JPH0110447Y2 - - Google Patents

Info

Publication number
JPH0110447Y2
JPH0110447Y2 JP1983179635U JP17963583U JPH0110447Y2 JP H0110447 Y2 JPH0110447 Y2 JP H0110447Y2 JP 1983179635 U JP1983179635 U JP 1983179635U JP 17963583 U JP17963583 U JP 17963583U JP H0110447 Y2 JPH0110447 Y2 JP H0110447Y2
Authority
JP
Japan
Prior art keywords
opening
air supply
guide vane
opening degree
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983179635U
Other languages
Japanese (ja)
Other versions
JPS6087374U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1983179635U priority Critical patent/JPS6087374U/en
Publication of JPS6087374U publication Critical patent/JPS6087374U/en
Application granted granted Critical
Publication of JPH0110447Y2 publication Critical patent/JPH0110447Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)

Description

【考案の詳細な説明】 この考案は水力発電の水車に給気を行う電気式
水車自動給気装置に関する。
[Detailed Description of the Invention] This invention relates to an electric water turbine automatic air supply device for supplying air to a water turbine for hydroelectric power generation.

周知のように、水力発電所の水車は現在数種類
あり、このうち反動形としてはフランシス水車が
ある。このフランシス水車は、一般にその最大出
力の80%程度の出力の時に最も効率が高くなるよ
う設計されている。このため、最大出力の20%〜
60%の範囲では、水車の吸出し管内に渦巻状の水
流(旋回流)が発生し、この旋回流の中心部に生
じる空洞の生長、消滅により水車に振動や騒音が
発生することがある。この振動および騒音等の現
象を防ぐため、水車の羽根の出口部分に位置する
吸出し管に空気を供給している。空気を供給する
ことにより振動および騒音などを防止することが
できる。しかし、この反面発電所の有効落差を低
減させる作用が生じるため、水車の出力が減少す
る不都合を有している。この出力の減少は、発生
出力の2〜5%にもおよぶため、その影響は無視
することができないものである。したがつて、給
気量は必要最低限とすることが望ましい。
As is well known, there are currently several types of water turbines used in hydroelectric power plants, of which the reaction type is the Francis turbine. Francis turbines are generally designed to be most efficient at around 80% of their maximum output. For this reason, ~20% of the maximum output
In the 60% range, a swirling water flow (swirling flow) occurs in the suction pipe of the water turbine, and the growth and disappearance of the cavity that occurs at the center of this swirling flow may cause vibrations and noise in the water turbine. In order to prevent phenomena such as vibration and noise, air is supplied to a suction pipe located at the outlet of the blades of the water turbine. Vibration and noise can be prevented by supplying air. However, on the other hand, this has the disadvantage that the effective head of the power plant is reduced, resulting in a decrease in the output of the water turbine. This reduction in output amounts to 2 to 5% of the generated output, so its influence cannot be ignored. Therefore, it is desirable to keep the air supply amount to the minimum necessary.

ところで、必要な給気量は、旋回流による振動
や騒音が発生する範囲でも第1図にAで示す如く
水車出力によつて異なる。従来のように、手動弁
の場合は水車出力の変化に応じて運転員がAで示
すようにきめ細かに給気弁を調整していた。その
後、自動化の進展に伴ない発電所が無人化された
現在では、水車出力の変化に応じてこのような調
整が困難であるため、振動や騒音が最も少ない空
気量(第1図にBで示す)となるよう弁の開度を
合せ、固定して運転している。したがつて、手動
に比べて出力の低下を生じ易いものであつた。
Incidentally, the required amount of air supply varies depending on the output of the water turbine, as shown by A in FIG. 1, even within the range where vibration and noise are generated due to the swirling flow. Conventionally, in the case of a manual valve, the operator finely adjusted the air supply valve as shown in A in response to changes in the output of the water turbine. Later, with the advancement of automation, power plants are now unmanned, and it is difficult to make such adjustments according to changes in the output of the water turbine. The valve opening is adjusted so that Therefore, it was more likely to cause a decrease in output than manual operation.

