JPH01106906A - Expansion turbine - Google Patents

Expansion turbine

Info

Publication number
JPH01106906A
JPH01106906A JP26389287A JP26389287A JPH01106906A JP H01106906 A JPH01106906 A JP H01106906A JP 26389287 A JP26389287 A JP 26389287A JP 26389287 A JP26389287 A JP 26389287A JP H01106906 A JPH01106906 A JP H01106906A
Authority
JP
Japan
Prior art keywords
turbine
starting torque
starting
torque
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26389287A
Other languages
Japanese (ja)
Other versions
JP2569079B2 (en
Inventor
Kazuo Okamoto
和夫 岡本
Kozo Matsumoto
松本 孝三
Shigeto Kawamura
河村 成人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62263892A priority Critical patent/JP2569079B2/en
Publication of JPH01106906A publication Critical patent/JPH01106906A/en
Application granted granted Critical
Publication of JP2569079B2 publication Critical patent/JP2569079B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

PURPOSE:To prevent the damage of a bearing part, by providing a means to calculate starting torque of the rotary body of a turbine and a control means to fully close a turbine inlet when the rotary body is not rotated even if starting torque exceeds a set value. CONSTITUTION:When, during the starting of an expansion turbine employing a tilting pat type dynamic pressure gas bearing, a turbine inlet valve 1 is gradually opened, at a point of time when turbine starting torque exceeds static friction torque of bearings 11a and 11b, a turbine is run. When a turbine is not run even when starting torque calculated by a computer 6 from measurements from pressure gauges 12 and 2 at turbine outlet and inlet, a thermometer 3 at a turbine inlet, and a pressure gauge 4 at the outlet of a nozzle 7 exceeds preset allowable starting torque, the turbine inlet valve 1 is closed. Allowable starting torque can be calculated from a preload and a static friction factor. The control system prevents the damage of a bearing part due to overspeed during starting and wear of the bearing part.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は膨張タービンに係り、特に動圧気体軸受を使用
したものに好適な膨張タービンに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an expansion turbine, and particularly to an expansion turbine suitable for using a hydrodynamic gas bearing.

〔従来の技術〕[Conventional technology]

従来、膨張タービンの保護システムとしては一般に下記
のものが装備されている。
Conventionally, expansion turbine protection systems are generally equipped with the following:

(1)回転数オーバースピード (2)軸振動異常 (3)軸受温度異常 (4)給油圧力又は軸受ガス圧力低下 しかし、これらの保護システムでは、動圧気体軸受を採
用した膨張タービンの軸受部摩耗による起動トルクの上
昇、及びこれに伴う起動時の急加速回転、軸受損傷等の
問題について配慮がなされていなかった。
(1) Overspeed of rotation (2) Abnormal shaft vibration (3) Abnormal bearing temperature (4) Low oil supply pressure or bearing gas pressure However, these protection systems do not prevent bearing wear in expansion turbines that use hydrodynamic gas bearings. No consideration was given to problems such as an increase in starting torque due to this, rapid acceleration of rotation during starting, and bearing damage.

なお、この種の装置として関連するものには、例えば、
特開昭51−147803号、同61−110850号
、同61−168756号等が挙げられる。
Note that related devices of this type include, for example,
Examples include JP-A No. 51-147803, JP-A No. 61-110850, and JP-A No. 61-168756.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ティルティングパッド型動圧気体ジャーナル軸受は、回
転軸が静止している状態では、パッドに予荷重を与え回
転軸に強制的に接触させている。
In a tilting pad type hydrodynamic gas journal bearing, when the rotating shaft is stationary, a preload is applied to the pad to force it into contact with the rotating shaft.

これは回転軸が回転し、パッドと回転軸の間にくさび膜
効果により気体膜が生じた時に安定した軸受性能をえる
ため予荷重を与えているものである。
This applies a preload to ensure stable bearing performance when the rotating shaft rotates and a gas film is generated between the pad and the rotating shaft due to the wedge film effect.

従って回転体を回転させる場合、起動トルクとしてこの
予荷重によって生じているジャーナル軸受部の静止摩擦
力に打ち勝つ力を与えないと回転しない。
Therefore, when rotating the rotating body, it will not rotate unless a force is applied as a starting torque to overcome the static frictional force of the journal bearing produced by this preload.

