JPH01105990A - Dispersion liquid for electrophoretic display - Google Patents

Dispersion liquid for electrophoretic display

Info

Publication number
JPH01105990A
JPH01105990A JP62262590A JP26259087A JPH01105990A JP H01105990 A JPH01105990 A JP H01105990A JP 62262590 A JP62262590 A JP 62262590A JP 26259087 A JP26259087 A JP 26259087A JP H01105990 A JPH01105990 A JP H01105990A
Authority
JP
Japan
Prior art keywords
liquid
particulates
display
particles
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62262590A
Other languages
Japanese (ja)
Inventor
Shinichi Shiwa
志和 新一
Hiroyuki Hoshino
星野 坦之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62262590A priority Critical patent/JPH01105990A/en
Publication of JPH01105990A publication Critical patent/JPH01105990A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To prevent unequal display and operation defect by preparing a dispersion for electrophoresis display by using particulates of a diameter within a specific range. CONSTITUTION: The particulates having the diameter in a range of 0.001 to 0.1μm are used as the electrophoretic particulates constituting the dispersion. Then, the particulates make so-called Brownian movement in the liquid and, therefore, the stable dispersion state is maintained against the gravity by the difference in the sp. gr. between the particulates and the liquid. Further, the distances between the particulates decrease and the good display with the equivalently large light scattering power is obtd. when the particulates are gathered on the electrode surfaces by effecting electrophoresis. The occurrence of the unequal display and operation defect by the sepn. of the particulates and the liquid is thereby prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電界を印加して粒子を泳動′させて表示を
行う電気泳動表示用の分散液に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a dispersion liquid for electrophoretic display that performs display by applying an electric field to cause particles to migrate.

〔従来の技術] 図面は、少なくとも一方が透明な一対の基板にはさまれ
た容器内に、電気泳動性の微粒子を分散させた分散液を
封入し、電界により微粒子を電気泳動させて文字1図形
等を表示する電気泳動表示に装置の一例を示すものであ
る。
[Prior Art] The drawing shows a container sandwiched between a pair of substrates, at least one of which is transparent, and a dispersion liquid in which electrophoretic fine particles are dispersed. This figure shows an example of an electrophoretic display device for displaying figures and the like.

この図において、電界発色媒体1は、透明導電層2.帯
電着色粒子3を絶縁性液体中に分散させた液体層4.絶
絶縁5からなる。なお、6は基板、7は静電像である。
In this figure, an electrochromic medium 1 has a transparent conductive layer 2 . Liquid layer 4 in which charged colored particles 3 are dispersed in an insulating liquid. Consists of insulation 5. Note that 6 is a substrate and 7 is an electrostatic image.

絶縁性の液体としては高純度石油(エッソ社、商品名ア
イソパー)を用い、イオン性界面活性剤、染料を含有し
た有機物を混合して前記液体層4を作成する。これによ
りイオン性界面活性剤が顔料を含有した有機物に吸着し
てその有機物が電気化学的に安定に帯電し、分散され、
電気泳動の性質を示すようになる。
The liquid layer 4 is created by using high-purity petroleum (Esso Corporation, trade name Isopar) as the insulating liquid, and mixing it with an organic substance containing an ionic surfactant and a dye. As a result, the ionic surfactant adsorbs to the organic substance containing the pigment, and the organic substance is electrochemically stably charged and dispersed.
It begins to show the properties of electrophoresis.

これの動作は電界が加わらないか逆電界が加わっている
時は絶縁性の液体層4中に分散された染料の色が見えて
いるが、静電像7が書き込まれると帯電着色粒子3が透
明導電層2の側に移動し顔料の色が見えることにより行
われる。
The operation of this is that when no electric field is applied or when a reverse electric field is applied, the color of the dye dispersed in the insulating liquid layer 4 is visible, but when the electrostatic image 7 is written, the charged colored particles 3 This is done by moving to the transparent conductive layer 2 side and making the color of the pigment visible.