そこで、機械式自動給気弁が開発されている。
この場合は、水車のガイドベーン(図示せず)の
開閉を行うガイドリンクに予じめ第2図に示すよ
うな凹凸を有するカム11が設けられる。このカ
ム11の凹凸は第1図に示す水車出力と空気量の
特性に対応されており、このカム11にはボール
ベアリング12を介してリンク機構13が設けら
れている。このリンク機構13には給気管14の
内部に設けられた給気弁15が取付けられてい
る。そして、ガイドリンクが図示矢印C(開)方
向あるいはD(閉)方向に移動されると、カム1
1もこれとともに移動され、給気弁15がカム1
1の凹凸形状に対応して開閉されるようになされ
ている。しかしながら、この機械式自動給気弁を
滑らかに動作させるためにはカム11の凹凸形状
を緩やかにする必要がある。したがつて、カム1
1の形状を第1図にAで示す制御特性と一致させ
ることが困難であるため、最適な給気弁15の開
閉調整を行うことが不可能であつた。
Therefore, mechanical automatic air supply valves have been developed.
In this case, a cam 11 having irregularities as shown in FIG. 2 is provided in advance on a guide link that opens and closes a guide vane (not shown) of the water turbine. The unevenness of this cam 11 corresponds to the characteristics of the water turbine output and air amount shown in FIG. 1, and a link mechanism 13 is provided to this cam 11 via a ball bearing 12. An air supply valve 15 provided inside an air supply pipe 14 is attached to this link mechanism 13. Then, when the guide link is moved in the direction of the arrow C (open) or the direction of the arrow D (closed), the cam 1
1 is also moved together, and the air supply valve 15 is moved to the cam 1.
It is designed to be opened and closed in accordance with the uneven shape of 1. However, in order to operate this mechanical automatic air supply valve smoothly, it is necessary to make the uneven shape of the cam 11 gentle. Therefore, cam 1
Since it is difficult to match the shape of the air supply valve 15 with the control characteristics indicated by A in FIG. 1, it has been impossible to optimally adjust the opening and closing of the air supply valve 15.

この考案は上記の事情に基づいてなされたもの
であり、その目的とするところは水車出力に応じ
て最適な給気量を自動的に設定することができ、
振動や騒音を防止して発電所の有効落差の減少を
抑えることが可能な電気式水車自動給気装置を提
供しようとするものである。
This idea was made based on the above circumstances, and its purpose is to be able to automatically set the optimal air supply amount according to the output of the water turbine.
The present invention aims to provide an automatic air supply system for an electric water turbine that can prevent vibration and noise and suppress a decrease in the effective head of a power plant.

以下、この考案の一実施例について図面を参照
して説明する。
An embodiment of this invention will be described below with reference to the drawings.

第3図、第4図において、水車31の吸出し管
32にはこの管32の内部に空気を供給する給気
管33が設けられ、この給気管33には供給する
空気量を調整する給気弁34が設けられる。この
給気弁34は例えば電動式ボール弁からなり、こ
の給気弁34には弁の開度を電圧値として取出す
例えばポテンシヨメータから構成された給気弁開
度検出器35が設けられている。また、水車31
のガイドベーン36を駆動するガイドベーン閉度
操作機構37には例えばゲートシヤフト38の回
転角を検出することにより、ガイドベーン36の
開度を電圧値として出力するガイドベーン開度検
出器39が設けられている。この開度検出器39
は例えばポテンシヨメータによつて構成される。
前記ガイドベーン閉度操作機構37はゲートシヤ
フト38が調速機40によつて回転されることに
より動作される。
3 and 4, the suction pipe 32 of the water turbine 31 is provided with an air supply pipe 33 that supplies air into the pipe 32, and this air supply pipe 33 has an air supply valve that adjusts the amount of air supplied. 34 are provided. This air supply valve 34 is made of, for example, an electric ball valve, and is provided with an air supply valve opening detector 35 composed of, for example, a potentiometer, which extracts the valve opening as a voltage value. There is. In addition, water wheel 31
The guide vane opening degree operating mechanism 37 that drives the guide vane 36 is provided with a guide vane opening degree detector 39 that outputs the opening degree of the guide vane 36 as a voltage value by detecting the rotation angle of the gate shaft 38, for example. It is being This opening detector 39
is constituted by, for example, a potentiometer.
The guide vane closing operation mechanism 37 is operated by the gate shaft 38 being rotated by a speed governor 40.

