JPH01106879A - Production of trioxane - Google Patents
Production of trioxaneInfo
- Publication number
- JPH01106879A JPH01106879A JP26399187A JP26399187A JPH01106879A JP H01106879 A JPH01106879 A JP H01106879A JP 26399187 A JP26399187 A JP 26399187A JP 26399187 A JP26399187 A JP 26399187A JP H01106879 A JPH01106879 A JP H01106879A
- Authority
- JP
- Japan
- Prior art keywords
- zeolite
- reaction
- trioxane
- zsm
- hours
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- BGJSXRVXTHVRSN-UHFFFAOYSA-N 1,3,5-trioxane Chemical compound C1OCOCO1 BGJSXRVXTHVRSN-UHFFFAOYSA-N 0.000 title claims abstract description 16
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 239000010457 zeolite Substances 0.000 claims abstract description 49
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 45
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 43
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000003054 catalyst Substances 0.000 claims abstract description 12
- 239000007791 liquid phase Substances 0.000 claims abstract description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 30
- 239000000377 silicon dioxide Substances 0.000 abstract description 15
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 14
- 230000000694 effects Effects 0.000 abstract description 14
- 238000000034 method Methods 0.000 abstract description 10
- 230000003197 catalytic effect Effects 0.000 abstract 1
- 238000006243 chemical reaction Methods 0.000 description 23
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 12
- 239000011148 porous material Substances 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- 239000003960 organic solvent Substances 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 6
- 239000008098 formaldehyde solution Substances 0.000 description 6
- 238000003756 stirring Methods 0.000 description 5
- 239000012013 faujasite Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000001027 hydrothermal synthesis Methods 0.000 description 3
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 229910016523 CuKa Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000010306 acid treatment Methods 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000003456 ion exchange resin Substances 0.000 description 2
- 229920003303 ion-exchange polymer Polymers 0.000 description 2
- 229910052680 mordenite Inorganic materials 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000010025 steaming Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- -1 tetraethylammonium ions Chemical class 0.000 description 2
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 1
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 239000007809 chemical reaction catalyst Substances 0.000 description 1
- 238000006757 chemical reactions by type Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229940117389 dichlorobenzene Drugs 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011964 heteropoly acid Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000000066 reactive distillation Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- CBXCPBUEXACCNR-UHFFFAOYSA-N tetraethylammonium Chemical compound CC[N+](CC)(CC)CC CBXCPBUEXACCNR-UHFFFAOYSA-N 0.000 description 1
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 description 1
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Landscapes
- Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、ポリアセタールコポリマーの原料として重要
なトリオキサンの製造法に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing trioxane, which is important as a raw material for polyacetal copolymers.
(従来の技術ならびに発明が解決しようとする問題点)
従来、トリオキサンは、ホルムアルデヒド水溶液を原料
として、硫酸、ヘテロポリ酸等の均一系の酸を用いて、
加熱蒸留して製造されてきたのであるが、これらの均一
系の酸は、装置の腐食が激しいという問題があった。こ
の問題を解決するために、イオン交換樹脂を用いる不均
一系の反応方法が提案されている。(Prior art and problems to be solved by the invention) Conventionally, trioxane has been produced using a formaldehyde aqueous solution as a raw material and a homogeneous acid such as sulfuric acid or heteropolyacid.
Although they have been produced by heating and distilling, these homogeneous acids have the problem of severe corrosion of equipment. To solve this problem, a heterogeneous reaction method using an ion exchange resin has been proposed.
しかしながら、イオウ交換樹脂の場合、樹脂の機械的強
度や耐熱性に問題があり、特に1本反応は1通常90〜
130Cの温度範囲で行うため。However, in the case of sulfur exchange resins, there are problems with the mechanical strength and heat resistance of the resin, and in particular, one reaction is usually 90~
To be carried out in a temperature range of 130C.
イオン交換樹脂の劣化が著しく、工業的な触媒としては
、満足できるものではなかつ友。The deterioration of the ion exchange resin is significant, making it unsatisfactory as an industrial catalyst.
