbing the phase of spin in the tomographic section prior to obtaining a magnetic resonance signal. CONSTITUTION:A measured object in a high frequency coil is irradiated with a first high frequency magnetic pulse RF1 with a selectivity of a fall angle beta, and a slice magnetic field GS1 of a small magnetic field intensity is applied in a direction perpendicular to a tomographic section. A slice magnetic field GS2 with a polarity opposite to that the slice magnetic field GS1 is applied. A slice magnetic field GS3 with an inverted polarity is applied, and a slice magnetic field GS4 of a large magnetic field intensity is applied together with irradiation of a second high frequency magnetic field pulse RF2 with a selectivity of a fall angle alpha, and further a slice magnetic field GS5 with an inverted polarity is applied. The fall angle of spin only in a desired tomographic section increases, and the phase of magnetism in the lateral direction is disturbed and saturated. A phase encode magnetic field GP, data read magnetic fields GR1 and GR2 are applied, and a magnetic resonance signal M consisting of a spin echo signal is obtained after echo time TE. After n-times repetition of the above- mentioned while the phase encode magnetic field GP is being changed, n-magnetic resonance signals M obtained are subjected to Fourier transformation to obtain an image in the desired tomographic section.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、流体によるアーチファクトを抑制する磁気
共鳴映像法に関し、特に磁気共鳴信号の強度の低下を防
ぎ、高画質の映像が得られる磁気共鳴映像法に関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to magnetic resonance imaging that suppresses artifacts caused by fluid, and in particular to magnetic resonance imaging that prevents a decrease in the intensity of magnetic resonance signals and provides high-quality images. It concerns the video method.

[従来の技術] 従来より、静磁場を発生する磁石、静磁場に垂直な方向
に高周波磁場パルスを発生する高周波コイル及び静磁場
と平行な方向に傾斜磁場を発生する直交3軸の傾斜磁場
コイルを用いて、被測定物体に対し静磁場、高周波磁場
パルス及び傾斜磁場を印加し、被測定物体から誘起され
る磁気共鳴信号を所定数取得してフーリエ変換により所
望の断層面の映像を得る磁気共鳴映像法は良く知られて
いる。又、撮像中の断層面内に血流等の流体が流入する
と断層面の画像にアーチファクトが発生するため、断層
面を除いた前後の流体のスピンによる映像化を防止する
必要があることも知られている。
[Prior Art] Conventionally, magnets that generate a static magnetic field, high-frequency coils that generate high-frequency magnetic field pulses in a direction perpendicular to the static magnetic field, and orthogonal three-axis gradient magnetic field coils that generate a gradient magnetic field in a direction parallel to the static magnetic field have been used. A magnetic field that applies a static magnetic field, a high-frequency magnetic field pulse, and a gradient magnetic field to the object to be measured, acquires a predetermined number of magnetic resonance signals induced from the object to be measured, and uses Fourier transform to obtain an image of a desired tomographic plane. Resonance imaging is well known. It is also known that if fluid such as blood flow flows into the tomographic plane being imaged, artifacts will occur in the image of the tomographic plane, so it is necessary to prevent imaging due to the spin of the fluid in front and behind the tomographic plane, excluding the tomographic plane. It is being

第3図は、例えば、マサイ(D 、 M atthae
i)他が「医学における磁気共11%(Magneti
c  Re5onancein Medicine)」
(1987年、第4巻)の第303頁に発表した、血流
によるアーチファクトを抑制した従来の磁気共鳴映像法
を示すパルスシーケンス図である。
FIG. 3 shows, for example, Masai (D, Matthae).
i) et al.
c Re5oncein Medicine)
(1987, Vol. 4), p. 303, is a pulse sequence diagram showing a conventional magnetic resonance imaging method that suppresses artifacts caused by blood flow.

図において、RFは所定の周波数帯域及びフリップ角度
(倒れ角)を有する高周波磁場パルス、Mは被測定物体
から誘起されるスピンエコー信号等の磁気共鳴信号であ
る。
In the figure, RF is a high frequency magnetic field pulse having a predetermined frequency band and flip angle (inclination angle), and M is a magnetic resonance signal such as a spin echo signal induced from the object to be measured.

