JPH01104407A - Wear resistant member - Google Patents
Wear resistant memberInfo
- Publication number
- JPH01104407A JPH01104407A JP26067887A JP26067887A JPH01104407A JP H01104407 A JPH01104407 A JP H01104407A JP 26067887 A JP26067887 A JP 26067887A JP 26067887 A JP26067887 A JP 26067887A JP H01104407 A JPH01104407 A JP H01104407A
- Authority
- JP
- Japan
- Prior art keywords
- build
- wear
- less
- layer
- cast steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 21
- 239000010439 graphite Substances 0.000 claims abstract description 21
- 239000002131 composite material Substances 0.000 claims abstract description 14
- 229910001208 Crucible steel Inorganic materials 0.000 claims abstract description 12
- 239000011159 matrix material Substances 0.000 claims abstract description 10
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229910052796 boron Inorganic materials 0.000 claims abstract description 3
- 239000000463 material Substances 0.000 abstract description 17
- 238000005096 rolling process Methods 0.000 abstract description 3
- 229910000975 Carbon steel Inorganic materials 0.000 abstract description 2
- 239000010962 carbon steel Substances 0.000 abstract description 2
- 238000003466 welding Methods 0.000 abstract description 2
- 150000001875 compounds Chemical group 0.000 abstract 2
- 229910001018 Cast iron Inorganic materials 0.000 description 8
- 229910052804 chromium Inorganic materials 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 229910052748 manganese Inorganic materials 0.000 description 5
- 229910000734 martensite Inorganic materials 0.000 description 5
- 229910052750 molybdenum Inorganic materials 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 229910052580 B4C Inorganic materials 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 235000000396 iron Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
Landscapes
- Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は圧延ロール、ガイドローラ等として有用−な高
硬度・潤滑性を有する耐摩耗部材に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a wear-resistant member having high hardness and lubricity that is useful as rolling rolls, guide rollers, etc.
圧延ロール、ガイドローラまたはサイドガイドプレート
等の耐摩耗性を必要とする構造部材として、従来より高
C高Cr系鋳鉄、例えば13Cr系耐摩耗鋳鉄(C:2
.4〜3.6%、Si:1%以下、Cr : 14〜2
8%、Mo : 3%以下、Ni:1.5%以下、Cu
:1.2%以下、残部Fe)、または27Cr系耐摩耗
鋳鉄(C:2.3〜2.9%、S i :0.5〜1.
5%、Mn:0.5〜1.5%、Cr:24〜28%、
N i :0.2%以下、M o :1.2%以下、残
部Fe)等が使用されてきた。これらの高C高Cr系鋳
鉄は、オーステナイトおよびマルテンサイト基地による
高い硬度を有し、比較的良好な耐摩耗性を示す。Conventionally, high C and high Cr cast iron, such as 13Cr wear-resistant cast iron (C:2
.. 4-3.6%, Si: 1% or less, Cr: 14-2
8%, Mo: 3% or less, Ni: 1.5% or less, Cu
: 1.2% or less, balance Fe), or 27Cr wear-resistant cast iron (C: 2.3-2.9%, Si: 0.5-1.
5%, Mn: 0.5-1.5%, Cr: 24-28%,
Ni: 0.2% or less, Mo: 1.2% or less, balance Fe), etc. have been used. These high C and high Cr cast irons have high hardness due to austenite and martensite bases and exhibit relatively good wear resistance.
しかし、部材が厚肉・大型品である場合は、その鋳造時
の冷却凝固速度が緩慢となり、オーステナイトおよびマ
ルテンサイト基地を確保することが困難となるため、硬
度不足とそれによる耐摩耗性の不足をきたす。また、硬
度の高いマルテンサイト基地を有する場合でも、使用条
件によっては必ずしも十分な耐摩耗性を保証することが
できない、更に、硬質耐摩耗材料の通性として、靭性に
乏しいため、機械衝撃が加わる用途に供される部材であ
る場合は、設計上の制約をうけることが多い。However, if the component is thick or large, the cooling solidification rate during casting will be slow, making it difficult to secure austenite and martensite bases, resulting in insufficient hardness and resulting lack of wear resistance. cause In addition, even if it has a martensite base with high hardness, it cannot necessarily guarantee sufficient wear resistance depending on the usage conditions.Furthermore, hard wear-resistant materials generally have poor toughness, so they are susceptible to mechanical shock. When a member is used for a specific purpose, it is often subject to design restrictions.