一方1本発明者らは、これらの問題を解決する一つの方
法として、先に、触媒としてシリカ/アルミナモル比が
10以上の結晶性アルミノシリケート(一般にゼオライ
トと呼ばれる)′!i−用いる方法(%開昭58−20
3985号明細書参照)を提案している。その発明の実
施例に示されているゼオライトは、H−ZSM−5,H
−ZSM−11、H−ZSM−12のモーピルオイル社
が開発し友ゼオライトと、H−モルデナイトである。On the other hand, the present inventors first proposed, as a method to solve these problems, a crystalline aluminosilicate (generally called zeolite) with a silica/alumina molar ratio of 10 or more as a catalyst! i-Method used (% 1986-20
3985 specification)). The zeolites shown in the examples of the invention are H-ZSM-5, H
-ZSM-11, H-ZSM-12 developed by Mopil Oil Co., Ltd. are Tomo zeolite and H-mordenite.
これらのゼオライトのトリオキサン合成反応における活
性は非常に高く、また、耐熱性も極めて優れている。These zeolites have very high activity in the trioxane synthesis reaction, and also have extremely excellent heat resistance.
しかしながら1本発明者らのその後の検討の結果、これ
らのゼオライトラもってしても、触媒として長期に使用
した場合、活性の低下がかなシあシ、また1選択性も低
下してくることが分った。However, as a result of subsequent studies by the present inventors, it was found that even with these zeolites, when used as a catalyst for a long period of time, there is a slight decrease in activity and also a decrease in selectivity. I understand.
(問題点を解決するための手段)
本発明者らは、先に述べたような問題全解決するため鋭
意検討1f:Mねた結果、触媒としてゼオライトベータ
、脱アルミニウム処理したゼオライトZSM−20,脱
アルミニウム処理したY型ゼオライトの中から選ばれ之
少なくとも一種のゼオライトを用いた場合に、高活性、
高選択性、かつ。(Means for Solving the Problems) The inventors of the present invention have conducted intensive studies to solve all the problems mentioned above, and as a result of using zeolite beta as a catalyst, dealuminated zeolite ZSM-20, When at least one type of zeolite selected from dealuminated Y-type zeolites is used, high activity,
High selectivity and.
活性低下が極めて少ないことを見い出し1本発明を完成
するに至つ之。We have discovered that the decrease in activity is extremely small and have completed the present invention.
すなわち1本発明は、液相においてホルムアルデヒドか
らトリオキサン金製造する際に、触媒として、ゼオライ
トベータ、脱アルミニウム処理したゼオライ)ZSM−
20,脱アルミニウム処理しfcY型ゼオライトの中か
ら選ばれ之少なくとも一種のゼオライトを用いるトリオ
キサンの製造方法である。That is, the present invention uses zeolite beta (zeolite beta, dealuminated zeolite) ZSM-
20. A method for producing trioxane using at least one type of zeolite selected from dealuminated fcY type zeolites.
なぜ、これらのゼオライトが高活性、高選択性で、しか
も、活性低下が少ないのかは明らかでないが1次のよう
な理由が考えられる。It is not clear why these zeolites have high activity, high selectivity, and little decrease in activity, but the following reasons can be considered.
ZSM−5,ZSM−11は、ゼオライト構造中の細孔
入口が酸素10員環で比較的小さいために、高沸物等の
析出によって細孔が狭められることにより、活性1選択
性が低下し、また、ZSM−12やモルデナイトは、細
孔入口は比較的大きい酸素12負環を有するが、細孔構
造が一次元のトンネルでめるため、細孔の閉塞による活
性低下を起し易い。それに対して、Y型ゼオライトとZ
SM−20は、フォージャサイトと呼ばれる12員壌の
三次元の細孔を有するゼオライトに属し、また、ゼオラ
イトベータも、細孔構造はフォージャサイトに近いと言
われている。この酸素12員環の多次元の細孔構造が、
生成物のトリオキサンの拡散や高沸物の析出による拡散
阻外に対して有利に働くと考えられる。In ZSM-5 and ZSM-11, the pore entrance in the zeolite structure is a 10-membered oxygen ring and is relatively small, so the pores are narrowed by the precipitation of high-boiling substances, resulting in a decrease in activity 1 selectivity. In addition, ZSM-12 and mordenite have a relatively large oxygen-12 negative ring at the pore entrance, but because the pore structure is a one-dimensional tunnel, activity is likely to decrease due to pore clogging. On the other hand, Y-type zeolite and Z
SM-20 belongs to a zeolite called faujasite, which has 12-membered three-dimensional pores, and zeolite beta is also said to have a pore structure similar to faujasite. The multidimensional pore structure of this 12-membered oxygen ring is
It is thought that this works advantageously against diffusion of the product trioxane and diffusion inhibition due to precipitation of high-boiling substances.