一方、動圧気圧軸受では、起動時と停止時に必ず回転体
とジャーナル軸受部のパッド面が接触するため、この接
触面が徐々に摩耗し、静止摩擦力が運転経過と共に増大
する。
On the other hand, in a hydrodynamic pneumatic bearing, the rotating body always comes into contact with the pad surface of the journal bearing when starting and stopping, so this contact surface gradually wears out and the static friction force increases as the operation progresses.

このようにジャーナル軸受部の静止摩擦力が増大した場
合、起動トルクを増大させる必要があるため、タービン
入口圧力をこれに対応させ上昇させなければならない。
When the static friction force of the journal bearing increases in this way, it is necessary to increase the starting torque, so the turbine inlet pressure must be increased accordingly.

ところが、タービン起動時において、タービン入口圧力
が高いと回転数の上昇は急加速状態で上昇し、場合によ
っては、瞬時にオーバースピードに達することもある。
However, when the turbine is started, if the turbine inlet pressure is high, the rotational speed increases in a state of rapid acceleration, and in some cases, overspeed may be instantaneously reached.

この様な状態を呈するとタービンの軸受及び回転体が焼
損し大きなダメージをうけるという問題がある。
If such a situation occurs, there is a problem that the bearings and rotating body of the turbine will be burnt out and suffer significant damage.

本発明の目的は、ティルティングパッド型動圧気体軸受
を用いた膨張タービンにおいて、パッド部の摩耗が進行
して、静止摩擦力が規定値以上に増大したことを検知す
ることにより、タービンの起動操作を停止し、大きな損
傷を防ぐことのできる膨張タービンを提供することにあ
る。
An object of the present invention is to start the turbine by detecting that, in an expansion turbine using a tilting pad type hydrodynamic gas bearing, wear of the pad portion has progressed and the static friction force has increased beyond a specified value. The object of the present invention is to provide an expansion turbine that can stop operation and prevent major damage.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、回転体起動時の起動トルクを算出する手段
と、この起動トルクが設定値以上になっても回転体が回
転しない場合にタービン入口弁を全閉にする制御手段を
具備することにより、達成される。
The above object is achieved by providing a means for calculating a starting torque when starting a rotating body, and a control means for fully closing a turbine inlet valve when the rotating body does not rotate even if the starting torque exceeds a set value. , achieved.

〔作   用〕[For production]

回転体起動時の起動トルクを算出する手段によって回転
体の起動トルクを算出し、制御手段によって該起動トル
クがあらかじめ設定した起動トルクの設定値よりも大き
くなっていたら、タービン入口弁を全閉にするので、回
転体が設定した起動トルク以上で回転することがないの
で、回転体が過回転となって軸受を損傷させることがな
い。
The starting torque of the rotating body is calculated by the means for calculating the starting torque at the time of starting the rotating body, and if the starting torque is larger than a preset starting torque setting value by the control means, the turbine inlet valve is fully closed. As a result, the rotating body does not rotate at more than the set starting torque, so the rotating body does not over-rotate and damage the bearing.

〔実 施 例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

まず構成を示す。タービン入口ラインにタービン入口弁
1、入口圧力計2および入口温度計3を設け、タービン
ノズル7出口に圧力計4を設け、ロータ−8出口部に圧
力計12を設け、回転軸9の回転数検出用に回転計5を
設ける。さらに、これら圧力計2.4,12、温度3お
よび回転計5の検出値により起動トルクを計算し許容起
動トルクとの比較判定を行い入口弁1へ作動信号を与え
る演算器6を設ける。
First, the configuration will be shown. A turbine inlet valve 1, an inlet pressure gauge 2, and an inlet thermometer 3 are provided on the turbine inlet line, a pressure gauge 4 is provided at the outlet of the turbine nozzle 7, a pressure gauge 12 is provided at the outlet of the rotor 8, and the rotation speed of the rotating shaft 9 is A tachometer 5 is provided for detection. Further, a computing unit 6 is provided which calculates the starting torque from the detected values of the pressure gauges 2.4 and 12, the temperature 3 and the tachometer 5, compares it with the allowable starting torque, and provides an operating signal to the inlet valve 1.

タービンの回転軸9の両端にはローター8とブレーキ翼
車10が装着してあり、この回転軸9は動圧型のジャー
ナル軸受11a、bによって支承されている。
A rotor 8 and a brake impeller 10 are attached to both ends of a rotating shaft 9 of the turbine, and this rotating shaft 9 is supported by dynamic pressure type journal bearings 11a and 11b.