Gsは静磁場方向(例えばZ軸方向)の傾斜磁場即ちス
ライス磁場、cPはスライス磁場aSと直交する方向(
例えばY軸方向)の傾斜磁場即ち位相エンコード磁場、
GRはスライス磁場Gs及び位相エンコード磁場Gpと
直交する方向(例えばX軸方向)の傾斜磁場即ち周波数
エンコード用のデータ読み出し磁場である。
Gs is a gradient magnetic field in the static magnetic field direction (for example, Z-axis direction), that is, a slice magnetic field, and cP is a direction perpendicular to the slice magnetic field aS (
e.g. Y-axis direction) gradient magnetic field, i.e., a phase encoding magnetic field,
GR is a gradient magnetic field in a direction (for example, the X-axis direction) orthogonal to the slice magnetic field Gs and the phase encode magnetic field Gp, that is, a data read magnetic field for frequency encoding.

次に、第3図に示した従来の磁気共鳴映像法について説
明する。
Next, the conventional magnetic resonance imaging method shown in FIG. 3 will be explained.

まず、倒れ角β(例えば60°)且つ広周波数帯域の非
選択性の高周波磁場パルスRF1を、高周波コイル(図
示せず)内の被測定物体(例えば人体)に照射する。続
いて、この高周波磁場パルスRFIによって発生する横
方向磁化の位相を乱すため、画像化したい断層面に垂直
な方向(ここではZ方向)の傾斜磁場即ちスライス磁場
GsLを印加する。この結果、高周波コイル内の核スピ
ンは全て、位相が乱されて飽和する。
First, a non-selective high-frequency magnetic field pulse RF1 having an inclination angle β (for example, 60°) and a wide frequency band is irradiated onto an object to be measured (for example, a human body) within a high-frequency coil (not shown). Subsequently, in order to disturb the phase of the transverse magnetization generated by this high-frequency magnetic field pulse RFI, a gradient magnetic field, ie, a slice magnetic field GsL, is applied in a direction perpendicular to the tomographic plane to be imaged (here, in the Z direction). As a result, all the nuclear spins within the radio frequency coil are out of phase and saturated.

次に、断層面を指定するスライス磁場Gs2を印加しな
がら、倒れ角α(例えば40°)の選択性の高周波磁場
パルスRF2を照射する。続いて、高周波磁場パルスR
F2による断層面の厚さ方向の位相の乱れを修正するた
め、極性が反転されたスライス磁場GS3を印加する。
Next, a selective high-frequency magnetic field pulse RF2 having an inclination angle α (for example, 40°) is applied while applying a slice magnetic field Gs2 that specifies the tomographic plane. Subsequently, high frequency magnetic field pulse R
In order to correct the phase disturbance in the thickness direction of the tomographic plane due to F2, a slice magnetic field GS3 whose polarity is reversed is applied.

又、スライス磁場GS3が印加される時から、断層面内
の一方向(ここではY方向)に位相エンコード磁場Gp
を印加し、同時に、断層面内で位相エンコード磁場Cp
と直交する方向(ここではX方向)に極性が反転された
データ読み出し磁場GRIを印加する。尚、位相エンコ
ード磁場GPの振幅は、データ(磁気共鳴信号M)の収
集毎に破線のように一定量ずつ変化する。
Furthermore, from the time when the slice magnetic field GS3 is applied, a phase encoding magnetic field Gp is generated in one direction (here, the Y direction) within the tomographic plane.
At the same time, a phase encoding magnetic field Cp is applied within the tomographic plane.
A data read magnetic field GRI whose polarity is reversed is applied in a direction perpendicular to (in this case, the X direction). Note that the amplitude of the phase encode magnetic field GP changes by a constant amount as indicated by a broken line every time data (magnetic resonance signal M) is collected.