上記液体層4に用いて絶縁性の分散液は通常液体に無機
顔料などの電気泳動性の微粒子を均一に分散させたもの
から成るが、微粒子と液体の比重を十分に合わせること
が困難なことから時間がたつと微粒子と液体との分離が
起こり、表示ムラや動作不良の生じる問題があった。微
粒子と液体との比重を合わせる方法として、次の (A
)と (B)を組合わせる方法が知られている。
The insulating dispersion liquid used for the liquid layer 4 is usually made of a liquid in which electrophoretic fine particles such as inorganic pigments are uniformly dispersed, but it is difficult to sufficiently match the specific gravity of the fine particles and the liquid. As time passes, the particles and liquid separate, causing problems such as uneven display and malfunction. As a method to match the specific gravity of fine particles and liquid, the following (A
) and (B) are known.

(A)  比重の異なる数種の液体を混合して液体の比
重を調節する。
(A) Mix several types of liquids with different specific gravities to adjust the specific gravity of the liquid.

(B)  比重の小さいポリマー物質等と比重の大きな
粒子を混ぜて新たに所望の比重を持つ微粒子を作製する
(B) New fine particles having a desired specific gravity are prepared by mixing a polymer substance or the like with a small specific gravity with particles having a large specific gravity.

〔発明が解決しようとする問題点) しかしながら上記の方法では、液体の比重は一定の値と
なるのに対して、帯電着色粒子3である微粒子の集合体
は比重分布をもつため、一部の微粒子しか液体の比重と
一致せず、はとんどの微粒子力析夜体との比重差のため
に時間がたつと分離してしまうという問題点があった。
[Problems to be Solved by the Invention] However, in the above method, the specific gravity of the liquid is a constant value, whereas the aggregate of fine particles, which are the charged colored particles 3, has a specific gravity distribution. There was a problem that only fine particles matched the specific gravity of the liquid, and because of the difference in specific gravity with most fine particle force analysis night bodies, they would separate over time.

これは、単分散でできる限り比重分布の無い微粒子を使
用することで避けられるが、所望の比重を持つ単分散の
微粒子を作製することは高度の技術を必要とするためコ
ストが高くなる問題点があった。また、仮に単分散の微
粒子を使用して分散液を作製したとしても、微粒子と液
体の比重が一致している状態は極めて不安定なものであ
り、温度の変化や、液体の蒸発にともなう液体の比重の
変化によって微粒子と液体の比重が合わなくなり、遂に
は分離してしまうという問題点があった(これら従来の
比重合わせ技術については特公昭51−46396号公
報参照)。
This can be avoided by using monodisperse particles with as little distribution of specific gravity as possible, but producing monodisperse particles with the desired specific gravity requires advanced technology, resulting in high costs. was there. Furthermore, even if a dispersion liquid is prepared using monodisperse fine particles, the state in which the specific gravity of the fine particles and the liquid are the same is extremely unstable, and the liquid may change due to changes in temperature or evaporation of the liquid. There was a problem in that due to changes in the specific gravity of the fine particles, the specific gravity of the particles and the liquid did not match, and they eventually separated (see Japanese Patent Publication No. 46396/1989 for these conventional specific gravity matching techniques).

一方、微粒子と液体の比重が異なるにもかかわらず、微
粒子が液体中に安定に分散するものとしてコロイド溶?
夜が知られている。
On the other hand, even though the specific gravity of the particles and liquid is different, is it considered that the particles are stably dispersed in the liquid?
The night is known.

これは、微粒子の大きさが0.1μm以下と小さいため
、微粒子のブラウン運動により分散状態が安定化するも
のである。
This is because the fine particles have a small size of 0.1 μm or less, so the Brownian motion of the fine particles stabilizes the dispersion state.

しかしながら、0.1 μm以下の微粒子(超微粒子)
では光の散乱能力が小さく、デイスプレィ用途には使え
ないと考えられていた(有機合成化学協会線「染料便覧
」丸善社、昭和45年p161参照)。
However, fine particles (ultrafine particles) of 0.1 μm or less
Because of their low light scattering ability, it was thought that they could not be used for display purposes (see Organic Synthetic Chemistry Association, ``Dye Handbook'', Maruzensha, 1971, p. 161).