次に、上記のように構成された膨張タービンの保護シス
テムの動作について説明する。
Next, the operation of the expansion turbine protection system configured as described above will be explained.

タービン起動時において、タービン入口弁1を徐々に開
きタービン入口ラインの圧力を上昇させタービン起動ト
ルクを上げていく。このタービンの起動トルクが、ジャ
ーナル軸受11a、b(ティルティングパッド型動圧軸
受)の静止摩擦トルクよりも大きくなった時点でタービ
ンは回転し回転計5に指示がでる。
When starting the turbine, the turbine inlet valve 1 is gradually opened to increase the pressure in the turbine inlet line and increase the turbine starting torque. When the starting torque of the turbine becomes larger than the static friction torque of the journal bearings 11a and 11b (tilting pad type hydrodynamic bearings), the turbine rotates and an instruction is displayed on the tachometer 5.

しかし、この起動操作において、タービン出入口の圧力
計12,2、タービン入口の温度計3、ノズル7の出口
の圧力計4の測定値より演算器6で計算した起動トルク
と事前に設定されている許容起動トルクとの比較判定を
行い、許容起動トルク以上でも回転計5の検出値がでな
い場合は、タービン入口弁1を閉止する信号をタービン
入口弁1に与える。
However, in this starting operation, the starting torque is calculated in advance by the calculator 6 from the measured values of the pressure gauges 12 and 2 at the turbine inlet and outlet, the temperature gauge 3 at the turbine inlet, and the pressure gauge 4 at the outlet of the nozzle 7. A comparison is made with the allowable starting torque, and if the detected value of the tachometer 5 is not detected even if the starting torque is greater than the allowable starting torque, a signal is given to the turbine inlet valve 1 to close the turbine inlet valve 1.

ここで、タービンローターに作用するトルクTBは、文
献(東京大学生産技術研究所報告ニラシアルガスタービ
ンの研 木釘長生)によると(1)式で示される。
Here, the torque TB acting on the turbine rotor is expressed by equation (1) according to the literature (Reported by the Institute of Industrial Science, University of Tokyo, published by Nagao Kenkigugi of Nirasial Gas Turbine).

TB =−(C1* cos cx * R1−(U2
−W2 cos 73 r) R2) −−(1)また
この(1)式において、(U2−W2 CosA r)
 R2(7)値はCI acosαm R1rl)値の
約1/10以下であって、トルクTBは主としてcl 
・CO5α会R1で与えられることが示されている。
TB =-(C1*cos cx*R1-(U2
-W2 cos 73 r) R2) --(1) Also, in this formula (1), (U2-W2 CosA r)
The R2(7) value is approximately 1/10 or less of the CI acosαm R1rl) value, and the torque TB is mainly due to cl
・It is shown that it is given by CO5α meeting R1.

ここで G :処理流体流量(変数) g :重力加速度(定数) C1:ノズル流出速度(変数) α :ノズル流出角度(タービン固有値)R1:ロータ
ー外半径(タービン固有値)従って(1)式において右
辺の項を無視するととなり、この中で変数はGと、C1
であり、他はそれぞれのタービンの固有値と考えること
ができる。(ただしタービン出口圧力はノズル出口圧力
より十分低い状態である) ここで処理流体流量Gは、ノズルを通過する流量と同じ
であり、ノズル通過流量GNはGN =AN xc、X
PN −−−−−−−−−一−(3)ここで AN :
ノズル面積(タービン固有値)C1:ノズル流出速度 PN:ノズル速度係数(0,9〜0.!35)で示され
る。
Here, G: Processing fluid flow rate (variable) g: Gravitational acceleration (constant) C1: Nozzle outflow velocity (variable) α: Nozzle outflow angle (turbine eigenvalue) R1: Rotor outer radius (turbine eigenvalue) Therefore, the right side in equation (1) If we ignore the terms, the variables are G and C1.
, and the others can be considered as eigenvalues of each turbine. (However, the turbine outlet pressure is sufficiently lower than the nozzle outlet pressure.) Here, the processing fluid flow rate G is the same as the flow rate passing through the nozzle, and the nozzle passing flow rate GN is GN = AN xc,
PN -----------1-(3) Here AN:
Nozzle area (turbine specific value) C1: Nozzle outflow speed PN: Nozzle speed coefficient (0.9 to 0.!35).

