JPH0110449Y2 - - Google Patents

Info

Publication number
JPH0110449Y2
JPH0110449Y2 JP1982153170U JP15317082U JPH0110449Y2 JP H0110449 Y2 JPH0110449 Y2 JP H0110449Y2 JP 1982153170 U JP1982153170 U JP 1982153170U JP 15317082 U JP15317082 U JP 15317082U JP H0110449 Y2 JPH0110449 Y2 JP H0110449Y2
Authority
JP
Japan
Prior art keywords
spar
metal
blade
frp
cylindrical space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982153170U
Other languages
Japanese (ja)
Other versions
JPS5958778U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1982153170U priority Critical patent/JPS5958778U/en
Publication of JPS5958778U publication Critical patent/JPS5958778U/en
Application granted granted Critical
Publication of JPH0110449Y2 publication Critical patent/JPH0110449Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • Y02E10/722

Landscapes

  • Laminated Bodies (AREA)

Description

【考案の詳細な説明】 本考案は、風車翼で、詳しくは引抜き成形され
たFRP(繊維強化プラスチツク)製の風車翼と、
金属製のスパー(翼幹)との結合構成に関するも
のである。
[Detailed description of the invention] This invention is a wind turbine blade, specifically a wind turbine blade made of pultruded FRP (fiber reinforced plastic),
This relates to the connection structure with the metal spar (wing stem).

引抜き成形されたFRP製風車翼を風車装置に
用いる場合、このFRP翼は金属製スパーを介し
て風車軸ハブに取付けられるが従来のFRP製の
翼と金属製スパーとは機械的接合手段により接合
されている。
When a pultruded FRP wind turbine blade is used in a wind turbine device, the FRP blade is attached to the wind turbine shaft hub via a metal spar, but conventional FRP blades and metal spar are connected by mechanical joining means. has been done.

引抜き成形によるFRP翼は翼先端部と翼根元
部とが同一断面形状を有するため、テーパ型翼に
比べて翼根元部の断面係数が小さくなり、接合部
に加わる力は大きくなる。
Since the pultruded FRP blade has the same cross-sectional shape at the blade tip and the blade root, the section modulus of the blade root is smaller than that of a tapered blade, and the force applied to the joint is larger.

このような形状上での特徴を持つ引抜き成形
FRP翼を従来手段で接合を行なつた場合の例を
第1図に示す。
Pultrusion molding with such shape characteristics
Figure 1 shows an example of FRP blades joined using conventional means.

この図で示す手段は、FRP製の翼のFRP製の
スパーaを金属製スパーbの先端部と金属製ウエ
ツジcとではさみ、ボルトdにて固定する構造と
なつている。
The means shown in this figure has a structure in which an FRP spar a of an FRP wing is sandwiched between the tip of a metal spar b and a metal wedge c, and fixed with a bolt d.

このような構造では、テーパ型翼の場合FRP
スパー部が大きな形状と剛性を持つため金属ウエ
ツジとFRPスパーの接合部には応力集中がさけ
られ、実用可能な接合手段である。
In such a structure, FRP is used for tapered blades.
Because the spar part has a large shape and rigidity, stress concentration is avoided at the joint between the metal wedge and the FRP spar, making it a practical joining method.

ところが、引抜き成形によるFRP翼に上記構
造を適用すると、引抜き成形によるFRP翼は第
2図に示すようにスパーeは異形となるため、こ
のスパーeに嵌合する金属製ウエツジの加工が困
難であると共に接合面の密着性が得にくく、また
金属製ウエツジとFPRスパーの取付け断面がテ
ーパ型翼に比べて小さくなるため、上記金属製ウ
エツジを用いての構造では接合部の応力集中が大
きくなり十分な強度を得ることが不可能である。
However, when the above structure is applied to a pultruded FRP wing, the spar e in the pultruded FRP wing has an irregular shape as shown in Figure 2, making it difficult to process the metal wedge that fits into the spar e. At the same time, it is difficult to obtain adhesion between the joint surfaces, and the attachment cross-section of the metal wedge and FPR spar is smaller than that of a tapered blade, so the structure using the metal wedges described above has a large stress concentration at the joint. It is impossible to obtain sufficient strength.