この発明は、光散乱能力が小さくて表示には使用できな
い0.1μm以下の微粒子を電気泳動させ電極面に集め
ると、微粒子間の距離が減少し、等価的に光散乱能力が
大きくなるという事実を見出し、この知見に基づいてな
されたものである。したがって、この発明の目的は、従
来の電気泳動表示用分散液において見られた微粒子と液
体の分離による表示ムラや動作不良を改善した電気泳動
表示用分散液を提供することにある。
This invention is based on the fact that when fine particles of 0.1 μm or less, which have a small light scattering ability and cannot be used for display, are electrophoresed and collected on an electrode surface, the distance between the particles decreases, and the light scattering ability equivalently increases. This study was based on this finding. Therefore, an object of the present invention is to provide a dispersion liquid for electrophoretic display that improves display unevenness and malfunction caused by separation of fine particles and liquid, which are observed in conventional dispersion liquids for electrophoretic display.

〔問題点を解決するための手段〕[Means for solving problems]

この発明の電気泳動表示用分散液は、分散液を構成する
電気泳動性の微粒子として直径が0.001〜01μm
の範囲にある微粒子を用いるものである。
The dispersion liquid for electrophoretic display of the present invention has a diameter of 0.001 to 01 μm as electrophoretic fine particles constituting the dispersion liquid.
This method uses fine particles within the range of .

(作用〕 この発明では直径0.001〜0.1μmの範囲の超微
粒子を用いるので、微粒子が液体中でいわゆるブラウン
運動をするため、微粒子と液体の比重差による重力にさ
からって安定な分散状態を維持でき、さらに電気泳動さ
せ電極面に集めると、微粒子間の距離が減少し等価的に
光散乱能力が大きくなり良好な表示となる。
(Function) Since this invention uses ultrafine particles with a diameter in the range of 0.001 to 0.1 μm, the particles undergo so-called Brownian motion in the liquid, so they are stable against the force of gravity due to the difference in specific gravity between the particles and the liquid. If a dispersed state can be maintained and the particles are further electrophoresed and collected on the electrode surface, the distance between the particles is reduced, and the light scattering ability is equivalently increased, resulting in a good display.

(実施例) 電気泳動性の微粒子=2酸化チタン (住友セメント製、直径0.01μm)・・・800m
gメタキシレン ・・・・・・3mfl 液体:4塩化2フッ化エタン (ダイキン工業製、ダイフロン52)・・・7mn色素
:マクロレックスブルーRR(バイエル製)・・・・・
・1g 界面活性剤ニジオクチルスルホコハク酸ナトリウム(東
京化成工業製) ・・・・・・100mg上記組成物を
超音波ホモジナイザで攪拌して電気泳動用表示分散液を
作製した。
(Example) Electrophoretic fine particles = titanium dioxide (manufactured by Sumitomo Cement, diameter 0.01 μm)...800 m
g Meta-xylene...3mfl Liquid: Tetrachlorodifluoroethane (Daikin Industries, Ltd., Daiflon 52)...7mnDye: Macrolex Blue RR (Bayer)...
- 1g Surfactant Sodium Nidioctyl Sulfosuccinate (manufactured by Tokyo Kasei Kogyo) 100mg The above composition was stirred with an ultrasonic homogenizer to prepare a display dispersion for electrophoresis.

次に、2枚のITO透明電極つきカラス板を50μmの
スペーサを介して貼・り合わせ、2ケ所を残して周囲を
エポキシ接着剤でシールしてセルを作製した。セルに上
記の分散液を注入して、残り2ケ所を塞いで電気泳動表
示用セルを作製した。
Next, two glass plates with transparent ITO electrodes were pasted together with a 50 μm spacer interposed therebetween, and the periphery was sealed with epoxy adhesive except for two places to produce a cell. The above dispersion liquid was injected into the cell and the remaining two places were closed to prepare an electrophoretic display cell.