本発明は上記に鑑み、従来の高C高Cr系鋳鉄を凌ぐ高
い摩耗抵抗性を有し、かつ靭性を備えた耐摩耗部材を提
供しようとするものである。In view of the above, it is an object of the present invention to provide a wear-resistant member that has higher wear resistance and toughness than conventional high-C, high-Cr cast iron.
〔問題点を解決するための手段および作用〕本発明の耐
摩耗部材は、高Cr系ステンレス鋳鋼マトリックスに分
散相として1〜20重量%の炭化硼素安定化グラファイ
ト粒が混在する複合組織を有する肉盛材(以下、「複合
肉盛層」)を以て部材表面を被覆したことを特徴として
いる。[Means and effects for solving the problems] The wear-resistant member of the present invention has a composite structure in which 1 to 20% by weight of boron carbide-stabilized graphite grains are mixed as a dispersed phase in a high Cr stainless cast steel matrix. It is characterized by covering the surface of the member with a build-up material (hereinafter referred to as "composite build-up layer").
本発明の耐摩耗部材の表面を被覆する複合肉盛層のマト
リックスである高Cr系ステンレス鋳鋼は、主としてマ
ルテンサイト組織であり、それ自身高硬度である。その
複合肉盛層は、硬質のマトリックスと、それに混在する
グラファイト粒の分散強化作用とが相まって、従来の高
C高Cr系鋳鉄製部材を凌ぐ高い硬度を有し、加えて、
マトリックス中の分散相であるグラファイト粒の存在に
よる適度の潤滑性が与えられるこ工によって、極めて良
好な摩耗抵抗性を示す。The high Cr stainless cast steel that is the matrix of the composite overlay layer that covers the surface of the wear-resistant member of the present invention has a mainly martensitic structure and is itself highly hard. The composite overlay layer has a hardness that exceeds that of conventional high-C, high-Cr cast iron members due to the hard matrix and the dispersion-strengthening effect of the graphite grains mixed therein.
This process provides extremely good wear resistance due to the presence of graphite grains as a dispersed phase in the matrix, which provides appropriate lubricity.
本発明の耐摩耗部材における複合肉盛層は、マトリック
スとなる高Cr系鋳鋼の粉末と、炭化硼素(B、、C)
安定化グラファイト粒との混合物を肉盛材料とし、溶接
肉盛法、溶射法等により基材の表面に形成される。The composite build-up layer in the wear-resistant member of the present invention is composed of powder of high Cr cast steel serving as a matrix and boron carbide (B, C).
A mixture with stabilized graphite grains is used as an overlay material, and it is formed on the surface of a base material by a weld overlay method, a thermal spraying method, etc.
84C安定化グラファイト粒とは、グラファイトにB
a Cを約5重量%以上(通常5〜50重量%)含有さ
せることにより、グラファイトを化学的・物理的に安定
化させたものである。本発明において、84C安定化グ
ラファイト粒を使用することとしたのは、溶接肉盛法等
による複合肉盛層の形成工程におけるグラファイト粒の
劣化・消耗(分解、酸化、マトリックス金属中への溶解
等)を防止するためである。通常のグラファイト粒を用
いたのでは、肉盛層形成工程においてグラファイト粒の
少なからぬ量が劣化、消耗するが、B、C安定化グラフ
ァイト粒の使用により、そのような不都合を生じること
なく、所期の複合組織を有する肉盛層を形成することが
可能となる。84C stabilized graphite grains are graphite with B
Graphite is chemically and physically stabilized by containing about 5% by weight or more (usually 5 to 50% by weight) of aC. In the present invention, the reason for using 84C stabilized graphite grains is that graphite grains deteriorate and wear out (decomposition, oxidation, dissolution into matrix metal, etc.) during the process of forming a composite overlay layer by welding overlay method etc. ) to prevent this. If normal graphite grains are used, a considerable amount of the graphite grains will deteriorate and be consumed in the build-up layer formation process, but by using B and C stabilized graphite grains, such inconveniences will not occur and the graphite grains can be used in places. It becomes possible to form a built-up layer having a composite structure of the same period.
