JPH01107588A - Solid-state laser apparatus - Google Patents

Solid-state laser apparatus

Info

Publication number
JPH01107588A
JPH01107588A JP26568487A JP26568487A JPH01107588A JP H01107588 A JPH01107588 A JP H01107588A JP 26568487 A JP26568487 A JP 26568487A JP 26568487 A JP26568487 A JP 26568487A JP H01107588 A JPH01107588 A JP H01107588A
Authority
JP
Japan
Prior art keywords
laser
medium
semiconductor laser
solid
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26568487A
Other languages
Japanese (ja)
Inventor
Yoshiaki Kuroda
黒田 芳明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP26568487A priority Critical patent/JPH01107588A/en
Publication of JPH01107588A publication Critical patent/JPH01107588A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To improve laser oscillating efficiency and to take out stable laser light, by constituting an exciting light source with semiconductor laser elements, and arranging the semiconductor laser elements around the circumferential direction of a laser medium. CONSTITUTION:Voltages from a light source 11 are applied to semiconductor laser elements 9, which are arranged on a cylinder body 8 through a cable 10. The semiconductor laser elements 9 emit laser light 8b having a wavelength of 0.75-0.83mum to a laser medium 1. Since the semiconductor laser elements 9 are arranged on the cylinder for the laser medium 1, the laser light 8b is projected on the entire surface of the laser medium 1. The laser medium 1, which is excited with the laser light 8b, is oscillated as the laser. The laser light is repeatedly reflected between a total reflection mirror 13 and an output mirror 14, which are arranged at the outside of container 12 through rod holders 2. Thereafter, the laser light is outputted from the output mirror 14. In this way, the laser medium is efficiently excited, and the laser output can be taken out stably.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、固体レーザ装置に関し、特にレーデ媒質を効
率良く励起せしめる構造に閃するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a solid-state laser device, and particularly relates to a structure for efficiently exciting a Rade medium.

(従来の技術) 従来、半導体レーザを励起光源として、レーザ媒質を励
起する固体レーザ装置としては第3図に示す装置があっ
た0図において、20は半導体レーザ素子で、例えば波
長0.808μmのGaAj!Asからなる。21.2
2は光学レンズ、23はYAGレーザロッドで、該YA
Gレーザロッド23の光学レンズ21.22側にMgF
、などの誘電体多層コーテイング膜24が施しである。
(Prior Art) Conventionally, as a solid-state laser device that excites a laser medium using a semiconductor laser as an excitation light source, there is a device shown in FIG. 3. In FIG. GaAj! Consisting of As. 21.2
2 is an optical lens, 23 is a YAG laser rod, and the YA
MgF on the optical lens 21 and 22 side of the G laser rod 23
A dielectric multilayer coating film 24 such as , etc. is applied.

25はK T i OP Oaの非線形光学材料からな
る2倍高調波素子、26は出力ミラーである6以上で構
成される固体レーザ装置の動作について説明する。
25 is a double harmonic element made of a nonlinear optical material of K T i OP Oa, and 26 is an output mirror. The operation of a solid-state laser device composed of six or more elements will be described.