この電気泳動表示用セルを立てた状態で、±30V(I
Hz)の方形波電圧を印加した結果、電圧の極性によっ
てセルは白また青に変化した。また、この電気泳動表示
用セルを1日間放置した後も電気泳動性の微粒子は均一
に分散したままであり、上記と同じ動作を繰り返すこと
ができた。光散乱能力の小さいいわゆる超微粒子を用い
てこのように明瞭な色の変化が生じたのは超微粒子がセ
ル面に集められ超微粒子間の距離が小さくなり、粒子系
としての光散乱能力が大きくなったためと解釈される。
With this electrophoretic display cell upright, ±30V (I
As a result of applying a square wave voltage (Hz), the cell turned white or blue depending on the polarity of the voltage. Further, even after this electrophoretic display cell was left for one day, the electrophoretic fine particles remained uniformly dispersed, and the same operation as described above could be repeated. The reason why such a clear color change occurred using so-called ultrafine particles with low light scattering ability is because the ultrafine particles are gathered on the cell surface, the distance between the ultrafine particles becomes smaller, and the light scattering ability of the particle system increases. It is interpreted that this is because

〔比較例〕[Comparative example]

電気泳動性の微粒子として直径0.2μmの2酸化チタ
ン(デュポン社製 タイピュアPR−900)を用いた
他は実施例と同じ組成で電気泳動表示分散液を作製した
。次に実施例と同じ電気泳動表示用セルを作製して、セ
ルを立てた状態で、±30V(IHz)の方形波電圧を
印加した結果、電圧の極性によってセルは白または青に
変化した。しかし、この電気泳動表示用セルを1時間放
置した後には微粒子の沈降が起こっており、セルの上端
部には微粒子が無くなったためセルの上方は電圧を印加
しても青のままで色の変化を示さなかった。
An electrophoretic display dispersion liquid was prepared with the same composition as in the example except that titanium dioxide (Tipure PR-900 manufactured by DuPont) with a diameter of 0.2 μm was used as the electrophoretic fine particles. Next, the same electrophoretic display cell as in Example was prepared, and a square wave voltage of ±30 V (IHz) was applied to the cell in an upright state. As a result, the cell changed to white or blue depending on the polarity of the voltage. However, after this electrophoretic display cell was left for one hour, the particles began to settle, and since there were no particles at the top of the cell, the upper part of the cell remained blue even when a voltage was applied, and the color changed. did not show.

さらに上記のセルを1日間放音した結果、微粒子はセル
の下端に沈降してしまい、電圧を印加した時の極性に応
じて白または青の色変化を示す部分は、セル全体のわず
か一部分に過ぎず明らかな動作不良がみられた。
Furthermore, as a result of emitting sound to the above cell for one day, the fine particles settled at the bottom of the cell, and the part that showed a white or blue color change depending on the polarity when voltage was applied was only a small part of the entire cell. There was obvious malfunction.

この結果から明らかなように、この発明による電気泳動
表示用分散液を用いたものは従来の分散液でみられた微
粒子と液体との分離が起こらず表示品質が格段に改善で
きた。
As is clear from these results, in the case of using the dispersion liquid for electrophoretic display according to the present invention, the separation of fine particles and liquid that was observed in conventional dispersion liquids did not occur, and the display quality was significantly improved.

なお、実施例では電気泳動性の微粒子として2酸化チタ
ンの微粒子の場合で説明したが、この発明はこれに限定
されるものでよく、酸化亜鉛等地の無機顔料や有機顔料
の微粒子の場合でも同様の効果を得ることができるのは
明らかである。
In the examples, the case where titanium dioxide fine particles are used as the electrophoretic fine particles is explained, but the present invention is not limited to this, and the present invention can also be applied to the case of fine particles of inorganic pigments such as zinc oxide or organic pigments. It is clear that similar effects can be obtained.