また他の従来例として第3図に示す手段があ
る。この図に示す従来例にあつては、FRP製ス
パーfに、金属製スパーhの断面と同一形状の金
属筒gをインサートし、この金属筒gと金属製ス
パーhをボルトi等にて機械的に結合するように
なつている。
Further, as another conventional example, there is a means shown in FIG. In the conventional example shown in this figure, a metal tube g having the same cross-section as the metal spar h is inserted into the FRP spar f, and the metal tube g and the metal spar h are mechanically connected using bolts i, etc. It is becoming more and more connected.

このような構造ではインサートされた金属筒g
の中に金属製スパーhをさらに挿入する構造であ
るため、金属製スパーhの断面形状が小さくな
り、また金属筒gをFRP製スパーfの内壁形状
にそわせることが難かくし、さらにインサートさ
れた金属筒gとFRP製スパーfとの接合強度が
小さく、特に遠心力方向に対して弱くなる等の不
具合があり、この構造は引抜き成形によるFRP
製の翼に適用することができない。
In such a structure, the inserted metal cylinder g
Since the metal spar h is further inserted into the structure, the cross-sectional shape of the metal spar h becomes smaller, and it becomes difficult to align the metal cylinder g with the inner wall shape of the FRP spar f. The joint strength between the metal cylinder g and the FRP spar f is low, especially in the direction of centrifugal force.
Cannot be applied to manufactured wings.

上記のように、従来行なわれてきた機械的接合
手段により長手方向に同一断面形状を有する引抜
き成形のFRP製風車翼を風車回転翼に取付けた
場合、接合強度不足、接合部構造の複雑化等が問
題となる。
As mentioned above, when pultruded FRP wind turbine blades with the same cross-sectional shape in the longitudinal direction are attached to a wind turbine rotor blade using conventional mechanical joining means, the joining strength is insufficient, the joint structure becomes complicated, etc. becomes a problem.

本考案は上記のことにかんがみなされたもの
で、FRP製の風車翼と金属製スパーとを精度よ
く、しかも容易に接合でき、風車運転上十分な負
荷応力に耐えられる接合強度を有する風車翼を提
供しようとするものである。
The present invention was developed in consideration of the above-mentioned issues, and it is possible to accurately and easily join an FRP wind turbine blade and a metal spar, and to create a wind turbine blade that has a joint strength that can withstand sufficient load stress for wind turbine operation. This is what we are trying to provide.

以下本考案の実施例を第4図以下に基づいて説
明する。
Embodiments of the present invention will be described below based on FIG. 4 and subsequent figures.

図中1は引抜き成形により成形されたFRP製
の翼であり、この翼1には長手方向に異形のスパ
ー2が設けてあり、このスパー2と翼1の構成壁
とにより略四角状の筒状空間3が構成されてい
る。4は上記翼1の筒状空間3内に嵌合する金属
製スパーである。この金属製スパー4の筒状空間
3内への嵌合部は、筒状空間3の断面形状と略相
似形、あるいは任意の形状で、かつ小さくなつて
おり、この部分に長手方向にlだけ離間する位置
に上記筒状空間3と断面形状を同一にした筒状空
間3内に圧入嵌合する2個のリブ5,6が設けて
ある。翼1の表側と裏側に筒状空間3に連通する
小孔7,8が設けてある。
In the figure, 1 is an FRP blade formed by pultrusion. This blade 1 is provided with an irregularly shaped spar 2 in the longitudinal direction, and the spar 2 and the wall forming the blade 1 form a substantially square cylinder. A shape space 3 is constructed. Reference numeral 4 denotes a metal spar that fits into the cylindrical space 3 of the blade 1. The fitting portion of the metal spar 4 into the cylindrical space 3 has a cross-sectional shape that is substantially similar to the sectional shape of the cylindrical space 3, or has an arbitrary shape, and is small. Two ribs 5 and 6 are provided at separate positions to be press-fitted into the cylindrical space 3 having the same cross-sectional shape as the cylindrical space 3. Small holes 7 and 8 communicating with the cylindrical space 3 are provided on the front and back sides of the blade 1.