半導体レーザ素子20より出射されたレーザ光27は、
光学レンズ21により平行光に、さらに光学レンズ22
より集光され誘電体多層コ−ティング膜24に入射され
る。該レーザ光27は、該誘電体多層コーテイング膜2
4を透過し、励起光としてYAGレーザロッド23に採
り入れられ、該YAGレーザロッド23を励起し、発振
波長が1.06μmのレーザ光28を発振せしめる。該
レーザ光28は、2倍高調波素子25により波長変換さ
れ、出力ミラー26に入射される。ここで、前記誘電体
多層コーテイング膜24は波長068μmなるレーザ光
は透過するが波長1.06μmのレーザ光は全反射する
特性を有し、この特性を利用して、前記出力ミラー26
と前反射ミラーとしての機能をもつ該誘電体多層コーテ
イング膜24との間でレーザ光28は反射往復し、所定
の出力に達したのち該出力ミラー26より出力されてい
た。なお、2倍高調波素子25は、前光レーザ光28を
波長1.06IImから0.53μmに変換する機能を
もつが、不必要の時は該2倍高調波素子24は除外して
も良いとされていた。
The laser beam 27 emitted from the semiconductor laser element 20 is
The optical lens 21 converts the light into parallel light, and the optical lens 22
The light is focused and incident on the dielectric multilayer coating film 24. The laser beam 27 is transmitted to the dielectric multilayer coating film 2.
4 and is introduced into the YAG laser rod 23 as excitation light, which excites the YAG laser rod 23 to oscillate a laser beam 28 with an oscillation wavelength of 1.06 μm. The laser beam 28 is wavelength-converted by the double harmonic element 25 and is incident on the output mirror 26 . Here, the dielectric multilayer coating film 24 has a characteristic of transmitting a laser beam having a wavelength of 068 μm but totally reflecting a laser beam having a wavelength of 1.06 μm.Using this characteristic, the output mirror 24
The laser beam 28 is reflected back and forth between the laser beam 28 and the dielectric multilayer coating film 24 which functions as a front reflection mirror, and is output from the output mirror 26 after reaching a predetermined output. Note that the double harmonic element 25 has a function of converting the front laser beam 28 from a wavelength of 1.06 IIm to 0.53 μm, but the double harmonic element 24 may be excluded when unnecessary. It was said that

(発明が解決しようとする問題点) しかるに、従来の半導体レーザ励起式固体レーザ装置で
は、現状の半導体レーザ素子は得られる出力が高々IW
であり、しかも従来の固体レーザ装置の如< YAGレ
ーザロッドの軸方向に励起する方法では、該YAGレー
ザロッドから得られるレーザ出力は数百m W L、か
得られない為に使用用途が限定されるという問題が生じ
ていた。
(Problems to be Solved by the Invention) However, in the conventional semiconductor laser pumped solid-state laser device, the output of the current semiconductor laser element is at most IW.
Moreover, with the method of exciting the YAG laser rod in the axial direction, as with conventional solid-state laser devices, the laser output obtained from the YAG laser rod is only a few hundred m W L, so the usage is limited. There was a problem of being exposed.

また、現状の半導体レーザ素子はその特性から周囲温度
により出力が変動するために、結果としてYAGレーザ
ロッドから得られるレーザ出力も変動してしまうという
悪循環になっていた。さらには、従来の固体レーザ装置
ではYAGレーザロッド端面に誘電体多層コーティング
層を施していた為に水冷方式が使用できずに空冷方式の
みの冷却方法であったので、固体レーザ装置の温度制御
が不確実となり、レーザ出力が安定しないという問題を
生じていた。
Furthermore, due to the characteristics of current semiconductor laser elements, the output fluctuates depending on the ambient temperature, resulting in a vicious cycle in which the laser output obtained from the YAG laser rod also fluctuates. Furthermore, in conventional solid-state laser devices, a dielectric multilayer coating layer was applied to the end face of the YAG laser rod, making it impossible to use water cooling and requiring air cooling as the only cooling method. This caused the problem that the laser output was unstable.

(問題点を解決するための手段および作用)本発明は、
かかる従来の問題点に鑑みなされたものであり、固体結
晶をレーザ媒質とし、励起光源で該レーザ媒質を励起せ
しめレーザ発振させる固体レーザにおいて、該励起光源
が半導体レーザ素子からなり、該半導体レーザ素子が前
記レーザ媒質の円周方向に配されてなることを特徴とす
る固体レーザ装置を提供することにある。
(Means and effects for solving the problems) The present invention has the following features:
This was developed in view of such conventional problems, and in a solid-state laser that uses a solid crystal as a laser medium and excites the laser medium with an excitation light source to cause laser oscillation, the excitation light source is composed of a semiconductor laser element, and the semiconductor laser element An object of the present invention is to provide a solid-state laser device, characterized in that the laser medium is arranged in the circumferential direction of the laser medium.