肉盛層の複合組織におけるB、C安定化グラファイト粒
の占める割合(混在割合)は1〜20重量%とする。1
重量%を下限値とするのは、それより少ないと、B、C
安定化グラファイト粒の分散効果としての潤滑性および
高硬度化が不足するからであり、他方20重量%を上限
値とするのは、それを越えると、潤滑性は増大するもの
の、肉盛層の靭性の不足をきたすからである。B、C安
定化グラファイト粒の粒径は特に限定されないけれども
、粒子分散強化および潤滑性の均一化の点から、約20
〜200μmの範囲が適当である。The proportion (mixed proportion) of B and C stabilized graphite grains in the composite structure of the overlay layer is 1 to 20% by weight. 1
The lower limit of weight % is that if it is less than that, B, C
This is because the dispersion effect of stabilized graphite grains is insufficient in lubricity and hardness, and on the other hand, the reason why the upper limit is set at 20% by weight is that, although lubricity increases if it exceeds 20%, the lubricity and hardness of the overlay layer increase. This is because it causes a lack of toughness. Although the particle size of the stabilized graphite particles B and C is not particularly limited, it is about 20
A range of 200 μm is suitable.
他方、マトリックス金属を高Cr系ステンレス鋳鋼とす
るのは、強靭で硬度の高いマルテンサイト基地を得るた
めであり、その好ましい高Cr系ステンレス鋳鋼の例と
して、
13Cr系ステンレス鋳鋼(C: 0.01〜0.5%
、Si:2%以下、Mn:2%以下、Cr : 11〜
15%、Ni:1%以下、MO:0または5%以下、残
部Fe)、
18Cr系ステンレス鋳鋼(C: 0.01〜1.5%
、Si:2%以下、Mn:2%以下、Cr:15〜20
%、Ni:5%以下、MO:0または5%以下、残部F
e)、
27Cr系ステンレス鋳鋼(C:0.01〜3%、St
:2%以下、Mn:2%以下、Cr:22〜30%、N
i:5%以下、MO:0または5%以下、残部Fe)
等が挙げられる。On the other hand, the reason why high Cr stainless cast steel is used as the matrix metal is to obtain a strong and hard martensite base, and examples of preferable high Cr stainless cast steel include 13Cr stainless cast steel (C: 0.01 ~0.5%
, Si: 2% or less, Mn: 2% or less, Cr: 11~
15%, Ni: 1% or less, MO: 0 or 5% or less, balance Fe), 18Cr stainless steel cast steel (C: 0.01-1.5%
, Si: 2% or less, Mn: 2% or less, Cr: 15-20
%, Ni: 5% or less, MO: 0 or 5% or less, balance F
e), 27Cr stainless steel cast steel (C: 0.01~3%, St
: 2% or less, Mn: 2% or less, Cr: 22-30%, N
i: 5% or less, MO: 0 or 5% or less, balance Fe), etc.
複合肉盛層で被覆される基材の材質は、目的とする耐摩
耗部材の、用途、要求性能に応じて自由に選択すること
ができる。その基材と複合肉盛層との組合せと、設計上
必要な基材表面の最小限の部分に肉盛施行することによ
り、耐摩耗高硬度材の一般的通性である脆さを解消し、
強度的にも安定した耐摩耗部材を得ることができる。The material of the base material covered with the composite overlay layer can be freely selected depending on the intended use and required performance of the wear-resistant member. By combining the base material with a composite overlay layer and applying overlay to the minimum area of the base material surface required for design, the brittleness that is common to wear-resistant high hardness materials can be eliminated. ,
A wear-resistant member with stable strength can be obtained.
〔実施例〕
13Cr系ステンレス鋳鋼粉末(C:0.2%、Si:
0.6%、Mn:0.6%、Cr:13%、Ni:0.
3%、Mo : 1%、残部Fe)と、B、C安定化グ
ラファイト粉末(B4C:グラファイト=1:1、重量
比)との混合粉末を肉盛材料として使用し、基材(炭素
鋼)表面に溶接肉盛を施行し、層厚約10IIImの複
合肉盛層を形成した、B、C安定化グラファイト粒の粒
径は50μmであり、混在割合は10重量%である。[Example] 13Cr stainless steel cast steel powder (C: 0.2%, Si:
0.6%, Mn: 0.6%, Cr: 13%, Ni: 0.
A mixed powder of 3% Mo, 1% Mo, balance Fe) and B, C stabilized graphite powder (B4C: graphite = 1:1, weight ratio) was used as the overlay material, and the base material (carbon steel) was The grain size of the B and C stabilized graphite grains, which were welded overlay on the surface to form a composite overlay layer with a layer thickness of about 10IIIm, was 50 μm, and the mixed ratio was 10% by weight.
上記供試材(as weld品)にってい機械的性質
および耐摩耗性の評価を行い、第1表に示す結果得た。The mechanical properties and abrasion resistance of the above sample material (as welded product) were evaluated, and the results shown in Table 1 were obtained.