次に、高周波磁場パルスRF2のピークから所定のエコ
ー時間TE後に磁気共鳴信号Mのピークが発生するよう
に、データ読み出し磁場GRIと極性が反転されたデー
タ読み出し磁場GR2を印加する。
Next, a data read magnetic field GR2 whose polarity is inverted from that of the data read magnetic field GRI is applied so that the peak of the magnetic resonance signal M occurs after a predetermined echo time TE from the peak of the high frequency magnetic field pulse RF2.

そして、以上のシーケンスを位相エンコード磁場cpの
振幅を変えながらN回繰り返してN個の磁気共鳴信号M
を取得し、コンピュータにより二次元フーリエ変換を行
ない所望の断層面の画像を構成する。
Then, the above sequence is repeated N times while changing the amplitude of the phase encoding magnetic field cp to obtain N magnetic resonance signals M.
is acquired and subjected to two-dimensional Fourier transformation by a computer to construct an image of the desired tomographic plane.

−mに、核スピン(例えばプロトン)は、高周波磁場パ
ルスのエネルギを吸収して一旦飽和すると、次に高周波
磁場パルスのエネルギを吸収できるようになるには所定
の時間が必要となる。この時間の長短を計る目安は縦緩
和時間T1であり、データ収集中に、縦緩和時間T、よ
り短い間隔で高周波磁場パルスRFIが照射されると、
核スピンは飽和して磁気共鳴信号Mに寄与できなくなる
-m, once the nuclear spins (for example, protons) absorb the energy of the high-frequency magnetic field pulse and are saturated, a predetermined time is required before they can absorb the energy of the high-frequency magnetic field pulse again. The standard for measuring the length of this time is the longitudinal relaxation time T1, and if the high-frequency magnetic field pulse RFI is irradiated at intervals shorter than the longitudinal relaxation time T during data collection,
The nuclear spin becomes saturated and cannot contribute to the magnetic resonance signal M.

従来の磁気共鳴映像法によれば、血液の縦緩和時間T、
が臓器の**相時間T、より長いことから、高周波コイ
ル内に流入する血液は、断層面に達するまでに、高周波
磁場パルスRF1の照射によりスピンが飽和することに
なる。従って、縦緩和時間T。
According to conventional magnetic resonance imaging, the blood longitudinal relaxation time T,
Since is longer than the ** phase time T of the organ, the spin of the blood flowing into the high-frequency coil will be saturated by the irradiation with the high-frequency magnetic field pulse RF1 by the time it reaches the tomographic plane. Therefore, the longitudinal relaxation time T.

の短い臓器の磁気共鳴信号Mのみを取得することができ
、高速イメージングが可能となる。
Only the magnetic resonance signal M of a short organ can be acquired, making high-speed imaging possible.

[発明が解決しようとする問題点] 従来・の磁気共鳴映像法は以上のように、高周波コイル
内のスピンを飽和させ、縦緩和時間T1の差により所望
の断層面の画像を構成しているので、断層面内のスピン
も、高周波磁場パルスRFI及びスライス磁場CSによ
る横方向磁化の位相乱れの影響を受けて、磁気共鳴信号
Mの強度が低下し画質が劣化するという問題点があった
[Problems to be Solved by the Invention] As described above, in the conventional magnetic resonance imaging method, the spin in the high-frequency coil is saturated and an image of a desired tomographic plane is constructed based on the difference in longitudinal relaxation time T1. Therefore, the spins within the tomographic plane are also affected by the phase disturbance of the transverse magnetization caused by the radio frequency magnetic field pulse RFI and the slice magnetic field CS, resulting in a problem that the intensity of the magnetic resonance signal M decreases and the image quality deteriorates.

この発明は上記のような問題点を解決するためになされ
たもので、断層面内のスピンの位相乱れがなく、磁気共
鳴信号の強度の低下を防ぐと共に画質の劣化を防ぐこと
のできる磁気共鳴映像法を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and it is a magnetic resonance system that does not cause phase disturbance of spins within the tomographic plane, prevents a decrease in the strength of magnetic resonance signals, and prevents deterioration of image quality. The purpose is to obtain the video method.