本発明に用いられるゼオライトベータとは、モーピルオ
イル社が開発した高シリカ/アルミナ比を有するゼオラ
イトである( USP 3.SOB、069号参照)。The zeolite beta used in the present invention is a zeolite with a high silica/alumina ratio developed by Mopil Oil (see USP 3.SOB, No. 069).
このゼオライトベータは、一般に、テトラエチルアンモ
ニウムイオンの存在下に、シリカ源、アルミナ源、アル
カリ金属源から水熱合成によって得られる。ゼオライト
ベータのシリカ/アルミナモル比は1通常10〜100
であるが、高温における塩酸による脱アルミニウム処理
や。This zeolite beta is generally obtained by hydrothermal synthesis from a silica source, an alumina source, and an alkali metal source in the presence of tetraethylammonium ions. The silica/alumina molar ratio of zeolite beta is 1, usually 10 to 100.
However, dealumination with hydrochloric acid at high temperature.
EDTA等のキレート剤による脱アルミニウム処理によ
って、さらに高いシリカ/アルミナモル比のものも得る
ことができる。本発明に用いられるゼオライトベータの
好ましいシリカ/アルミナモル比i−j:10〜100
0であシ、さらに好ましくは20〜300の範囲である
。Even higher silica/alumina molar ratios can be obtained by dealumination with chelating agents such as EDTA. Preferable silica/alumina molar ratio i-j of zeolite beta used in the present invention: 10 to 100
It is preferably in the range of 0 to 300, more preferably in the range of 20 to 300.
ゼオライトベータけ1表Aに示される特徴的なX線回折
ピークを有する。Zeolite Beta has the characteristic X-ray diffraction peaks shown in Table A.
表A ただし、X線はCuKa線を用いる。Table A However, CuKa rays are used as the X-rays.
不発明に用いられるZSM−20は、モーピルオイル社
が開発したフォージャサイト族に属するゼオライトであ
る(%開昭55−80717号参照)。このZSM−2
0は、一般にテトラエチルアンモニウムイオンの存在下
に、シリカ源、アルミナ源、アルカリ金属源を用いて水
熱合成によって得られるが1合成後のZSM−20のシ
リカ/アルミナモル比は7〜10であり、この状態では
。ZSM-20 used in the invention is a zeolite belonging to the faujasite family developed by Mopil Oil Co. (see % 80717/1983). This ZSM-2
0 is generally obtained by hydrothermal synthesis using a silica source, an alumina source, and an alkali metal source in the presence of tetraethylammonium ion, but the silica/alumina molar ratio of ZSM-20 after synthesis is 7 to 10. In this condition.
本反応の活性は著しく低い。そのため1本発明に用いら
れるZSM−20は、脱アルミニウム処理によって、シ
リカ/アルミナモル比を高くする必要がある。この脱ア
ルミニウムの方法としては。The activity of this reaction is extremely low. Therefore, it is necessary to increase the silica/alumina molar ratio of ZSM-20 used in the present invention by dealumination treatment. This method of dealumination is as follows.
例えば、特開昭58−2081’30号に示されるスチ
ーミングと塩酸処理を組み合わせる方法が挙げられる。For example, there is a method of combining steaming and hydrochloric acid treatment as shown in JP-A-58-2081'30.
本発明における脱アルミニウム処理したZSM−20の
好ましいシリカ/アルミナモル比は10〜500.さら
に好ましくは20〜200の範囲である。The preferred silica/alumina molar ratio of dealuminated ZSM-20 in the present invention is 10 to 500. More preferably, it is in the range of 20 to 200.