また、前記半導体レーザの出射光が、前記レーザ媒質の
円周方向全周にわたり供給できるように、該半導体レー
ザ素子が複数個配されてなることを特徴とする固体レー
ザ装置であり、さらには、前記レーザ媒質と前記半導体
レーザが冷媒水により冷却されてなることを特徴とする
固体レーザ装置を提供することにある。
Further, the solid-state laser device is characterized in that a plurality of semiconductor laser elements are arranged so that the emitted light of the semiconductor laser can be supplied over the entire circumference of the laser medium in the circumferential direction, and further, It is an object of the present invention to provide a solid-state laser device characterized in that the laser medium and the semiconductor laser are cooled by coolant water.

(実施例) 以下、図面に基づいて本発明の詳細な説明する。(Example) Hereinafter, the present invention will be described in detail based on the drawings.

第1図は、本発明に係る固体レーザ装置の概略構成図で
ある。図において、1は固体結晶からなるレーザ媒質、
2はロッドホルダ、3はホルダキャップ、4は冷媒、例
えば純水などを送水する送水管で5なる方向に流入する
。6は、冷媒の排水管で7なる方向に排出する。8は、
半導体レーザ素子9を配してなる円筒体、10は半導体
レーザ素子9に電圧を印加するケーブル、11は電源、
12は収納器、13は全反射ミラー、14は出力ミラー
、15は基台である。
FIG. 1 is a schematic configuration diagram of a solid-state laser device according to the present invention. In the figure, 1 is a laser medium made of solid crystal;
2 is a rod holder, 3 is a holder cap, and 4 is a water pipe for feeding a refrigerant, such as pure water, which flows in the direction 5. 6 is a refrigerant drain pipe that discharges the refrigerant in the direction 7. 8 is
A cylindrical body including a semiconductor laser element 9, 10 a cable for applying voltage to the semiconductor laser element 9, 11 a power source,
12 is a storage container, 13 is a total reflection mirror, 14 is an output mirror, and 15 is a base.

ここで、レーザ媒質1の周囲に配してなる半導体レーザ
素子9を具備した円筒体8の断面図を第2図に示す。
Here, a cross-sectional view of a cylindrical body 8 provided with a semiconductor laser element 9 arranged around the laser medium 1 is shown in FIG.

次に動作について説明する。Next, the operation will be explained.

電1111より印加された電圧はケーブル10を通して
、円筒体8に配された半導体レーザ素子9に印加される
。該半導体レーザ素子9は0.75μm−0,83,u
nなる波長を有するレーザ光8bを、第2図に示す如く
、レーザ媒fflに向って出射する。前記半導体レーザ
素子9は、レーザ媒質lの円筒上に配列されていること
から、該レーザ媒質lの全周上にレーザ光8bが照射さ
れる。該レーザ光8bにて励起されたレーザ媒itはレ
ーザ発振し、収納器12外に配された全反射ミラー13
と出力ミラー14との間をロッドホルダ2を通して反射
を適宜繰り返し、その後出力ミラー14よりレーザ光が
出力される。
The voltage applied from the voltage source 1111 is applied to the semiconductor laser element 9 disposed on the cylindrical body 8 through the cable 10 . The semiconductor laser element 9 has a diameter of 0.75 μm-0.83,u
A laser beam 8b having a wavelength n is emitted toward the laser medium ffl, as shown in FIG. Since the semiconductor laser elements 9 are arranged on the cylinder of the laser medium l, the laser beam 8b is irradiated onto the entire circumference of the laser medium l. The laser medium it excited by the laser beam 8b oscillates, and the total reflection mirror 13 disposed outside the container 12
After passing through the rod holder 2 and repeating reflection as appropriate between the laser beam and the output mirror 14, the laser beam is outputted from the output mirror 14.