[問題点を解決するための手段〕 この発明に係る磁気共鳴映像法は、磁気共鳴信号を取得
する前に、断層面を含む前後の領域内スピンの位相を揃
える第1ステップと、断層面内のみのスピンの倒れ角を
増加させ且つ断層面を除く前後の領域内のスピンを飽和
させる第2ステップとを設けたものである。
[Means for Solving the Problems] The magnetic resonance imaging method according to the present invention includes a first step of aligning the phases of spins in the front and rear regions including the tomographic plane, and A second step is provided in which the inclination angle of the spins of the chisel is increased and the spins in the front and rear regions excluding the fault plane are saturated.

[作用コ この発明においては、断層面に入り込む流体のスピンを
飽和させ、所望のI!yrNi面からの磁気共鳴信号の
みを取得すると共に、磁気共鳴信号の低下を防ぐ。
[Operation] In this invention, the spin of the fluid entering the fault plane is saturated and the desired I! Acquire only the magnetic resonance signal from the yrNi surface and prevent the magnetic resonance signal from decreasing.

[実施例] 以下、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例を示すパルスシーケンス図であ
り、RF、M 、Gs、Gp及びGRは前述と同様のも
のである。
[Example] Hereinafter, an example of the present invention will be described with reference to the drawings. 1st
The figure is a pulse sequence diagram showing one embodiment of the present invention, and RF, M, Gs, Gp and GR are the same as described above.

次に、第2図のフローチャート図を参照しながら、第1
図に示したこの発明の一実施例について説明する。
Next, while referring to the flowchart in FIG.
An embodiment of the present invention shown in the figure will be described.

第1スーツブS1 まず、倒れ角β(例えば35°)の選択性の第1高周波
磁場パルスRF +を高周波コイル内の被測定物体に照
射し、同時に、断層面に垂直な方向に小磁場強度のスラ
イス磁場GSIを印加する。このときのスライス磁場G
S+の強度は、大磁場強度のスライス磁場(後述する)
の約1710である。これにより、ItIr層面を含む
前後の領域のスピンはβだけ倒される。− 続いて、第1高周波磁場パルスRF+の照射後に、スラ
イス磁場GS+による横方向磁化の位相の乱れを揃える
ため、スライス磁場GSIとは極性が反転されたスライ
ス磁場GSzを印加する。この結果、断層面を含む前後
の領域内のスピンは、全て位相が揃えられたことになる
First suite S1 First, a first high-frequency magnetic field pulse RF + with selectivity of an inclination angle β (for example, 35°) is irradiated to the object to be measured in the high-frequency coil, and at the same time, a small magnetic field intensity is applied in the direction perpendicular to the tomographic plane. Apply a slice magnetic field GSI. Slice magnetic field G at this time
The strength of S+ is a slice magnetic field with a large magnetic field strength (described later)
It is about 1,710. As a result, the spins of the regions before and after the ItIr layer surface are tilted by β. - Subsequently, after irradiation with the first high-frequency magnetic field pulse RF+, a slice magnetic field GSz whose polarity is reversed from that of the slice magnetic field GSI is applied in order to equalize the phase disturbance of the transverse magnetization caused by the slice magnetic field GS+. As a result, all the spins in the regions before and after the tomographic plane are aligned in phase.

第2ステップS2 まず、極性が反転されたスライス磁場G5ffを印加し
、続いて、倒れ角α(例えば35°)の選択性の第2高
周波磁場パルスRF2を照射しながら大磁場強度のスラ
イス磁場GS4を印加し、更に、極性が反転されたスラ
イス磁場G、Ssを印加する。
Second step S2 First, a slice magnetic field G5ff with reversed polarity is applied, and then a slice magnetic field GS4 with a large magnetic field strength is applied while irradiating a second high-frequency magnetic field pulse RF2 with selectivity of an inclination angle α (for example, 35°). is applied, and furthermore, slice magnetic fields G and Ss whose polarities are reversed are applied.