ZSM−20は1表Bに示される特徴的なX線回折ピー
クを有する。ZSM-20 has characteristic X-ray diffraction peaks shown in Table 1B.
表B ただし、 XA61はCuKa線を用いる。Table B However, XA61 uses CuKa radiation.
本発明に用いられるY型ゼオライトは、フォージャサイ
ト族に属するゼオライトでおる。このY型ゼオライトは
、天然あるいは水熱合成によって得られるが、そのシリ
カ/アルミナモル比は3〜6であり、この状態では1本
反応の活性上音く示芒ない。そのため1本発明に用いら
れるYWゼオライトは、脱アルミニウム処理によってシ
リカ/アルミナモル比を高くする必要がある。この脱ア
ルミニウムの方法としては9例えば、特開昭58−20
8130号に示されるスチーミングと塩酸処、[lニー
組み合わぜる方法や、特開昭58−36917号に示さ
れる四塩化ケイ素ガスによる処理法等が挙げられる。本
発明に用いられる脱アルミニウム処理したY型ゼオライ
トの好ましいシリカ/アルミナモル比は10〜500.
さらに好ましくは20〜200の範囲である。The Y-type zeolite used in the present invention is a zeolite belonging to the faujasite group. This Y-type zeolite can be obtained naturally or by hydrothermal synthesis, but its silica/alumina molar ratio is 3 to 6, and in this state it does not exhibit much activity in a single reaction. Therefore, it is necessary to increase the silica/alumina molar ratio of the YW zeolite used in the present invention by dealumination treatment. As a method for this dealumination, for example, JP-A-58-20
Examples include a method of combining steaming and hydrochloric acid treatment as shown in No. 8130, and a treatment method using silicon tetrachloride gas as shown in JP-A-58-36917. The preferred silica/alumina molar ratio of the dealuminated Y-type zeolite used in the present invention is 10 to 500.
More preferably, it is in the range of 20 to 200.
本発明に用いられるゼオライトは、a[々のカチオンの
形態で用いられるが、好ましいのはプロトン、アルカリ
土類金属、遷移金属、希土類金属であシ1%に好ましい
のはプロトンである。The zeolite used in the present invention is used in the form of cations, preferably protons, alkaline earth metals, transition metals, and rare earth metals, and 1% preferably protons.
本発明に用いられるゼオライトベータ、脱アルミニウム
処理したZSM−20,脱アルミニウム処理したY型ゼ
オライトは、単数で使用しても。The zeolite beta, dealuminated ZSM-20, and dealuminated Y-type zeolite used in the present invention may be used singly.
混合して使用してもよい。May be used in combination.
本発明におけるトリオキサン合成反応は、ホルムアルデ
ヒド水溶液中、有機溶媒中、またはホルムアルデヒド水
溶液と有機溶媒の共存系で行なうことができる。The trioxane synthesis reaction in the present invention can be carried out in an aqueous formaldehyde solution, an organic solvent, or in a coexistence system of an aqueous formaldehyde solution and an organic solvent.
ホルムアルデヒド水溶液中で反応を行う場合。When performing the reaction in an aqueous formaldehyde solution.
使用するホルムアルデヒド水溶液の濃度#′i10〜a
sh、好ましくは20〜80チ、さらに好ましくは60
〜75チの範囲である。Concentration of formaldehyde aqueous solution used #'i10~a
sh, preferably 20 to 80 sh, more preferably 60
It ranges from 75 cm to 75 cm.
有機溶媒中で反応を行う場合に用いる有機溶媒としてハ
、ベンゼン、トルエン、キシレン等の芳香族系炭化水素
、C6〜C8の脂肪族炭化水素、塩fヒメチレン、クロ
ロホルム、クロルベンゼン、ジクロルベンゼン等のハロ
ゲン系炭化水素等が挙げられる。これらの有機溶媒中で
反Gt行う場合には。Organic solvents used when carrying out the reaction in an organic solvent include aromatic hydrocarbons such as benzene, toluene, and xylene, C6 to C8 aliphatic hydrocarbons, salts of himethylene, chloroform, chlorobenzene, dichlorobenzene, etc. Examples include halogenated hydrocarbons. When performing anti-Gt in these organic solvents.