一方、制御部41は比較演算部42および給気
弁開度設定器43から構成される。この給気弁開
度設定器43は第1図Aに対応すべく、ガイドベ
ーン開度(水車出力)に対応して給気弁開度を設
定したテーブルを有するもので、例えば第5図に
示す如くマトリクス状に配列された電極51,5
2の格子点をピン53で短絡するピンボード方式
あるいはリード・オンリー・メモリ(ROM)等
によつて構成される。前記比較演算部41はガイ
ドベーン開度検出器39の出力電圧に対応する給
気弁34の開度を給気弁開度設定器43より読取
り、この読取られた開度情報と、給気弁開度検出
器35より供給される出力電圧とを比較し、給気
弁34に開信号あるいは閉信号を供給するもので
ある。しかして、制御部41によりガイドベーン
36の開度に応じて給気弁34の開度が予め設定
された開度に自動的に調整され、最適な給気が行
われる。
On the other hand, the control section 41 includes a comparison calculation section 42 and an air intake valve opening setting device 43. This air supply valve opening degree setting device 43 has a table in which the air supply valve opening degree is set corresponding to the guide vane opening degree (hydraulic output) in order to correspond to the figure 1A. Electrodes 51, 5 arranged in a matrix as shown
It is constructed by a pinboard method in which two grid points are short-circuited with pins 53, or by a read-only memory (ROM). The comparison calculation section 41 reads the opening degree of the intake valve 34 corresponding to the output voltage of the guide vane opening degree detector 39 from the intake valve opening degree setting device 43, and uses this read opening degree information and the intake valve opening degree. It compares the output voltage supplied from the opening degree detector 35 and supplies an open signal or a close signal to the air supply valve 34. Thus, the control unit 41 automatically adjusts the opening degree of the air supply valve 34 to a preset opening degree according to the opening degree of the guide vane 36, and optimal air supply is performed.

上記構成によれば、給気弁34を電動式の弁と
し、この給気弁34を制御部41によつてガイド
ベーン36の開度に応じて予め設定された開度と
なるよう動作している。したがつて、給気弁34
を水車出力に応じた適確な開度に自動調整できる
ため、最適な給気を行うことができ、有効落差の
減少を抑えることが可能である。
According to the above configuration, the air supply valve 34 is an electrically operated valve, and the air supply valve 34 is operated by the control unit 41 to a preset opening degree according to the opening degree of the guide vane 36. There is. Therefore, the air supply valve 34
Since the opening can be automatically adjusted to an appropriate opening degree according to the turbine output, optimal air supply can be performed and a reduction in effective head can be suppressed.

また、給気弁開度設定器43は、ガイドベーン
36の開度に対応して給気弁34の開度情報を設
定したテーブル構成となされているため、テーブ
ルを交換するだけで容易にガイドベーン開度に対
する給気弁開度の調整特性を変えることができる
とともに、他の水車の給気弁制御にも利用するこ
とができる。
In addition, since the air intake valve opening setting device 43 has a table configuration in which the opening information of the air intake valve 34 is set in correspondence with the opening of the guide vane 36, the air intake valve opening setting device 43 can be easily guided by simply replacing the table. It is possible to change the adjustment characteristics of the air supply valve opening with respect to the vane opening, and it can also be used for air supply valve control of other water turbines.