これにより、所望の断層面内のみのスピンの倒れ角が増
加し、断層面を除く前後の領域内のスピンは、第1高周
波磁場パルスRF、により倒れ角βが与えられているた
め、横方向磁化の位相が乱されて飽和する。
As a result, the inclination angle of the spins only within the desired fault plane increases, and the spins in the regions before and after the fault plane, excluding the fault plane, are given the inclination angle β by the first high-frequency magnetic field pulse RF, so the spins in the lateral direction The phase of magnetization is disturbed and saturation occurs.

このとき、スライス磁場Gsaの中間点で第2高周波磁
場パルスRF 2がピークとなるが、スライス磁場GS
4の前半の位相の乱れは、極性が反転されたスライス磁
場Gszにより修正され、後半の位相の乱れは、極性が
反転されたスライス磁場GSsにより修正される。
At this time, the second high-frequency magnetic field pulse RF 2 reaches a peak at the midpoint of the slice magnetic field Gsa, but the slice magnetic field GS
The phase disturbance in the first half of 4 is corrected by the slice magnetic field Gsz with reversed polarity, and the phase disturbance in the second half is corrected by the slice magnetic field GSs with reversed polarity.

第3スーツプS3 以下、前述と同様に、位相エンコード磁場GP、データ
読み出し磁場GRI及びGR2を印加し、エコー時間T
E後にスピンエコー信号からなる磁気共鳴信号Mを取得
する。
Third step S3 Thereafter, in the same manner as described above, the phase encode magnetic field GP, the data read magnetic fields GRI and GR2 are applied, and the echo time T
After E, a magnetic resonance signal M consisting of a spin echo signal is obtained.

以上の各ステップ31〜S3からなるシーケンスを、位
相エンコード磁場cPを変えながらN回繰り返し、取得
したN個の磁気共鳴信号Mをフーリエ変換して所望の断
層面の画像を得る。
The sequence consisting of the above steps 31 to S3 is repeated N times while changing the phase encoding magnetic field cP, and the acquired N magnetic resonance signals M are Fourier transformed to obtain an image of a desired tomographic plane.

ここで、断層面を除いた領域から血液が流れ込んでも、
各高周波磁場パルスRF、及びRF2により飽和されて
いるため、磁気共鳴信号Mに寄与することはない、又、
断層面内のスピンは、位相の乱れなどで磁気共鳴信号M
を低下させることもない。
Here, even if blood flows from the area excluding the fault plane,
Since it is saturated by each high frequency magnetic field pulse RF and RF2, it does not contribute to the magnetic resonance signal M, and
Spins within the fault plane cause magnetic resonance signals M due to phase disturbances, etc.
It also does not reduce the

更に、従来のような広帯域で大電力の高周波磁場パルス
RFIを必要としないため、電力の消費を節減す□るご
ともできる。
Furthermore, since it does not require the conventional broadband high-power high-frequency magnetic field pulse RFI, it is possible to reduce power consumption.

尚、上記実施例では二次元フーリエ変換法について説明
したが、三次元フーリエ変換法の場合でも同等の効果を
奏する。
In the above embodiment, a two-dimensional Fourier transform method has been described, but a three-dimensional Fourier transform method can also produce similar effects.

又、倒れ角α及びβをそれぞれ35°としたが、測定対
象となる臓器に応じて任意の角度に設定されることは言
うまでもない。
Further, although the inclination angles α and β were each set to 35°, it goes without saying that they may be set to arbitrary angles depending on the organ to be measured.

又、磁気共鳴信号Mが核磁気共鳴によるスピンエコー信
号である場合を例にとって説明したが、電子スピン共鳴
を応用した場合に適用しても同等の効果を奏する。
Moreover, although the case where the magnetic resonance signal M is a spin echo signal due to nuclear magnetic resonance has been explained as an example, the same effect can be obtained even if it is applied to a case where electron spin resonance is applied.