例え′ば、有機溶媒にパラホルムアルドヒトを溶かした
シ、純粋なホルムアルデヒドガスを吸収させた液を用い
て反応を行うことができる。For example, the reaction can be carried out using a solution in which paraformaldehyde is dissolved in an organic solvent, or a solution in which pure formaldehyde gas is absorbed.
さらに1本反応は、ホルムアルデヒド水溶液と有機溶媒
を共存させた状態で行うこともできる。Furthermore, the single reaction can also be carried out in the presence of an aqueous formaldehyde solution and an organic solvent.
本発明における反応温度は1反応系を液相に保てる温度
であれば特に制限はないが1通常、50〜200C,好
ましくは70〜150C,特に好ましくは90〜130
Cの温度範囲で行なわれる。The reaction temperature in the present invention is not particularly limited as long as it can maintain the reaction system in a liquid phase, but it is usually 50 to 200C, preferably 70 to 150C, particularly preferably 90 to 130C.
It is carried out in the temperature range of C.
本発明における圧力は1反応系を液相に保てる圧力であ
れば特に制限はなく、減圧、常圧、加圧いずれでもよい
。The pressure in the present invention is not particularly limited as long as it can maintain one reaction system in a liquid phase, and may be reduced pressure, normal pressure, or increased pressure.
本発明における反応形式は1回分式、連続式いずれの形
式でもよいが、工業的規模では連続式が好ましい。その
場合1本反応は平衡反応であるので、生成したトリオキ
サンを連続的に系外に抜き出す反応蒸留形式が好ましい
。The reaction format in the present invention may be either a batch type or a continuous type, but a continuous type is preferred on an industrial scale. In this case, since the single reaction is an equilibrium reaction, a reactive distillation format in which the generated trioxane is continuously extracted from the system is preferred.
本発明に用いられる触媒は、成型して固定床の形で用い
ても、粉末のままスラリーの形で用いてもかまわない。The catalyst used in the present invention may be molded and used in the form of a fixed bed, or may be used as a powder in the form of a slurry.
(発明の効果)
本発明の方法によれば、ホルムアルデヒドカラトリオキ
サン金好収率、かつ、好選択性で、しかも、触媒の活性
低下も少なく製造することができる。このことは、工業
的に実施する上で非常に有利となる。(Effects of the Invention) According to the method of the present invention, formaldehyde caratrioxane gold can be produced with good yield and selectivity, and with little reduction in catalyst activity. This is very advantageous for industrial implementation.
(実施例) 次に1本発明を実施例を用いて説明する。(Example) Next, one embodiment of the present invention will be explained using an example.
実施例1
ゼオライトベータの合成
Nakto、 16.6 SF f 43重量%の水酸
化テトラエチルアンモニウム水溶液166yに溶解し1
次に。Example 1 Synthesis of Zeolite Beta
next.
攪拌しながらシリカゾル(50i量% Sin、 )
415グを加えて均質なゲルを得た。このゲルを内容積
1tのステンレス製オートクレーブに仕込んで。Silica sol (50i amount% Sin, ) while stirring
415 g was added to obtain a homogeneous gel. This gel was placed in a stainless steel autoclave with an internal volume of 1 ton.
150Cで50 Orpmの回転数で攪拌しながら10
0時間結晶化を行った。得られた生成物を濾過、洗浄、
120Cで5時間乾燥した後、450Cで6時間空気中
で焼成した。この生成物は、X線回折分析よシゼオライ
トペータと同定された。10 min at 150C with stirring at 50 rpm.
Crystallization was carried out for 0 hours. The resulting product is filtered, washed,
After drying at 120C for 5 hours, it was fired in air at 450C for 6 hours. This product was identified as schizeolite peta by X-ray diffraction analysis.
さらに、この生成物i1Nの塩酸中で4時間室温でイオ
ン交換した後、濾過、洗浄、120Cで5時間乾燥した
ものを、ケイ光X線でSio2/AムO。Further, this product i1N was ion-exchanged in hydrochloric acid at room temperature for 4 hours, filtered, washed, and dried at 120C for 5 hours, and the product was analyzed with fluorescent X-rays to give Sio2/AmO.