なお、耐摩耗性については、ロール接触摩耗試験法によ
る比摩耗量を求め、従来材である13Cr系鋳鉄(C:
2.9%、Cr : 13.2%)および27Cr系鋳
鉄CC:2.4%、Cr : 26.5%)と比較した
。 第1表に示すように、発明例のものは、硬度・強度
が高く、耐摩耗性にすぐれており、かつ靭性も良好であ
る。Regarding wear resistance, the specific wear amount was determined by the roll contact wear test method, and the conventional material 13Cr cast iron (C:
2.9%, Cr: 13.2%) and 27Cr cast iron CC: 2.4%, Cr: 26.5%). As shown in Table 1, the invention examples have high hardness and strength, excellent wear resistance, and good toughness.
第1表
〔発明の効果〕
本発明の耐摩耗部材は、硬度が高く、従来の高C高Cr
系鋳鉄材を大きく凌ぐ耐摩耗性を備え、しかも靭性も良
好である。また、複合肉盛層で被覆される基材の材質の
選択は自由であるから、基材との組合せにより、用途・
使用条件に応じた構造部材として必要な強度を兼ねさせ
ることができる。従って本発明の耐摩耗部材は圧延ロー
ル、ガイドローラ等として有用であり、部材の耐久性の
向上、メンテナンスの軽減等に奏効する。Table 1 [Effects of the Invention] The wear-resistant member of the present invention has high hardness and
It has wear resistance that greatly exceeds cast iron materials, and also has good toughness. In addition, since the material of the base material covered with the composite overlay layer can be freely selected, the combination with the base material can be used to
It can also have the strength required as a structural member depending on the conditions of use. Therefore, the wear-resistant member of the present invention is useful as a rolling roll, a guide roller, etc., and is effective in improving the durability of the member and reducing maintenance.
Claims (1)
して1〜20重量%の炭化硼素安定化グラファイト粒が
混在する複合組織を有する肉盛層を以て部材表面を被覆
してなる耐摩耗部材。(1) A wear-resistant member in which the surface of the member is coated with a built-up layer having a composite structure in which 1 to 20% by weight of boron carbide-stabilized graphite grains are mixed as a dispersed phase in a high Cr stainless cast steel matrix.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62260678A JP2597108B2 (en) | 1987-10-15 | 1987-10-15 | Wear-resistant material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62260678A JP2597108B2 (en) | 1987-10-15 | 1987-10-15 | Wear-resistant material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01104407A true JPH01104407A (en) | 1989-04-21 |
JP2597108B2 JP2597108B2 (en) | 1997-04-02 |
Family
ID=17351254
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62260678A Expired - Lifetime JP2597108B2 (en) | 1987-10-15 | 1987-10-15 | Wear-resistant material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2597108B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6023111A (en) * | 1997-05-20 | 2000-02-08 | Howa Machinery, Ltd. | Linear actuator |
JP2003340511A (en) * | 2002-05-27 | 2003-12-02 | Sumitomo Metal Ind Ltd | Conveyor roller for high temperature material |
CN105736566A (en) * | 2016-05-18 | 2016-07-06 | 钱国臣 | Rail guide device |
CN105952793A (en) * | 2016-05-18 | 2016-09-21 | 青岛洼特帽业有限公司 | Novel guide device |
CN105952787A (en) * | 2016-05-18 | 2016-09-21 | 青岛洼特帽业有限公司 | Rail type guide structure capable of running smoothly |
CN107245713A (en) * | 2017-05-25 | 2017-10-13 | 中北大学 | Laser melting coating repairs spheroidal graphite roll surface alloy powder |
CN110944775A (en) * | 2017-07-20 | 2020-03-31 | 爱斯科集团有限责任公司 | Hardfaced products for abrasive applications and processes for making same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4921551A (en) * | 1972-06-26 | 1974-02-26 | ||
JPS51137909A (en) * | 1975-05-24 | 1976-11-29 | Nippon Piston Ring Co Ltd | Vane(s) of rotary compressor |
JPS58104154A (en) * | 1981-12-01 | 1983-06-21 | ゲツツエ・アクチエンゲゼルシヤフト | Anti-frictive cast iron having spherically crystal deposit graphite and manufacture |
JPS62180043A (en) * | 1986-02-01 | 1987-08-07 | Nippon Yakin Kogyo Co Ltd | Austenitic-ferritic two-phase stainless cast steel having low sensitivity to cracking by thermal shock, superior corrosion resistance and mechanical property |
-
1987
- 1987-10-15 JP JP62260678A patent/JP2597108B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4921551A (en) * | 1972-06-26 | 1974-02-26 | ||