更に、第1ステップ81〜第3ステップS3からなる一
連のシーケンスをN回繰り返すことにより、1枚の画像
を構成する場合について説明したが、マルチスライスに
対して適用してもよい、この場合、第1高周波磁場パル
スRF、の照射時のスライス磁場GSの強度と第2高周
波磁場パルスRF2の周波数とを適切に制御することに
より、第1ステップS1で第1高周波磁場パルスRF、
が照射されない領域内の他の断層面の磁気共鳴信号Mを
収集することができる。
Furthermore, although the case where one image is constructed by repeating the sequence consisting of the first step 81 to the third step S3 N times has been described, it may also be applied to multi-slices; in this case, By appropriately controlling the intensity of the slice magnetic field GS and the frequency of the second high-frequency magnetic field pulse RF2 during irradiation of the first high-frequency magnetic field pulse RF, the first high-frequency magnetic field pulse RF,
It is possible to collect magnetic resonance signals M of other tomographic planes within the region that is not irradiated.

[発明の効果] 以上のようにこの発明によれば、磁気共鳴信号を取得す
る前に、断層面内のスピンの位相を乱すことなく断層面
以外の領域内のスピンのみを飽和させるようにしたので
、血液などの流体によるアーチファクトが抑制できると
共に、画質を向上させることのできる磁気共鳴映像法が
得られる効果がある。
[Effects of the Invention] As described above, according to the present invention, before acquiring a magnetic resonance signal, only the spins in a region other than the fault plane are saturated without disturbing the phase of the spins in the fault plane. Therefore, artifacts caused by fluids such as blood can be suppressed, and magnetic resonance imaging with improved image quality can be achieved.

【図面の簡単な説明】 第1図はこの発明の一実施例を示すパルスシーケンス図
、第2図はこの発明の一実施例を示すフローチャート図
、第3図は従来の磁気共鳴映像法を示すパルスシーケン
ス図である。 M・・・磁気共鳴信号 RFl・・第1高周波磁場パルス RF、・・・第2高周波磁場パルス GS1・・小磁場強度のスライス磁場 GS4・・・大磁場強度のスライス磁場GS2 、GS
s 、GSs・・・極性が反転されたスライス磁場S1
・・・・第1ステップ/S2・・・第2ステップ尚、図
中、同一符号は同−又は相当部分を示す。 第 1 図 第2図
[Brief Description of the Drawings] Fig. 1 is a pulse sequence diagram showing an embodiment of the present invention, Fig. 2 is a flow chart diagram showing an embodiment of the invention, and Fig. 3 is a diagram showing conventional magnetic resonance imaging. FIG. 3 is a pulse sequence diagram. M...Magnetic resonance signal RFl...First high frequency magnetic field pulse RF,...Second high frequency magnetic field pulse GS1...Slice magnetic field with small magnetic field strength GS4...Slice magnetic field GS2 with large magnetic field strength, GS
s, GSs... slice magnetic field S1 with reversed polarity
...First step/S2...Second step In the drawings, the same reference numerals indicate the same or corresponding parts. Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)磁気共鳴信号を取得して所望の断層面を映像化す
る磁気共鳴映像法において、前記磁気共鳴信号を取得す
る前に、前記断層面を含む前後の領域内スピンの位相を
揃える第1ステップと、前記断層面内のみのスピンの倒
れ角を増加させ且つ前記断層面を除く前後の領域内のス
ピンを飽和させる第2ステップとを備えたことを特徴と
する磁気共鳴映像法。
(1) In a magnetic resonance imaging method in which a desired tomographic plane is imaged by acquiring magnetic resonance signals, before acquiring the magnetic resonance signals, a first step is performed to align the phases of spins in regions before and after the tomographic plane, including the tomographic plane. and a second step of increasing the inclination angle of spins only within the tomographic plane and saturating the spins in regions before and after the tomographic plane, excluding the tomographic plane.
(2)第1ステップは、選択性の第1高周波磁場パルス
を照射すると共に小磁場強度のスライス磁場を印加する
区間と、前記小磁場強度のスライス磁場に続いて極性が
反転されたスライス磁場を印加する区間とからなり、第
2ステップは、選択性の第2高周波磁場パルスを印加す
ると共に大磁場強度のスライス磁場を印加する区間と、
前記大磁場強度のスライス磁場の前後で極性が反転され
たスライス磁場を印加する区間とからなることを特徴と
する特許請求の範囲第1項記載の磁気共鳴映像法。
(2) The first step includes a section in which a selective first high-frequency magnetic field pulse is irradiated and a slicing magnetic field with a small magnetic field strength is applied, and a slicing magnetic field whose polarity is reversed following the slicing magnetic field with a small magnetic field strength. The second step is a section in which a selective second high-frequency magnetic field pulse is applied and a slicing magnetic field with a large magnetic field strength is applied.
2. The magnetic resonance imaging method according to claim 1, further comprising a section in which a slice magnetic field whose polarity is reversed is applied before and after the slice magnetic field having a large magnetic field strength.
(3)小磁場強度のスライス磁場は、大磁場強度のスラ
イス磁場の約1/10であることを特徴とする特許請求
の範囲第2項記載の磁気共鳴映像法。
(3) The magnetic resonance imaging method according to claim 2, wherein the slicing magnetic field having a small magnetic field strength is about 1/10 of the slicing magnetic field having a large magnetic field strength.
JP62263682A 1987-10-21 1987-10-21 Magnetic resonance imaging Pending JPH01107746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62263682A JPH01107746A (en) 1987-10-21 1987-10-21 Magnetic resonance imaging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62263682A JPH01107746A (en) 1987-10-21 1987-10-21 Magnetic resonance imaging