モル比を測定した結果、65であった。As a result of measuring the molar ratio, it was 65.
実施例2
脱アルミニウム処理ZSM−2oの合成50重i%水酸
化テトラエチルアンモニウム124ノにNaOH1,7
fを溶かし、ケイ酸エチル100rを加えて均質なゲル
を得た。さらに、水787にAl4(S04 ’)s・
16H,07S’を溶かし友水溶液を攪拌しながら加え
て原料ゲルを得之。このゲルを500ccのステンレス
製オートクレーブに仕込んで、100Cで200時間、
200rpmで攪拌しながら結晶rヒさせた。得られた
生成物を濾過。Example 2 Synthesis of dealuminated ZSM-2o 50wt% tetraethylammonium hydroxide 124% NaOH 1,7
f was dissolved and 100r of ethyl silicate was added to obtain a homogeneous gel. Furthermore, Al4(S04')s・
16H and 07S' were dissolved and added to the aqueous solution with stirring to obtain a raw material gel. This gel was placed in a 500cc stainless steel autoclave and heated at 100C for 200 hours.
The crystals were heated while stirring at 200 rpm. Filter the resulting product.
洗浄した後、120Cで4時間乾燥し、さらK。After washing, dry at 120C for 4 hours, and then dry.
450Cで4時間空気中で焼成した。この生成物は、X
線回折分析よ928M−20でめると同定された。ざら
に、この生成物を1NのNH4C4水溶液で24時間室
温でイオン交換し、濾過、洗浄。Calcined in air at 450C for 4 hours. This product is
It was identified by line diffraction analysis as 928M-20. Briefly, the product was ion-exchanged with a 1N aqueous NH4C4 solution for 24 hours at room temperature, filtered, and washed.
乾燥した後、400Cで、20闘Hgの水分圧を持つ穐
ガスで2時間スチーミング処理し、さらに。After drying, it was steamed for 2 hours at 400C with water pressure of 20% Hg.
0.5Nの塩酸で80Cで1時間処理した。この生成物
全濾過、ii浄、乾燥しt後、ケイ光X線分析よ)求め
たSiO,/Aム08モル比は75であった。It was treated with 0.5N hydrochloric acid at 80C for 1 hour. After total filtration, purification and drying of this product, the SiO,/Am08 molar ratio determined by fluorescent X-ray analysis was 75.
実施例3
市販のYfiゼオライト(Linde 5K−40)上
を。Example 3 On commercially available Yfi zeolite (Linde 5K-40).
5容量チのSiCムを含むN、ガス1sV= 1000
hr−’。N containing 5 volumes of SiC, gas 1sV = 1000
hr-'.
450Cで2時間流して脱アルミニウム処理した。Dealumination was carried out by flowing at 450C for 2 hours.
得られた生成物を、1NのNH4C6水溶液で24時間
室温でイオン交換して、濾過、洗浄、120Cで4時間
乾燥後、、400 Gで4時間空気中で焼成した。祷ら
れた生成物のケイ光X線分析より求めfc 5iO1/
Ago、 % /l/比は35であツタ。The obtained product was ion-exchanged with a 1N aqueous NH4C6 solution for 24 hours at room temperature, filtered, washed, dried at 120C for 4 hours, and then calcined at 400 G in air for 4 hours. Determined from fluorescent X-ray analysis of the desired product fc 5iO1/
Ago, %/l/ratio is 35 and ivy.
実施例4
実施例1で得られ之ゼオライトベータと、実施例2で得
られた脱アルミニウム処理ZSM−20゜および実施例
3で得られた脱アルミニウム処、理Y型ゼオライトを触
媒に用いて、ホルムアルデヒド水溶液からのトリオキサ
ン合成反応ヲ、下記の条件で行った。Example 4 Using the zeolite beta obtained in Example 1, the dealuminated ZSM-20° obtained in Example 2 and the dealuminated Y-type zeolite obtained in Example 3 as catalysts, The trioxane synthesis reaction from an aqueous formaldehyde solution was carried out under the following conditions.