さらに、ノズル流出速度C1は、ノズル入口圧力と出口
圧力及び入口温度より求めることができる。(機械工学
便ラン改訂5版Pi 1−63参照)従って、ノズル入
ロ圧力=タービン入口圧力P1、及び入口温度T1、及
びノズル出口圧力P2を測定し、タービン固有値を事前
に把握しておけば(2)、(3)式よりロークーに作用
するトルクを計算できる。
Further, the nozzle outflow velocity C1 can be determined from the nozzle inlet pressure, outlet pressure, and inlet temperature. (Refer to Mechanical Engineering Benelan Revised 5th Edition Pi 1-63) Therefore, if you measure the nozzle inlet pressure = turbine inlet pressure P1, inlet temperature T1, and nozzle outlet pressure P2, and understand the turbine specific values in advance. The torque acting on the low torque can be calculated from equations (2) and (3).

一方、軸受部の静止摩擦力増大に伴う抵抗トルクは、軸
受と回転軸を強制的に接触させている予荷重と静止摩擦
係数によって計算できるので、静止摩擦係数の上限を事
前に把握すれば、許容起動トルクを計算し設定すること
ができる。
On the other hand, the resistance torque due to an increase in the static friction force of the bearing can be calculated from the preload that forces the bearing and rotating shaft into contact and the static friction coefficient, so if the upper limit of the static friction coefficient is known in advance, Allowable starting torque can be calculated and set.

従って、この許容起動トルクと、上記P、、T、。Therefore, this allowable starting torque and the above P,,T,.

P2より起動トルクが計算でき、事前に設定されている
許容起動トルクと比較し、許容起動トルク以上になって
も、回転数が検出されないことを検知し、タービン入口
弁が閉となるので、許容起動トルク以上でタービンが回
転することを防止できる。
The starting torque can be calculated from P2, and compared with the preset allowable starting torque, it is detected that the rotation speed is not detected even if the starting torque exceeds the allowable starting torque, and the turbine inlet valve is closed. It is possible to prevent the turbine from rotating at more than the starting torque.

本実施例によれば、許容起動トルク以上で回転すること
はないため、起動時にタービンが急加速回転しオーバー
スピードになることを防止できる。
According to this embodiment, since the turbine does not rotate at more than the allowable starting torque, it is possible to prevent the turbine from rapidly accelerating and rotating at overspeed at the time of starting.

さらに、軸受部の摩耗が進行し、軸受部が焼損し回転体
各部へ大きな損傷を与える前に、軸受部の異常を知るこ
とができる。また、これにより保守が容易になるという
効果がある。
Furthermore, it is possible to detect an abnormality in the bearing section before the wear of the bearing section progresses and the bearing section burns out, causing major damage to various parts of the rotating body. This also has the effect of making maintenance easier.

また、本実施例の他に、タービンの起動条件のうち入口
圧力のみが変化し、タービン入口温度、出口圧力がほぼ
一定となるような起動条件では、タービン入口圧力のみ
を監視し、この圧力が設定値以上になっても回転しない
場合にタービン入口弁1を全閉とするようにしても良い
In addition to this example, under startup conditions of the turbine where only the inlet pressure changes and the turbine inlet temperature and outlet pressure are approximately constant, only the turbine inlet pressure is monitored and this pressure is The turbine inlet valve 1 may be fully closed when the rotation does not occur even if the rotation exceeds a set value.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、軸受部の摩耗が進行し軸受部の静止摩
擦力が規定値以上に増大したことを検知してタービンの
起動操作を停止できるので、太きな損傷を防ぐことがで
きるという効果がある。
According to the present invention, it is possible to stop the startup operation of the turbine by detecting that the wear of the bearing has progressed and the static friction force of the bearing has increased beyond a specified value, thereby preventing serious damage. effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である膨張タービンを示す構
成図である。 1−−−−−一タービン入口弁、2−−−−−一人ロ圧
力計、3−−−−−一人口温度計、4−−−−−−ノズ
ル出口圧力計、5−−−−−一回転針、6−−−−−一
演算器、7−−−−−−ノズル、8−−−−−一ロータ
ー、9−−−−−一回転軸、10−−−−−−ブレーキ
翼車、11a、llb −−−−−ジャーナル軸受 1
2・・・ローターヒロ圧力1↑I−一一一ローグー デーーーー可転軸
FIG. 1 is a configuration diagram showing an expansion turbine which is an embodiment of the present invention. 1------1 turbine inlet valve, 2-----one person pressure gauge, 3-----1 population thermometer, 4--------nozzle outlet pressure gauge, 5----- -One rotation needle, 6------One computing unit, 7---------Nozzle, 8---One rotor, 9---One rotation axis, 10--------- Brake impeller, 11a, llb ----- Journal bearing 1
2...Rotor Hiro Pressure 1↑I-111 Rogue Day--Rotating shaft