第6図はこの実施例による給気装置を使用した
場合の出力Cと、従来の手動弁を使用した場合の
出力Dとを比較して示すものであり、この実施例
による給気装置を用いることにより最大出力(図
示E部)で約65kW、60%出力(図示F部)で
23kW程度の損失電力が回収され、優れた効果を
有することが実証された。
Figure 6 shows a comparison between the output C when the air supply system according to this embodiment is used and the output D when the conventional manual valve is used. As a result, the maximum output (section E in the diagram) is approximately 65kW, and the output at 60% (section F in the diagram) is approximately 65kW.
Approximately 23kW of lost power was recovered, proving that it has excellent effects.

以上、詳述したようにこの考案によれば、水車
出力に応じて最適な給気量を自動的に設定するこ
とができ、振動や騒音を防止して発電所の有効落
差の減少を抑えることが可能な電気式水車自動給
気装置を提供できる。
As detailed above, according to this invention, it is possible to automatically set the optimum air supply amount according to the output of the water turbine, prevent vibration and noise, and suppress the reduction in the effective head of the power plant. We can provide automatic air supply equipment for electric water turbines.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は水車出力と空気量の関係を説明するた
めに示す図、第2図は従来の機械式自動給気弁の
構成を概略的に示す図、第3図、第4図はそれぞ
れこの考案に係わる電気式水車自動給気装置の一
実施例を示すものであり、第3図は構成図、第4
図はブロツク図、第5図は第4図に示す給気弁開
度設定器の一例を示す構成図、第6図はこの考案
の効果を説明するために示す図である。 31……水車、32……吸出し管、33……給
気管、34……給気弁、35……給気弁開度検出
器、37……ガイドベーン開度操作機構、39…
…ガイドベーン開度検出器、41……制御部、4
2……比較演算部、43……給気弁開度設定部。
Figure 1 is a diagram shown to explain the relationship between water turbine output and air volume, Figure 2 is a diagram schematically showing the configuration of a conventional mechanical automatic air supply valve, and Figures 3 and 4 are respectively shown in this figure. This shows one embodiment of the electric water turbine automatic air supply system according to the invention, and FIG. 3 is a configuration diagram, and FIG.
5 is a block diagram, FIG. 5 is a block diagram showing an example of the intake valve opening setting device shown in FIG. 4, and FIG. 6 is a diagram for explaining the effects of this invention. 31... Water turbine, 32... Suction pipe, 33... Air supply pipe, 34... Air supply valve, 35... Air supply valve opening detector, 37... Guide vane opening operation mechanism, 39...
...Guide vane opening degree detector, 41...Control unit, 4
2... Comparison calculation section, 43... Air intake valve opening setting section.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 水車に供給される水量を制御するガイドベーン
と、このガイドベーンの開度を検出し該検出結果
に対応した電気的検出信号を出力するガイドベー
ン開度検出手段と、前記水車に供給された水を吸
出す吸出し管と、この吸出し管内に空気を供給す
る給気管と、この給気管を介して前記吸出し管内
に供給される空気量を制御する電動式の給気弁
と、この給気弁の開度を検出し該検出結果に対応
した電気的検出信号を出力する給気弁開度検出手
段と、前記ガイドベーンの開度と該開度に対応す
る前記給気弁の開度とが予め設定された開度設定
テーブルを有し、前記ガイドベーンの開度に対応
する前記給気弁の開度を電気的な開度信号として
取り出す給気弁開度設定手段と、この給気弁開度
設定手段の開度設定テーブルに基づいて、前記ガ
イドベーン開度検出手段から出力される検出信号
に対応した前記給気弁の開度信号を求め、該開度
信号と前記給気弁開度検出手段から得られる検出
信号とを比較して、該検出信号が前記開度信号に
対応するように前記給気弁の開度を制御する比較
制御手段とを具備してなることを特徴とする電気
式水車自動給気装置。
a guide vane that controls the amount of water supplied to the water turbine; a guide vane opening detection means that detects the opening of the guide vane and outputs an electrical detection signal corresponding to the detection result; and a guide vane that controls the amount of water supplied to the water turbine. an air supply pipe that supplies air into the suction pipe; an electric air supply valve that controls the amount of air supplied into the suction pipe via the air supply pipe; an air intake valve opening detection means for detecting an opening and outputting an electrical detection signal corresponding to the detection result; and an opening of the guide vane and an opening of the air intake valve corresponding to the opening are determined in advance. an air intake valve opening setting means that has a set opening setting table and extracts the opening of the air intake valve corresponding to the opening of the guide vane as an electrical opening signal; Based on the opening setting table of the opening degree setting means, the opening degree signal of the air supply valve corresponding to the detection signal output from the guide vane opening degree detection means is determined, and the opening degree signal and the air supply valve opening degree are determined. It is characterized by comprising comparison control means for comparing the detection signal obtained from the detection means and controlling the opening degree of the air supply valve so that the detection signal corresponds to the opening degree signal. Electric water turbine automatic air supply device.
JP1983179635U 1983-11-21 1983-11-21 Electric water turbine automatic air supply device Granted JPS6087374U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1983179635U JPS6087374U (en) 1983-11-21 1983-11-21 Electric water turbine automatic air supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1983179635U JPS6087374U (en) 1983-11-21 1983-11-21 Electric water turbine automatic air supply device