一般的に、励起光源としての役目をなす半導体レーザ素
子9と、該励起光により励起されたレーザ媒質1とは、
レーザを発振するとともに多量の熱をも発生する。この
熱のために得られたレーザ光の出力が変動し、安定した
動作をしなくなるが、これを防止する目的で、前記円筒
体8に配された送水管4より冷媒を5なる方向に送水し
、該円筒体内8aを充満し、半導体レーザ素子9とレー
ザ媒質1とを冷却する。冷媒は、ホルダキャップ3によ
りロッドホルダ2内に漏水するのを防止している。又冷
媒は、所期の冷却作用をなしたのち排水管6により7な
る方向に排水される。
Generally, the semiconductor laser element 9 serving as an excitation light source and the laser medium 1 excited by the excitation light are:
Along with oscillating a laser, it also generates a large amount of heat. Due to this heat, the output of the laser beam obtained fluctuates and the operation becomes unstable, but in order to prevent this, the refrigerant is sent in the direction of 5 from the water pipe 4 arranged in the cylindrical body 8. Then, the cylindrical body 8a is filled, and the semiconductor laser element 9 and the laser medium 1 are cooled. The refrigerant is prevented from leaking into the rod holder 2 by the holder cap 3. Further, after the refrigerant has achieved the desired cooling effect, it is drained in the direction indicated by 7 through the drain pipe 6.

前記円筒体8内に充満された冷媒が該円筒体8外に漏水
した場合、収納器12及び基台15により水もれを防止
し、半導体レーザ素子を励起する電源11等に不良が発
生しないような作用もなしている。
If the refrigerant filled in the cylindrical body 8 leaks out of the cylindrical body 8, the container 12 and the base 15 prevent the water from leaking, and no defects occur in the power supply 11 etc. that excite the semiconductor laser element. It also has a similar effect.

(発明の効果) 以上詳述したように本発明によれば、レーザ媒質の円周
方向に半導体レーザ素子が配されてなり、半導体レーザ
素子からの出射光が該レーザ媒質の全周にわたり供給で
きるために、レーザ発振効率が、従来の固体レーザ装置
と比較して約5倍以−上も向上し、かつ冷媒により前記
半導体レーザ素子とし゛−ザ媒質とを冷却できることか
ら安定したレーザ光を取り出すことができる。
(Effects of the Invention) As detailed above, according to the present invention, the semiconductor laser element is arranged in the circumferential direction of the laser medium, and the emitted light from the semiconductor laser element can be supplied over the entire circumference of the laser medium. Therefore, the laser oscillation efficiency is improved by about 5 times or more compared to conventional solid-state laser devices, and since the semiconductor laser element and the laser medium can be cooled with a coolant, stable laser light can be extracted. Can be done.

さらには、励起光源である半導体レーザ素子とレーザ媒
質を同時に冷却できる構造なために、固体レーザ装置の
内容量が1/3〜115にも小型化できる効果も有して
いる。
Furthermore, since the structure allows simultaneous cooling of the semiconductor laser element that is the excitation light source and the laser medium, it also has the effect that the internal capacity of the solid-state laser device can be reduced to 1/3 to 115 times.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る固体レーザ装置の概略構成図、
第2図は本発明の構成を具体的に示す断面図、第3図は
従来例を示す図である。 1・・・レーザ媒W     2・・・ロッドホルダ3
・・・ホルダキャップ  8・・・円筒体9・・・半導
体レーザ素子 11・・・電源12・・・収納器   
   13・・・全反射ミラー14・・・出力ミラー 
   15・・・基台出願人     株式会社小松製
作所 代理人 (弁理士) 岡 1)和 喜 口=:よ−! に==ココ− −L−」−8
FIG. 1 is a schematic configuration diagram of a solid-state laser device according to the present invention,
FIG. 2 is a sectional view specifically showing the structure of the present invention, and FIG. 3 is a diagram showing a conventional example. 1... Laser medium W 2... Rod holder 3
... Holder cap 8 ... Cylindrical body 9 ... Semiconductor laser element 11 ... Power supply 12 ... Container
13... Total reflection mirror 14... Output mirror
15... Base applicant Komatsu Ltd. Agent (patent attorney) Oka 1) Wa Kiguchi =: Yo-! ni==Coco--L-"-8

Claims (3)