Claims (1)

【特許請求の範囲】[Claims] 1、回転軸の端にタービン翼車を設けた回転体を支承す
るジャーナル軸受に、予荷重を与えるティルティングパ
ッド型動圧気体軸受を採用した膨張タービンにおいて、
回転体起動時の起動トルクを算出する手段と、該起動ト
ルクが設定値以上になっても回転体が回転しない場合に
タービン入口弁を全閉にする制御手段とを設けたことを
特徴とする膨張タービン。
1. In an expansion turbine that employs a tilting pad type hydrodynamic gas bearing that applies a preload to a journal bearing that supports a rotating body with a turbine impeller provided at the end of the rotating shaft,
The present invention is characterized in that it includes means for calculating a starting torque when starting the rotating body, and a control means for fully closing the turbine inlet valve when the rotating body does not rotate even if the starting torque exceeds a set value. expansion turbine.
JP62263892A 1987-10-21 1987-10-21 Expansion turbine Expired - Lifetime JP2569079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62263892A JP2569079B2 (en) 1987-10-21 1987-10-21 Expansion turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62263892A JP2569079B2 (en) 1987-10-21 1987-10-21 Expansion turbine

Publications (2)

Publication Number Publication Date
JPH01106906A true JPH01106906A (en) 1989-04-24
JP2569079B2 JP2569079B2 (en) 1997-01-08

Family

ID=17395706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62263892A Expired - Lifetime JP2569079B2 (en) 1987-10-21 1987-10-21 Expansion turbine

Country Status (1)

Country Link
JP (1) JP2569079B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068367A (en) * 2007-09-11 2009-04-02 Kobe Steel Ltd Power generating device
JP2012057621A (en) * 2010-09-09 2012-03-22 Nuovo Pignone Spa Method and device for low torque low speed test in turbomachinery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009068367A (en) * 2007-09-11 2009-04-02 Kobe Steel Ltd Power generating device
KR101138115B1 (en) * 2007-09-11 2012-04-25 가부시키가이샤 고베 세이코쇼 Power generator
JP2012057621A (en) * 2010-09-09 2012-03-22 Nuovo Pignone Spa Method and device for low torque low speed test in turbomachinery

Also Published As

Publication number Publication date
JP2569079B2 (en) 1997-01-08

Similar Documents

Publication Publication Date Title
JP4107829B2 (en) Turbomachine
EP3376079B1 (en) Dry gas seal
Waschka et al. Influence of high rotational speeds on the heat transfer and discharge coefficients in labyrinth seals
JP2002503787A (en) Method and apparatus for diagnosing and controlling rotational stall and surge in rotating machinery
US6851862B2 (en) Gas lubricated thrust bearing
Hopf et al. Investigations on large turbine bearings working under transitional conditions between laminar and turbulent flow
Ehrich The influence of trapped fluids on high speed rotor vibration
JPH01106906A (en) Expansion turbine
US2677273A (en) Turbine, compressor, or like rotary machine having a pivoted indicator blade responsive to operating conditions
US3560064A (en) Servo controlled fluid bearing
JPS588823A (en) Diagnosis method for abnormality in bearing
Choudhury et al. A flexible pad bearing system for a high speed centrifugal compressor
US2174806A (en) Turbine apparatus
Beatty et al. Improved rotor response of the uprated high pressure oxygen turbopump for the space shuttle main engine
CN220621972U (en) Novel low-pressure bypass valve of steam turbine
JP3110258B2 (en) Surge detector with asymmetric centrifugal compressor diffuser
JPH10160645A (en) Excessive speed prevention device of turbine-testing machine
JPS61503044A (en) Improved damping of rotor radial vibrations
JPS61116007A (en) Differential expansion monitor in turbine
JPS6293404A (en) Turbine compressor
JPS6275001A (en) Seal clearance adjusting device for turbine
JPH04153502A (en) Expansion turbine protector
JPH04210122A (en) Abnormality sensing method for gas bearing
JPS61169672A (en) Device for detecting abrasion of guide vane seal
JP3532648B2 (en) Turning abnormality detector