しかして翼1と金属製スパー4を連結するに
は、金属製スパー4の先端部を、この部分に2個
あるリブ5,6の基部側のリブ6が翼1の端部に
位置するまでスパー4を圧入する。ついで翼1の
両面に設けた一方の小孔7より両リブ5,6で閉
じられた空間内に接着剤9を接着剤注入器10で
所定の圧力、例えば10〜30Kg/cm2で圧入する。こ
のとき空間内の空気は他の小孔8より抜け出る。
接着剤としては常温硬化型(二液混合型)のエポ
キシ系、変性アクリレート系、ウレタン系等を用
いる。
In order to connect the blade 1 and the metal spar 4, the tip of the metal spar 4 is moved until the rib 6 on the base side of the two ribs 5 and 6 in this part is located at the end of the blade 1. Press in spar 4. Then, adhesive 9 is press-fitted into the space closed by both ribs 5 and 6 through one of the small holes 7 provided on both sides of the wing 1 using an adhesive injector 10 at a predetermined pressure, for example, 10 to 30 kg/cm 2 . . At this time, the air in the space escapes through the other small holes 8.
As the adhesive, a room temperature curing type (two-component mixture type) epoxy type, modified acrylate type, urethane type, etc. is used.

本考案は上記のようになるから、金属製スパー
4はFRP製の翼1の筒状空間3に、2個のリブ
5,6の圧入と、2個のリブ間での接着剤9とに
より強固に固着され、上記のような本考案に係る
風車翼にあつては下記のような本考案特有の作用
効果を奏することができる。すなわち、(1)翼1と
金属製スパー4とは精度よく、容易に取付けるこ
とができ、(2)広い接着面積をとることができるた
め接合部の応力集中がさけられ、(3)接合部に金属
製接合部材を用いないため接合部重量が軽くな
り、(4)剛性の異なるFRPと金属との接合層間に
弾性に富んだ接着剤層が形成されることにより、
応力伝達がなめらかになると共に、耐衝撃性、熱
膨張ひずみの吸収効果が期待でき、(5)金属製スパ
ー4の断面形状を有効な大きさに取ることができ
る。
Since the present invention is as described above, the metal spar 4 is formed by press-fitting the two ribs 5 and 6 into the cylindrical space 3 of the FRP blade 1 and applying the adhesive 9 between the two ribs. The wind turbine blade according to the present invention, which is firmly fixed, can exhibit the following effects unique to the present invention. In other words, (1) the blade 1 and the metal spar 4 can be easily attached with high precision, (2) a large bonding area can be secured, which avoids stress concentration at the joint, and (3) the joint (4) A highly elastic adhesive layer is formed between the bonding layers of FRP and metal, which have different rigidities, and
Stress transmission becomes smooth, impact resistance and thermal expansion strain absorption effects can be expected, and (5) the cross-sectional shape of the metal spar 4 can be set to an effective size.

【図面の簡単な説明】[Brief explanation of drawings]