JPS51137909A (en) * | 1975-05-24 | 1976-11-29 | Nippon Piston Ring Co Ltd | Vane(s) of rotary compressor |
JPS58104154A (en) * | 1981-12-01 | 1983-06-21 | ゲツツエ・アクチエンゲゼルシヤフト | Anti-frictive cast iron having spherically crystal deposit graphite and manufacture |
JPS62180043A (en) * | 1986-02-01 | 1987-08-07 | Nippon Yakin Kogyo Co Ltd | Austenitic-ferritic two-phase stainless cast steel having low sensitivity to cracking by thermal shock, superior corrosion resistance and mechanical property |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6023111A (en) * | 1997-05-20 | 2000-02-08 | Howa Machinery, Ltd. | Linear actuator |
JP2003340511A (en) * | 2002-05-27 | 2003-12-02 | Sumitomo Metal Ind Ltd | Conveyor roller for high temperature material |
CN105736566A (en) * | 2016-05-18 | 2016-07-06 | 钱国臣 | Rail guide device |
CN105952793A (en) * | 2016-05-18 | 2016-09-21 | 青岛洼特帽业有限公司 | Novel guide device |
CN105952787A (en) * | 2016-05-18 | 2016-09-21 | 青岛洼特帽业有限公司 | Rail type guide structure capable of running smoothly |
CN107245713A (en) * | 2017-05-25 | 2017-10-13 | 中北大学 | Laser melting coating repairs spheroidal graphite roll surface alloy powder |
CN110944775A (en) * | 2017-07-20 | 2020-03-31 | 爱斯科集团有限责任公司 | Hardfaced products for abrasive applications and processes for making same |
EP3655184A4 (en) * | 2017-07-20 | 2021-05-26 | ESCO Group LLC | Hardfaced products for abrasive applications and processes for making the same |
Also Published As
Publication number | Publication date |
---|---|
JP2597108B2 (en) | 1997-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2064359B1 (en) | Metallurgical iron-based powder composition and method of production | |
Liu et al. | Effects of titanium additive on microstructure and wear performance of iron-based slag-free self-shielded flux-cored wire | |
KR840006376A (en) | Abrasion Resistant Stainless Steel | |
CA2572131A1 (en) | Powder metallurgical composition comprising carbon black as flow enhancing agent | |
US4430122A (en) | Flux-cored arc welding tubular electrode | |
US3663214A (en) | Abrasion resistant cast iron | |
Lindskog | The effect of phosphorus additions on the tensile, fatigue, and impact strength of sintered steels based on sponge iron powder and high-purity atomized iron powder | |
CN104400259A (en) | High-hardness hardfacing electrode | |
JPH01104407A (en) | Wear resistant member | |
Kılınç et al. | Effect of vanadium content on the microstructure and wear behavior of Fe (13-x) VxB7 (x= 0–5) based hard surface alloy layers | |
KR920002251A (en) | Wear-resistant cast iron and composite rolls for rolled rolls | |
Jankauskas et al. | Analysis of abrasive wear performance of arc welded hard layers | |
CN114393346B (en) | Fe (Fe) 2 B-VB combined reinforced high-boron iron-based wear-resistant surfacing alloy layer and preparation method thereof | |
CN113458649B (en) | Self-protection flux-cored wire containing titanium carbide particles | |
Panasyuk et al. | Physicochemical principles of the formation of composite materials based on titanium diboride | |
JPH11131172A (en) | Wear resistant alloy | |
JPS62134193A (en) | Composite powder welding material for building up by welding | |
CN111618473A (en) | Ultra-high wear-resistant flux-cored wire for grate bar | |
Panteleyenko et al. | New Boron-Containing Materials for Surface Hardening | |
RU2087579C1 (en) | Wear resistant cast iron | |
CN116713637B (en) | Flux-cored wire for build-up welding and material increase of fan-shaped section continuous casting roller, and preparation method and application thereof | |
JPS60158906A (en) | Composite roll for rolling and its manufacture | |
CN114714023B (en) | Titanium carbide self-protection surfacing flux-cored wire and preparation method thereof | |
RU2154563C1 (en) | Induction welding composition | |
JP2005169421A (en) | Composite rolling roll |