(発明の効果) 以上説明したようにこの発明によれば、電気泳動性の微
粒子として直径0.001〜031μmの微粒子を用い
て電気泳動表示用の分散液を作製したので、長期間にわ
たって微粒子と液体の分離が起こらず、表示ムラや動作
不良等の無いすぐれた電気泳動表示を実現できる利点が
ある。
(Effects of the Invention) As explained above, according to the present invention, a dispersion liquid for electrophoretic display is prepared using fine particles having a diameter of 0.001 to 031 μm as electrophoretic fine particles. There is an advantage that separation of liquid does not occur and excellent electrophoretic display without display unevenness or malfunction can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は従来の電気泳動表示方法を説明するための装置の
要部を示す断面略図である。 図中、1は電界発色媒体、2は透明導電層、3は帯電着
色粒子、4は液体層、5は絶縁層、6は基板、7は静電
像である。
The drawing is a schematic cross-sectional view showing the main parts of an apparatus for explaining a conventional electrophoretic display method. In the figure, 1 is an electrochromic medium, 2 is a transparent conductive layer, 3 is charged colored particles, 4 is a liquid layer, 5 is an insulating layer, 6 is a substrate, and 7 is an electrostatic image.

Claims (1)

【特許請求の範囲】[Claims] 直径が0.001〜0.1μmの電気泳動性の微粒子を
液体に分散させてなることを特徴とする電気泳動表示用
分散液。
A dispersion liquid for electrophoretic display characterized by dispersing electrophoretic fine particles having a diameter of 0.001 to 0.1 μm in a liquid.
JP62262590A 1987-10-20 1987-10-20 Dispersion liquid for electrophoretic display Pending JPH01105990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62262590A JPH01105990A (en) 1987-10-20 1987-10-20 Dispersion liquid for electrophoretic display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62262590A JPH01105990A (en) 1987-10-20 1987-10-20 Dispersion liquid for electrophoretic display

Publications (1)

Publication Number Publication Date
JPH01105990A true JPH01105990A (en) 1989-04-24

Family

ID=17377913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62262590A Pending JPH01105990A (en) 1987-10-20 1987-10-20 Dispersion liquid for electrophoretic display

Country Status (1)

Country Link
JP (1) JPH01105990A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7511876B2 (en) 2002-05-30 2009-03-31 Canon Kabushiki Kaisha Dispersion for electrophoretic display, and electrophoretic display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7511876B2 (en) 2002-05-30 2009-03-31 Canon Kabushiki Kaisha Dispersion for electrophoretic display, and electrophoretic display device

Similar Documents

Publication Publication Date Title
US10509293B2 (en) Colored electrophoretic displays
US7038655B2 (en) Electrophoretic ink composed of particles with field dependent mobilities
JP3421494B2 (en) Electrophoretic display
US20070206270A1 (en) Display Apparatus And Method For Producing The Same
JP4076222B2 (en) Electrophoretic display device
JPH01267525A (en) Electrophoretic display element
JPH0230005B2 (en)
TWI493269B (en) An electrophoretic display device, an electrophoretic display device and an electronic device using the same
WO2013141248A1 (en) Light-modulating panel and light modulator
JPH0391722A (en) Driving method for electrophoresis display element
JP3862906B2 (en) Electrophoretic display device
JP4911942B2 (en) Electrophoretic particle purification method, particle dispersion using the same, and image display medium / device
JPS62183439A (en) Electrophoretic display element
JPH01105990A (en) Dispersion liquid for electrophoretic display
JPH02189525A (en) Display liquid for electrophoretic display and electrophoretic display formed by using the display liquid
JPH01137240A (en) Electrophoretic display device
JPH0641221Y2 (en) Electrophoretic display
KR102660153B1 (en) Driving method for variable light transmission device
JP2006209018A (en) Display element
JPS6125139B2 (en)
US10796649B2 (en) Nano-particle based variable transmission devices
JPH02141730A (en) Electrophoretic image display device
JP2003121887A (en) Electrophoresis display device
JPH1062824A (en) Electrophoretic display device
WO2017181694A1 (en) Subtractive color mixing electrophoresis type display device and manufacturing method thereof