第1図から第3図は従来例を示すもので、第1
図はFRP翼と金属製スパーとをウエツジにて結
合する例を示す断面斜視図、第2図は引抜き成形
されたFRP製風車翼を示す斜視図、第3図は金
属筒をインサートした例を示す断面図である。第
4図以下は本考案の実施例の要部を示すもので、
第4図は斜視図、第5図は第4図の−線に沿
う断面図、第6図は接着剤注入状態を示す断面図
である。 1は翼、2はスパー、3は筒状空間、4は金属
製スパー、5,6はリブ、9は接着剤。
Figures 1 to 3 show conventional examples.
The figure is a cross-sectional perspective view showing an example of joining an FRP blade and a metal spar with a wedge, Figure 2 is a perspective view of a pultruded FRP wind turbine blade, and Figure 3 is an example of inserting a metal tube. FIG. Figure 4 and below show the main parts of the embodiment of the present invention.
FIG. 4 is a perspective view, FIG. 5 is a sectional view taken along the line - in FIG. 4, and FIG. 6 is a sectional view showing a state in which the adhesive is injected. 1 is a wing, 2 is a spar, 3 is a cylindrical space, 4 is a metal spar, 5 and 6 are ribs, and 9 is an adhesive.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 異形のスパー2による筒状空間3を有する引抜
き成形されたFRP製の翼1の上記筒状空間3内
に、少なくとも嵌合部の長手方向2個所に筒状空
間3に圧入されるリブ5,6を有し、かつこの両
リブ5,6間の断面積を筒状空間3の断面積より
小さくした金属製スパー4を圧入嵌合し、この金
属製スパー4の両リブ5,6間の表面と上記異形
のスパー2の筒状空間3の内面とを接着剤にて接
着したことを特徴とする風車翼。
In the cylindrical space 3 of the pultruded FRP wing 1 having a cylindrical space 3 formed by an irregularly shaped spar 2, ribs 5 are press-fitted into the cylindrical space 3 at at least two locations in the longitudinal direction of the fitting portion. 6, and the cross-sectional area between the two ribs 5, 6 is smaller than the cross-sectional area of the cylindrical space 3, and the metal spar 4 is press-fitted. A wind turbine blade characterized in that the surface and the inner surface of the cylindrical space 3 of the irregularly shaped spar 2 are adhered with an adhesive.
JP1982153170U 1982-10-12 1982-10-12 windmill blade Granted JPS5958778U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1982153170U JPS5958778U (en) 1982-10-12 1982-10-12 windmill blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1982153170U JPS5958778U (en) 1982-10-12 1982-10-12 windmill blade

Publications (2)

Publication Number Publication Date
JPS5958778U JPS5958778U (en) 1984-04-17
JPH0110449Y2 true JPH0110449Y2 (en) 1989-03-24

Family

ID=30338948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1982153170U Granted JPS5958778U (en) 1982-10-12 1982-10-12 windmill blade

Country Status (1)

Country Link
JP (1) JPS5958778U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4574442B2 (en) * 2005-05-27 2010-11-04 富士重工業株式会社 Horizontal axis windmill blade
CN113167211A (en) * 2018-12-11 2021-07-23 通用电气公司 Beam structure for a segmented rotor blade with transition shape

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS569672A (en) * 1979-06-21 1981-01-31 Budd Co Windmill blade structure and making method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS569672A (en) * 1979-06-21 1981-01-31 Budd Co Windmill blade structure and making method thereof

Also Published As

Publication number Publication date
JPS5958778U (en) 1984-04-17

Similar Documents

Publication Publication Date Title
US4219980A (en) Reinforced composite structure and method of fabrication thereof
US5314282A (en) Composite fastener
US4474536A (en) Wind turbine blade joint assembly and method of making wind turbine blades
US8075275B2 (en) Wind turbine spars with jointed shear webs
EP2525081A1 (en) Segmented wind wheel blade for wind generating set and assemblying method thereof
JP5847889B2 (en) Joint
CA1071376A (en) Reinforced composite structure and method of fabrication thereof
BR112016029061B1 (en) TIP SYSTEM FOR A WIND TURBINE BLADE
US20150316026A1 (en) Rotor blade joint assembly with multi-component shear web
CN105431630A (en) A wind turbine blade having a bond line adjacent a sandwich panel of the blade
EP3219981A1 (en) Wind turbine blade
US5948501A (en) Composite to metal structural connection
RU2507422C2 (en) Joint assy for aircraft components
US10544776B2 (en) Injection method and device for connecting and repairing a shear web
CA2956415A1 (en) Wind turbine blade provided with surface mounted device
EP0293320A2 (en) Two-step composite joint
JP7427659B2 (en) Jointed wind turbine blades with noise reduction tape
JPH0110449Y2 (en)
EP4126515A1 (en) A method of manufacturing a wind turbine rotor blade connection part having a joining surface
US3018832A (en) Aircraft structure
EP3623614A1 (en) A shear web with a core for a wind turbine blade
CN112912620A (en) Jointed wind turbine rotor blade with varying material combinations for pin reinforcement along its span
TWI803780B (en) Method for manufacturing a structural element of a wind turbine blade, method for manufacturing a wind turbine blade, structural element of a wind turbine blade and wind turbine blade
CN104724277A (en) Light airplane composite material skin integral rapid connecting structure and manufacturing method thereof
JP7210723B2 (en) Spacer material for reducing coupling gap between segmented rotor blade beam structure and blade shell