Publications (2)

Publication Number Publication Date
JPS6087374U JPS6087374U (en) 1985-06-15
JPH0110447Y2 true JPH0110447Y2 (en) 1989-03-24

Family

ID=30389707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1983179635U Granted JPS6087374U (en) 1983-11-21 1983-11-21 Electric water turbine automatic air supply device

Country Status (1)

Country Link
JP (1) JPS6087374U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5872678A (en) * 1981-10-02 1983-04-30 クバエルネル・ブルグ・アクチ−セルスカペツト Absorber for wave energy

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57114178U (en) * 1981-01-08 1982-07-15

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5872678A (en) * 1981-10-02 1983-04-30 クバエルネル・ブルグ・アクチ−セルスカペツト Absorber for wave energy

Also Published As

Publication number Publication date
JPS6087374U (en) 1985-06-15

Similar Documents

Publication Publication Date Title
JPH0715822B2 (en) Fuel cell power plant
JPH0110447Y2 (en)
US4203297A (en) Governing system for use in sliding-pressure type turbine power plant
CN111828709A (en) Adjustable combined air valve for tunnel ventilation
JP3261632B2 (en) A method for controlling the supply of air to the suction pipe of a water turbine in a falling head power plant.
SE9701148D0 (en) Control device and method for controlling a current
CN212226011U (en) Intelligent regulation's universal disk choke valve
JPH07217526A (en) Output adjusting device for small hydraulic power generating equipment
JPS59229060A (en) Guide vane control method for cross flow hydraulic turbine
JP2589337Y2 (en) Turbine operation control device of regulating pond type hydroelectric power plant
SU1036746A1 (en) Device for controlling gas pressure under blast furnace grate
JP2539475B2 (en) Control device for steam control valve
CA1086511A (en) Governing system for use in sliding-pressure type turbine power plant
JPH06288335A (en) Flow rate control device and flow rate control method for hydroelectric power station
SU1435835A1 (en) Method of controlling the pumping plant
CN114295540A (en) Simulation environment test box
JP2559965Y2 (en) Pelton turbine driving equipment
JPS61167103A (en) Turbine control device
JPH0567765B2 (en)
JPS6085263A (en) Control method of water turbine
JPS6053673A (en) Hydraulic machinery
JPS58105306A (en) Water supply controller
JPS6243083B2 (en)
JPH02249011A (en) Water level controller for dam type hydroelectric power plant
JPH07174390A (en) Air conditioner equipped with condensate preventer