滞留時間=20分
温度:102C
圧カニ常圧
反応形式二連続反応蒸留形式
反応装置を図面に示す。図面において、1はオイルバス
、2はボンダ、5はパイプ、4はマントルヒーター、5
は三ツロフラスコ、6はフラスコ5に設けられ友真空ジ
ャケット、7は温度計、8は回転子、9はマグネスティ
ックスターラー。Residence time = 20 minutes Temperature: 102C A pressure crab normal pressure reaction type two continuous reaction distillation type reactor is shown in the drawing. In the drawing, 1 is an oil bath, 2 is a bonder, 5 is a pipe, 4 is a mantle heater, 5
6 is a three-way flask, 6 is a vacuum jacket provided on flask 5, 7 is a thermometer, 8 is a rotor, and 9 is a magnetic stirrer.
10は冷却器、11は受器、12はホルマリン。10 is a cooler, 11 is a receiver, and 12 is formalin.
13は反応器、14は生成物、15は液面センサーを示
す。13 is a reactor, 14 is a product, and 15 is a liquid level sensor.
反応開始後、2〜3時間、100〜101時間。2 to 3 hours, 100 to 101 hours after the start of the reaction.
300〜301時間、700〜701時間の溶出液組成
を表1に示す。Table 1 shows the eluate compositions for 300 to 301 hours and 700 to 701 hours.
表 1
比較例1
USP 5,702,886号明細書にしたがって合成
し7t、ZSM−5を、500Cで5時間空気中で焼成
した後、INの塩酸中で室温で4時間イオン交換して、
H−ZSM−5i得た。C0H−Z 5M−5のケイ光
X線分析よシ求めfc S i Ot / A40sモ
ル比は60でらった。Table 1 Comparative Example 1 ZSM-5 synthesized according to USP 5,702,886 was calcined in air at 500C for 5 hours, and then ion-exchanged in IN hydrochloric acid for 4 hours at room temperature.
H-ZSM-5i was obtained. The fc Si Ot / A40s molar ratio determined by fluorescent X-ray analysis of C0H-Z 5M-5 was 60.
このH−zsa−st−用いて、実施例3と同じ条件で
反応を行った。Using this H-zsa-st-, a reaction was carried out under the same conditions as in Example 3.
その結果を表2に示す。The results are shown in Table 2.
表 2
比較例2
東洋曹達社製ハイシリカモルデナイ) (TSZ680
、 Sin、/A!40sモル比=55)を用いて、
実施例3と同じ条件で反応を行った。Table 2 Comparative Example 2 High silica mordenai manufactured by Toyo Soda Co., Ltd. (TSZ680)
, Sin, /A! 40s molar ratio = 55),
The reaction was carried out under the same conditions as in Example 3.
その結果を表3に示す。The results are shown in Table 3.
表 3
実施例5
実施例1で得られたゼオライトベータを触媒に用いて、
ベンゼン共存下でのホルムアルデヒド水溶液からのトリ
オキサン合成反応ヲ、以下の条件で行った。Table 3 Example 5 Using the zeolite beta obtained in Example 1 as a catalyst,
A trioxane synthesis reaction from an aqueous formaldehyde solution in the coexistence of benzene was carried out under the following conditions.
原料ホルマリン濃度ニア5重t%
ホルマリン供給量:200C/hr
ヘンセン供給量: 140 CC;/hr反応檀触媒濃
度:1.ON′jk%
反応温度:120’C
滞留時間:20分
攪拌回転数;6oorpm
反応形式:液相流通反応(完全混合型)触媒は反応槽出
口のフィルターで分離
結果を表4に示す。Raw material formalin concentration: 5% by weight Formalin supply rate: 200C/hr Hensen supply rate: 140 CC;/hr Reaction catalyst concentration: 1. ON'jk% Reaction temperature: 120'C Residence time: 20 minutes Stirring rotation speed: 6oorpm Reaction format: Liquid phase flow reaction (completely mixed type) The catalyst was separated by a filter at the outlet of the reaction tank, and the results are shown in Table 4.
表 4Table 4
図面は実施例4のトリオキサン合成反応に使用する反応
装置の説明図である。The drawing is an explanatory diagram of a reaction apparatus used in the trioxane synthesis reaction of Example 4.