【特許請求の範囲】[Claims] (1)固体結晶をレーザ媒質とし、励起光源で該レーザ
媒質を励起せしめ、レーザ発振させる固体レーザにおい
て、該励起光源が半導体レーザ素子からなり、該半導体
レーザ素子が前記レーザ媒質の円周方向に配されてなる
ことを特徴とする固体レーザ装置。
(1) In a solid-state laser that uses a solid crystal as a laser medium and excites the laser medium with an excitation light source to oscillate the laser, the excitation light source is composed of a semiconductor laser element, and the semiconductor laser element extends in the circumferential direction of the laser medium. A solid-state laser device characterized by comprising:
(2)前記半導体レーザの出射光が、前記レーザ媒質の
円周方向全周にわたり供給できるように、該半導体レー
ザ素子が複数個配されてなることを特徴とする特許請求
範囲第1項記載の固体レーザ装置。
(2) A plurality of semiconductor laser elements are arranged so that the emitted light of the semiconductor laser can be supplied over the entire circumference of the laser medium in the circumferential direction. Solid state laser device.
(3)前記レーザ媒質と前記半導体レーザが、冷媒水に
より冷却されてなることを特徴とする特許請求範囲第1
項記載の固体レーザ装置。
(3) Claim 1, characterized in that the laser medium and the semiconductor laser are cooled by coolant water.
The solid-state laser device described in Section 1.
JP26568487A 1987-10-21 1987-10-21 Solid-state laser apparatus Pending JPH01107588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26568487A JPH01107588A (en) 1987-10-21 1987-10-21 Solid-state laser apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26568487A JPH01107588A (en) 1987-10-21 1987-10-21 Solid-state laser apparatus

Publications (1)

Publication Number Publication Date
JPH01107588A true JPH01107588A (en) 1989-04-25

Family

ID=17420565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26568487A Pending JPH01107588A (en) 1987-10-21 1987-10-21 Solid-state laser apparatus

Country Status (1)

Country Link
JP (1) JPH01107588A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0586278A1 (en) * 1992-08-17 1994-03-09 Ishikawajima-Harima Heavy Industries Co., Ltd. Laser generating apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0586278A1 (en) * 1992-08-17 1994-03-09 Ishikawajima-Harima Heavy Industries Co., Ltd. Laser generating apparatus
US5373527A (en) * 1992-08-17 1994-12-13 Ishikawajima-Harima Heavy Industries Co., Ltd. Laser generating apparatus having an arrangement for converging and diverging excitation light

Similar Documents

Publication Publication Date Title
US3909736A (en) RF Excited electrodeless gas arc lamp for pumping lasers
JPH01168084A (en) Metal evaporating laser apparatus
JPH01107588A (en) Solid-state laser apparatus
JP2000012935A (en) Laser exciting device
JPH05267753A (en) Solid laser
JPH0563264A (en) Semiconductor laser end pumped solid-state laser device
RU2346367C2 (en) Solid-state single-pulse laser and two-wave laser beam generator
JPH02161786A (en) Semiconductor laser excitation solid laser device
WO1998034305A1 (en) Laser oscillator
JP3340683B2 (en) Solid-state laser excitation module
JPH0388380A (en) Solid state laser device
JPH10150238A (en) Optical parametric oscillator and its designing method
JPH1187806A (en) Solid laser oscillator
JP2645051B2 (en) Solid state laser oscillator
Matsuno et al. Development of high-power all-solid-state lasers in the Japanese MITI project
JP2003298161A (en) Solid laser device
JPH0537052A (en) Semiconductor laser-excited solid state laser
JPH0246786A (en) Solid-state laser oscillating device
KR20020096376A (en) Solid laser for generating the second harmonics
JPH11177165A (en) Light excitation method for solid state laser
JPH07115234A (en) High-power laser apparatus
KR100685868B1 (en) Laser device
JP2000334591A (en) Laser beam machine
JPH07211974A (en) Ld-excited solid-state laser device
Ostermeyer et al. High-power, fundamental mode Nd: YALO laser using a phase-conjugate resonator based on SBS