Publications (1)

Publication Number Publication Date
JPH01107746A true JPH01107746A (en) 1989-04-25

Family

ID=17392877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62263682A Pending JPH01107746A (en) 1987-10-21 1987-10-21 Magnetic resonance imaging

Country Status (1)

Country Link
JP (1) JPH01107746A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102866372A (en) * 2011-07-08 2013-01-09 西门子公司 Methods for calibrating frequency of magnetic resonance device and corresponding magnetic resonance device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102866372A (en) * 2011-07-08 2013-01-09 西门子公司 Methods for calibrating frequency of magnetic resonance device and corresponding magnetic resonance device

Similar Documents

Publication Publication Date Title
DE19905720B4 (en) Fast spin echo pulse train for diffusion-weighted imaging
US7027853B2 (en) Data acquisition method and apparatus for MR imaging
DE69932370T2 (en) Localized shim coil for use in a device for magnetic resonance imaging
DE19801808B4 (en) Apparatus and method for reducing Maxwell-term artifacts in fast spin echo magnetic resonance images
DE19901726B4 (en) Method for reducing Maxwell-term artifacts in fast spin echo magnetic resonance images
EP0222325A2 (en) Method for reduction of MR image artifacts due to flowing nuclei by gradient moment nulling
JPS5985651A (en) Nuclear magnetic resonance apparatus for diagnosis
US5214382A (en) Magnetic resonance imaging with selective contrast enhancement
DE19814677B4 (en) Correction of a deterioration of an axial-image signal caused by Maxwell terms
EP0390086B1 (en) Magnetic resonance imaging method.
US5151655A (en) Magnetic resonance imaging using a back-to-back pulse sequence
JPH03176031A (en) Method and device for magnetic resonance tomographing
DE112019001281T5 (en) MR IMAGING WITH SPIRAL CAPTURE
JPH01107746A (en) Magnetic resonance imaging
US4760338A (en) Magnetic resonance imaging apparatus and method utilizing a composite RF pulse
US4706028A (en) NMR imaging method
JPH0394731A (en) Method and device for magnetic resonance imaging
EP3557275A1 (en) Diffusion-weighted magnetic resonance imaging with flow-compensated magnetic field gradients
JP2004089515A (en) Magnetic resonance imaging system
JPH02144037A (en) Magnetic resonance imaging apparatus
JP3432506B2 (en) Magnetic resonance imaging
JP3499927B2 (en) Magnetic resonance imaging system
JP2696994B2 (en) MR imaging device
DE112021005885T5 (en) SPINECHO MR IMAGING WITH SPIRAL DETECTION
JP2734061B2 (en) MR imaging device