Claims (1)
する際に、触媒として、ゼオライトベータ、脱アルミニ
ウム処理したゼオライトZSM−20、脱アルミニウム
処理したY型ゼオライトの中から選ばれた少なくとも一
種のゼオライトを用いることを特徴とするトリオキサン
の製造方法。When producing trioxane from formaldehyde in a liquid phase, at least one zeolite selected from zeolite beta, dealuminated zeolite ZSM-20, and dealuminated Y-type zeolite is used as a catalyst. A method for producing trioxane.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62263991A JP2571698B2 (en) | 1987-10-21 | 1987-10-21 | Method for producing trioxane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62263991A JP2571698B2 (en) | 1987-10-21 | 1987-10-21 | Method for producing trioxane |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01106879A true JPH01106879A (en) | 1989-04-24 |
JP2571698B2 JP2571698B2 (en) | 1997-01-16 |
Family
ID=17397026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62263991A Expired - Fee Related JP2571698B2 (en) | 1987-10-21 | 1987-10-21 | Method for producing trioxane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2571698B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8179927B2 (en) | 2006-09-29 | 2012-05-15 | Huawei Technologies Co., Ltd. | Method, system and gateway for negotiating the capability of data signal detector |
CN114835673A (en) * | 2022-05-27 | 2022-08-02 | 成都中科凯特科技有限公司 | Method for preparing trioxymethylene by modified ZSM-5 |
-
1987
- 1987-10-21 JP JP62263991A patent/JP2571698B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8179927B2 (en) | 2006-09-29 | 2012-05-15 | Huawei Technologies Co., Ltd. | Method, system and gateway for negotiating the capability of data signal detector |
CN114835673A (en) * | 2022-05-27 | 2022-08-02 | 成都中科凯特科技有限公司 | Method for preparing trioxymethylene by modified ZSM-5 |
CN114835673B (en) * | 2022-05-27 | 2024-01-02 | 成都中科凯特科技有限公司 | Method for preparing trioxymethylene by modified ZSM-5 |
Also Published As
Publication number | Publication date |
---|---|
JP2571698B2 (en) | 1997-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4306106A (en) | Conversion of polar compounds using a ZSM-5 zeolite catalyst | |
US4011278A (en) | Conversion of polar compounds using a zsm-5 zeolite catalyst | |
KR900009148B1 (en) | Synthetic crystalline porous material containing oxides of silicon,titanium and gallium | |
US5100852A (en) | Compounds of catalysts for dealkoxylation of gem-dialkoxy | |
KR100261001B1 (en) | Selective surface dealumination of zeolites and use of the surface-dealuminated zeolites | |
US4895988A (en) | Process for the mutual condensation of aromatic and carbonylic compounds | |
US4243828A (en) | Alkylation of aromatics using a high silica zeolite | |
JPH01106879A (en) | Production of trioxane | |
Chen et al. | The selective alkylation of aniline with methanol over ZSM-5 zeolite | |
JP3592418B2 (en) | Glutardialdehyde production method | |
JP2664455B2 (en) | Preparation of phenylethanol | |
JPH01180835A (en) | Method for reaction in liquid phase using zsm-5 | |
JP2662649B2 (en) | Dehydration reaction method using ZSM-5 | |
JPS6241656B2 (en) | ||
JP2603711B2 (en) | How to make cumene | |
RU2071475C1 (en) | Process for preparing triethylene diamine | |
SU1092141A1 (en) | Silicate production process | |
CN108530257B (en) | Method for coproducing isopropyl benzene and propylene from benzene and isopropyl alcohol | |
JPH01301658A (en) | Production of pyrrole | |
JPH0566934B2 (en) | ||
JP2562641B2 (en) | Olefin hydration method | |
RU1443323C (en) | Method for preparing high-siliceous zeolite | |
JP3232579B2 (en) | Catalyst for synthesizing α, β-unsaturated ether and production method using the same | |
JP2000309546A (en) | Production of alkylated aromatic compound and catalyst for the same | |
KR900009149B1 (en) | Catalyst based on silicon titanium and gallium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |