JPH01103409A - Manufacture of superconducting molded body - Google Patents

Manufacture of superconducting molded body

Info

Publication number
JPH01103409A
JPH01103409A JP62259754A JP25975487A JPH01103409A JP H01103409 A JPH01103409 A JP H01103409A JP 62259754 A JP62259754 A JP 62259754A JP 25975487 A JP25975487 A JP 25975487A JP H01103409 A JPH01103409 A JP H01103409A
Authority
JP
Japan
Prior art keywords
inorganic
organic
paper
superconducting
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62259754A
Other languages
Japanese (ja)
Other versions
JPH0763967B2 (en
Inventor
Toshiaki Suzuki
利昭 鈴木
Shinji Matsuda
松田 瀋司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP62259754A priority Critical patent/JPH0763967B2/en
Publication of JPH01103409A publication Critical patent/JPH01103409A/en
Publication of JPH0763967B2 publication Critical patent/JPH0763967B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To obtain an superconductor having an arbitrary form by a method wherein the title method is constituted of a process manufacturing slurry by agitating and mixing up an inorganic powdery body and organic fiber with each other, a process manufacturing a superconducting preliminary body by forming paper of slurry and a process sintering the same after molding the same into a predetermined form. CONSTITUTION:It is necessary that an inorganic material is of an inorganic composite of barium oxide/copper oxide and a powdery body having a particle diameter of 0.05mum-1mm. An organic fiber to be mixed up with the organic material is of a synthetic fiber or synthetic pulp or an animal fiber comprised of a thermoplastic or thermosetting synthetic high molecule such as a natural cellulose fiber or polyolefin. As for a mixture ratio between the inorganic material and organic fiber, it is necessary that the former and latter are 70wt.%-99wt.% and 1wt.%-30wt.% respectively. It is preferable that predetermined quantities of the inorganic material and organic materials are agitated and mixed up with each other under water at a time. Then an superconducting preliminary body in a sheetlike state made through a wet paper making method by making use of the mixture as raw materials is fired at the sintering temperature or higher of inorganic substance within oxidizing atmosphere, a superconductor in an arbitrary form can be obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は超伝導体成形体の製造方法、特に製紙技術を利
用した超伝導体成形体の製造方法に関す、るものである
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for manufacturing a superconductor molded body, and particularly to a method for manufacturing a superconductor molded body using papermaking technology.

〈従来の技術〉〈発明が解決すべき問題点〉現在、実用
化レベル、すなわち、液体窒素の沸点以上の高温度で超
伝導体となる物質は、酸化イツトリウム・酸化バリウム
・酸化銅などの組成物からなる無機質材料である。これ
らの無機質材料から超伝導体成形体を製造するにはこの
無機材料にグリセリン等の結着剤を加えて混合し、固め
た上で焼結し、超伝導性の塊状物質を得るか、あるいは
前記の如き無機材料をスパッタリング等の手段により、
ターゲット上に集積して薄膜状の超伝導体を製造してい
るり前者の方法のように無機材料を混合結着した後、焼
結する方法は簡単ではあるが、実用上必要とされる比較
的大面積のものり を製造するのは困難であkが又任意の形状に成形又は研
削することは容易ではない。また、後者の方法によれば
均一な超伝導性の薄膜は得られるものの、μm単位以上
の厚さには調整し難<、かつ大面積のシートを得ること
は不可能であり、薄膜形成後に任意の形状に成形するこ
とはできない。
<Prior art><Problems to be solved by the invention> At present, substances that become superconductors at a practical level, that is, at high temperatures above the boiling point of liquid nitrogen, have compositions such as yttrium oxide, barium oxide, and copper oxide. It is an inorganic material made of substances. To produce a superconducting molded body from these inorganic materials, a binder such as glycerin is added to the inorganic material, the mixture is solidified, and then sintered to obtain a superconducting bulk material, or By sputtering or other means such as the above-mentioned inorganic material,
The method of producing a thin film-like superconductor by integrating it on a target, or the former method of mixing and binding inorganic materials and then sintering them, is simple, but it is relatively difficult for practical purposes. It is difficult to manufacture glue with a large area, and it is also not easy to mold or grind it into an arbitrary shape. In addition, although a uniform superconducting thin film can be obtained by the latter method, it is difficult to adjust the thickness to a level of μm or more, and it is impossible to obtain a sheet with a large area. It cannot be molded into any shape.

いずれにしても、現状では実用に適した任意の形状を有
する超伝導体は得難いなどの問題を抱えている。
In any case, the current problem is that it is difficult to obtain a superconductor having an arbitrary shape that is suitable for practical use.

く問題点を解決するための手段〉 本発明はかかる状況に鑑み、鋭意研究の結果、超伝導性
を与える無機質粉体70重量%〜99重量%と、製紙可
能な有機質繊維30重量%〜1重量%と、必要に応じて
添加する製紙用助剤の所定量とを水中で攪拌混合してス
ラリーを製造する工程と、を水中で混合したものを原料
として、該スラリーを湿式抄紙方法で抄紙して可撓性の
シート状超伝導子備体を製造する工程と、該シート状超
伝導子備体を所定形に成形し、しかる後に酸化雰囲気中
で含有する無機質材料を焼結する工程とよりなることを
特徴とする超伝導体の製造方法である。なお成形に当り
シートの糊付け、ラミネート化による厚物化等の応用は
当然許されるものである。
Means for Solving the Problems> In view of the above situation, the present invention has been developed as a result of intensive research, and has been developed to contain 70% to 99% by weight of inorganic powder that provides superconductivity and 30% to 1% by weight of organic fibers that can be made into paper. % by weight and a predetermined amount of a papermaking aid to be added as needed, stirring and mixing in water to produce a slurry, and using the mixture in water as a raw material, making paper from the slurry by a wet papermaking method. a step of manufacturing a flexible sheet-like superconducting device, and a step of forming the sheet-like superconducting device into a predetermined shape, and then sintering the inorganic material contained therein in an oxidizing atmosphere. This is a method for producing a superconductor characterized by the following. Note that during molding, applications such as gluing the sheet and making it thicker by laminating the sheet are of course permissible.

以下本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明で使用する無機質材料は酸化インドリウム・酸化
バリウム・酸化銅の如き無機複合体であるがこれに限定
されるものではなく、超伝導性を与える無機質材料なら
どの様なものでも適用可能である。ただし、これらの無
機質材料は0.05μm〜1mmの粒径を有する粉体、
好ましくは0.1μm〜200μmの粒径を有する粉体
であることが必要である。この理由は湿式抄造によるシ
ート形成時に、この無機質粒子があまり小さくO,OS
μm未満では抄紙工程における該粒子の歩留が悪くなり
、逆に粒子径が大き過ぎ200pmを超えると、粒子の
重量が大きくなり、抄紙にあたって無機質粒子の均一な
分散懸濁状態が得られないからである。
The inorganic materials used in the present invention are inorganic composites such as indium oxide, barium oxide, and copper oxide, but are not limited to these, and any inorganic material that provides superconductivity can be used. be. However, these inorganic materials are powders with a particle size of 0.05 μm to 1 mm,
It is necessary that the powder preferably has a particle size of 0.1 μm to 200 μm. The reason for this is that during sheet formation by wet papermaking, these inorganic particles are too small to contain O, OS.
If the particle size is less than μm, the yield of the particles in the paper making process will be poor, and conversely, if the particle size is too large and exceeds 200 pm, the weight of the particles will become large and it will not be possible to obtain a uniformly dispersed suspension state of inorganic particles during paper making. It is.

上記超伝導性を与える無機質物質と混合する有機質繊維
は、通常の製紙産業で用いられる木材、棉、ワラ、麻、
竹等を原料とした天然セルロース繊維、ポリオレフィン
、ポリエステル、ポリアミド、アクリル樹脂、ふっ素樹
脂、ポリビニルアルコール、フェノール樹脂等の熱可塑
性あるいは熱硬化性合成高分子からなる合成繊維や合成
パルプおよび動物性繊維等のものであるが、ここに例示
したものに限定されるものではない。
The organic fibers to be mixed with the inorganic substance that provides superconductivity include wood, cotton, straw, hemp, etc., which are commonly used in the paper manufacturing industry.
Natural cellulose fibers made from bamboo, etc., synthetic fibers made from thermoplastic or thermosetting synthetic polymers such as polyolefins, polyesters, polyamides, acrylic resins, fluororesins, polyvinyl alcohol, phenolic resins, synthetic pulps, animal fibers, etc. However, it is not limited to what is exemplified here.

また必要に応じて添加する製紙用助剤としては、でん粉
、植物性ガム、ポリアクリルアマイド、ポリアミドエピ
クロロヒドリン等の有機質高分子からなる紙力増強剤、
ポリアクリル酸塩、リン酸塩、スルフォン酸塩等の分散
剤、ポリアクリルアミド、エポキシ化ポリアミド、ポリ
エチレンイミン等の凝集剤、歩留向上剤としての機能を
有するものであるが、上記に例示したものに限定される
ものではない。
Paper-making aids that may be added as necessary include starch, vegetable gum, paper strength enhancers made of organic polymers such as polyacrylamide, and polyamide epichlorohydrin;
Dispersants such as polyacrylates, phosphates, and sulfonates, flocculants such as polyacrylamide, epoxidized polyamide, and polyethyleneimine, and those that function as retention improvers, including those exemplified above. It is not limited to.

無機質材料と有機質繊維および必要に応じて添加する製
紙用助剤を混合する方法は所定量の無機質材料と有機質
繊維および製紙用助剤を同時に水中で攪拌混合すればよ
い。
A method for mixing the inorganic material, organic fibers, and paper-making aid added if necessary is to stir and mix predetermined amounts of the inorganic material, organic fiber, and paper-making aid simultaneously in water.

このようにして得られた無機質材料と有機質繊維および
必要に応じて添加した製紙用助剤の水中懸濁液を原料と
して、通常の湿式抄紙機で所定の厚さに抄紙してこれら
の原料の混合したシート状超伝導子備体を得る。この場
合、原料供給量、水中の原料濃度、あるいは抄紙速度等
の適正化によりシート状超伝導子備体の厚さは、任意に
制御できる。
The thus obtained inorganic material, organic fibers, and papermaking aids added as needed are used as raw materials to make paper to a predetermined thickness using an ordinary wet paper machine. A mixed sheet-like superconducting device is obtained. In this case, the thickness of the sheet-like superconducting device can be arbitrarily controlled by optimizing the raw material supply amount, the raw material concentration in water, the paper making speed, etc.

かようにして得られたシート状超伝導子備体は第1図の
断面図に示した如く、互いに絡み合った有機質繊維の間
に無機質の粒子が均一に分散した形になっている。換言
すれば、紙匹を構成する有機質繊維の絡まった網目構造
の中に無機質粒子が点在し保持されている状態になる。
The sheet-like superconducting device thus obtained has a shape in which inorganic particles are uniformly dispersed between intertwined organic fibers, as shown in the cross-sectional view of FIG. In other words, the inorganic particles are scattered and held in the network structure in which the organic fibers constituting the paper web are entangled.

また抄紙不可能な厚さが必要な場合には、これらのシー
トを複数枚、糊付けあるいはラミネート等の適当な手段
により複合一体化すればよい。
If a thickness that cannot be made into paper is required, a plurality of these sheets may be combined and integrated by appropriate means such as gluing or laminating.

粉末化した無機質材料と、有機質繊維の混合比率は、前
者が70重量%〜99重量%後者が1重量%〜30重量
%であることが必要である。即ち、無機質材料を70重
量%未満にすると、抄紙性は向上するが焼結後のシート
が超伝導性を示さなくなる。また無機質材料を99重量
%を超え、有機質繊維を1重量%未満とすると、湿紙状
態での強度が低下して、抄紙が不可能になる。無機質材
料を70重量%未満、有機質繊維を30重景%を超える
ようにした場合、焼結シートが超伝導性を示さなくなる
。その理由は、正確には不明であるが有機質繊維の比率
が増加することにより、シート中の不純物イオン、特に
Na“ K +等の1価陽イオンがシート中に増えて、
これらが超伝導を生じる伝導電子に相互作用を与えるた
めか、或は焼結時に無機質粉末間に空間が生じる為と推
測している。
The mixing ratio of the powdered inorganic material and the organic fiber needs to be 70% to 99% by weight of the former and 1% to 30% by weight of the latter. That is, when the inorganic material is less than 70% by weight, the paper-making properties are improved, but the sheet after sintering does not exhibit superconductivity. If the content of the inorganic material is more than 99% by weight and the content of the organic fiber is less than 1% by weight, the strength in a wet web state will decrease, making papermaking impossible. If the amount of inorganic material is less than 70% by weight and the amount of organic fiber is more than 30% by weight, the sintered sheet will no longer exhibit superconductivity. The exact reason is unknown, but as the proportion of organic fibers increases, impurity ions in the sheet, especially monovalent cations such as Na"K+, increase in the sheet.
It is speculated that this is because these interact with the conduction electrons that cause superconductivity, or because spaces are created between the inorganic powders during sintering.

上記の工程で得られたシート状超伝導子備体は有機性繊
維の集合体の持つ性質である、可撓性に富み、極めてハ
ンドリング性が良く、適当な強度を有するので、どんな
形状にも成形できる。
The sheet-like superconducting device obtained in the above process is highly flexible, extremely easy to handle, and has appropriate strength, which is the property of an aggregate of organic fibers, so it can be shaped into any shape. Can be molded.

ただし、本発明において、超伝導性を与える無機質材料
の比率が高くなると、必然的にシート状超伝導子備体の
柔軟性が小さくなり、成形する対象によっては、成形不
能になる場合がある。この場合には、シートに水分を与
えることにより、充分に成形可能な柔軟性が得られるも
のである。シート状の可撓性の超伝導予備体を所定の形
に成形後、該超伝導予備体中に含まれ、超伝導性を与え
る無機質粉体が焼結するまで酸化雰囲気中で焼成し、そ
の後大気温度になるまで徐冷する。酸化雰囲気中で焼成
することは、超伝導体となる無機酸化物を得るための必
須条件である。また冷却に当たっては焼結後に急冷する
と、急激にシートが収縮する結果、内部に大きな歪みを
生じてシートが割れたり、変形したりする結果をもたら
すので徐冷が好ましい。
However, in the present invention, when the ratio of the inorganic material that imparts superconductivity increases, the flexibility of the sheet-like superconducting device inevitably decreases, and depending on the object to be molded, it may become impossible to mold it. In this case, by adding moisture to the sheet, sufficient flexibility for molding can be obtained. After forming a sheet-like flexible superconducting preparatory body into a predetermined shape, it is fired in an oxidizing atmosphere until the inorganic powder contained in the superconducting preparatory body that provides superconductivity is sintered, and then Cool slowly until it reaches ambient temperature. Calcining in an oxidizing atmosphere is an essential condition for obtaining an inorganic oxide that becomes a superconductor. In addition, when cooling, slow cooling is preferable because if the sheet is rapidly cooled after sintering, the sheet will contract rapidly, resulting in large internal distortions and cracking or deformation of the sheet.

〈実施例〉 以下、本発明の実施例により具体的に説明する。<Example> Hereinafter, the present invention will be specifically explained using examples.

実施例1 市販の超伝導用無機質材料(フルウチ化学製、商品名ス
ーパーファイン12300 : −酸化イツトリウム・
炭酸バリウム・酸化銅の混合物)を磁器製容器に入れ、
酸化雰囲気中の高温焼成炉で850℃、1時間焼成し、
徐冷しt仮焼粉を得た。この仮焼粉を乳鉢で摺りつぶし
て粒径100μm以下の粉体とした。
Example 1 Commercially available superconducting inorganic material (manufactured by Furuuchi Chemical Co., Ltd., trade name Superfine 12300: - Yttrium oxide
A mixture of barium carbonate and copper oxide) is placed in a porcelain container.
Fired at 850°C for 1 hour in a high-temperature firing furnace in an oxidizing atmosphere,
It was slowly cooled to obtain a calcined powder. This calcined powder was ground in a mortar to obtain a powder having a particle size of 100 μm or less.

予め、ヒーターで叩解度40SRに叩解したNUKP 
(針葉樹材未晒クラフトバルブ)と、前記仮焼粉とを、
仮焼粉/NUKPの重量比率が(第1表のシート状超伝
導子備体の原料配合比) 70/30.80/20.9
0/10 、および9515になるように、各々水中で
アーチ−ターを用いて攪拌混合し、それぞれに紙力増強
剤ポリアミドエピクロロヒドリン樹脂(昭和高分子社製
、商品名ポリフィックス301)を対パルプ1重量%、
凝集剤(ポリアクリルアミド樹脂・三洋化成工業社製、
商品名サンフロックA H−200P)を対原料0.5
重量%添加し、試料番号1〜4用の抄紙原料を得た。こ
の時の各々の試料の固形分濃度は0.5重量%であり、
また原材料は、各々1000gであった。この抄紙用原
料を抄紙中200++uwのフォードリニアー型抄祇機
で抄紙し、坪量500g/rrf、厚さ約500 pm
のシート状超伝導子備体を得た。これらのシートは、仮
焼粉の歩留も95%以上と大きく、ハンドリング強度も
充分なシートである。
NUKP that has been beaten in advance with a heater to a degree of beating of 40SR
(softwood unbleached kraft valve) and the calcined powder,
The weight ratio of calcined powder/NUKP (raw material mixture ratio of sheet-like superconducting device in Table 1) is 70/30.80/20.9
0/10 and 9515, each was stirred and mixed in water using an archer, and a paper strength enhancer polyamide epichlorohydrin resin (manufactured by Showa Kobunshi Co., Ltd., trade name Polyfix 301) was added to each. 1% by weight of pulp,
Flocculant (polyacrylamide resin, manufactured by Sanyo Chemical Industries, Ltd.,
Product name Sunfloc A H-200P) to raw material 0.5
% by weight was added to obtain papermaking raw materials for sample numbers 1 to 4. The solid content concentration of each sample at this time was 0.5% by weight,
In addition, each raw material weighed 1000 g. This raw material for papermaking is made into paper using a 200++ uw Ford linear machine, with a basis weight of 500 g/rrf and a thickness of approximately 500 pm.
A sheet-like superconducting device was obtained. These sheets have a high yield of calcined powder of 95% or more and have sufficient handling strength.

これらのシートを巾15+wm、長さ200mmの短冊
状に明所し、これをこより状に撚合わせたものを作成し
た。さらにこれらのこより状のものを2本撚合わせて、
第2図に示すツイストワイヤーを作成した。
These sheets were cut into strips with a width of 15+wm and a length of 200mm, and then twisted into a strand shape to create a strip. Furthermore, twist two of these strands together,
A twisted wire shown in Figure 2 was created.

この作業において、無機質成分80%以上のものは、シ
ートの柔軟性に欠けるため、短冊状に切断した状態で水
中に浸漬し、柔軟性を与えてから撚合わせた後、乾燥し
て成形した。
In this work, sheets with an inorganic content of 80% or more lacked flexibility, so they were cut into strips and immersed in water to give them flexibility, then twisted together, and then dried and formed.

これらのツイストワイヤーを950℃で1時間、酸化雰
囲気中で焼成した後大気温度まで徐冷し、焼結ツイスト
ワイヤーを得た(試料番号1〜4)。
These twisted wires were fired at 950° C. for 1 hour in an oxidizing atmosphere and then gradually cooled to atmospheric temperature to obtain sintered twisted wires (sample numbers 1 to 4).

これらの焼結ツイストワイヤーを液体窒素で冷却し、2
000ガウスの磁気力を有する永久磁石でマイスナー効
果を判定したところ、第1表に示すような結果を得た。
These sintered twisted wires were cooled with liquid nitrogen and
When the Meissner effect was determined using a permanent magnet having a magnetic force of 000 Gauss, the results shown in Table 1 were obtained.

更に4端子法による極低温状態の電気抵抗判定から第1
表に示すような結果を得、試料番号1〜4に超伝導現象
が見られ、超伝導ツイストワイヤーを得た。
Furthermore, the first step was to determine electrical resistance in cryogenic conditions using the four-terminal method.
The results shown in the table were obtained, superconducting phenomena were observed in sample numbers 1 to 4, and superconducting twisted wires were obtained.

実施例2 市販の超伝導用無機質材料(フルウチ化学社製、商品名
スーパーファイン1230 G )を850℃で1時間
、酸化雰囲気中で焼成し、徐冷して得た仮焼粉を乳鉢で
摺りつぶし、粒径100μm以下の粉体とし、乾燥重量
1800 gを計量した。また、繊維長5mm、繊維径
3デニールのレーヨン繊維(輿入社製、商品名セルカッ
ト)を乾燥重量で100g、繊維長3 mm%繊維径1
.5デニールのPVA繊維(クラレ社製、商品名VBP
105−1)を乾燥重量で100g計量し、水を満たし
た容器に各々を投入し、アジテータ−を用いて混合攪拌
した。
Example 2 A commercially available superconducting inorganic material (manufactured by Furuuchi Chemical Co., Ltd., trade name Superfine 1230 G) was fired at 850°C for 1 hour in an oxidizing atmosphere, and the calcined powder obtained by slow cooling was ground in a mortar. The mixture was crushed to form a powder with a particle size of 100 μm or less, and a dry weight of 1800 g was weighed. In addition, 100 g of dry weight rayon fiber (manufactured by Koshisha Co., Ltd., product name: Cell Cut) with a fiber length of 5 mm and a fiber diameter of 3 denier, a fiber length of 3 mm% and a fiber diameter of 1
.. 5 denier PVA fiber (manufactured by Kuraray Co., Ltd., product name: VBP)
105-1) was weighed in a dry weight of 100 g, each was put into a container filled with water, and mixed and stirred using an agitator.

次いでカチオンでん粉(大和化学工業社製、商品名ツク
ダイン70)を対原料2%、更に凝集剤としてポリアク
リルアミド樹脂(三洋化成工業社製、商品名サンフロッ
クAH−200P)を対原料で0.5%添加し、無機質
の仮焼粉/有機質繊維の配合比が90/10になる抄紙
用原料を得た。
Next, cationic starch (manufactured by Daiwa Chemical Industries, Ltd., trade name Tsukudyne 70) was added at 2% based on the raw material, and polyacrylamide resin (manufactured by Sanyo Chemical Industries, Ltd., trade name Sunfloc AH-200P) was added as a coagulant at 0.5% based on the raw material. % of the inorganic calcined powder/organic fiber was added to obtain a papermaking raw material with a blending ratio of inorganic calcined powder/organic fiber of 90/10.

この抄紙用原料を抄紙中2001のフォードリニアー型
抄紙機で抄紙し、坪量800g/rrr、厚さ800μ
mのシート状超伝導子備体を得た。このシートを巾10
+am、長さ400mmの短冊状に切断し、浸水処理に
よりシートに軟弱性を与えてから、これを第3図に示す
ように真中から曲率半径10mmで180度に曲げて、
変圧器用の平角線を模擬した形状に成形した。成形にあ
たっては、このシート状超伝導子備体は浸水処理により
、柔軟性を持たせたため、可撓性があり、なんらの問題
も生じなかった。
This raw material for papermaking was made into paper using a Fordrinier type paper machine of 2001, with a basis weight of 800g/rrr and a thickness of 800μ.
A sheet-like superconducting device of m was obtained. This sheet has a width of 10
+am, cut into strips with a length of 400 mm, softened the sheet by soaking in water, and then bent it 180 degrees from the center with a radius of curvature of 10 mm as shown in Figure 3.
It was molded into a shape that simulates a rectangular wire for a transformer. During molding, this sheet-like superconducting device was given flexibility through water immersion treatment, so it was flexible and did not cause any problems.

この平角線状成形物を950℃で1時間酸化雰囲気中で
焼成した後徐冷し、焼結成形物を得た(試料番号5)。
This rectangular linear molded product was fired in an oxidizing atmosphere at 950° C. for 1 hour, and then slowly cooled to obtain a sintered molded product (sample number 5).

本成形物は強固に焼結しており、第1表に示すごとくマ
イスナー効果や、極低温域で電気抵抗が零となる超伝導
現象を示す結果を得た。
This molded product was strongly sintered, and as shown in Table 1, the results showed the Meissner effect and the superconductivity phenomenon where the electrical resistance becomes zero in the extremely low temperature range.

定持例3 市販の超伝導用無機質材料(フルウチ化学社製、商品名
スーパーファイン1230 G )を850℃で1時間
、酸化雰囲気中で焼成し、徐冷して得た仮焼粉を乳鉢で
摺りつぶし、粒径100μm以下の粉体とし、乾燥重量
1800 gを計量した。
Fixation Example 3 A commercially available superconducting inorganic material (manufactured by Furuuchi Chemical Co., Ltd., trade name: Super Fine 1230 G) was fired at 850°C for 1 hour in an oxidizing atmosphere, and the calcined powder obtained by slow cooling was heated in a mortar. The powder was ground to a powder with a particle size of 100 μm or less, and a dry weight of 1800 g was weighed.

予め、ビータ−で叩解度40SRに叩解したNBKP 
(針葉樹材晒クラフトパルプ)を200g採取し、両者
をテストマシン用チエストに投入し攪拌混合した。紙力
増強剤としてポリアミドエピクロロヒドリン樹脂(昭和
高分子社製、商品名ポリフィックス301)を対パルプ
1重量%5次いで凝集剤としてポリアクリルアミド樹脂
(三洋化成工業社製、商品名サンフロックAH−200
P)を対原料0.5重量%添加し、原料濃度1重量%の
抄紙原料を得た。
NBKP that has been beaten in advance with a beater to a degree of freeness of 40SR
(Softwood bleached kraft pulp) was collected in an amount of 200 g, and both were put into a test machine for testing and mixed by stirring. Polyamide epichlorohydrin resin (manufactured by Showa Kobunshi Co., Ltd., trade name Polyfix 301) was added as a paper strength agent in an amount of 1% by weight based on the pulp.5 Polyacrylamide resin (manufactured by Sanyo Kasei Kogyo Co., Ltd., trade name Sunfloc AH) was added as a coagulant. -200
P) was added in an amount of 0.5% by weight based on the raw material to obtain a papermaking raw material having a raw material concentration of 1% by weight.

この原料を用いて、抄紙中2001IIll+のフォー
ドリニアー型抄紙機により厚さl mm、坪量1000
g/ rdのシートを連続抄造し、長尺のシート状超伝
導子備体を得た。このシートの片面に、でん粉糊(ヤマ
ト株式会社製、商品名ヤマト糊T−100)を塗布し、
外径50mn+φの丸木材を軸に、長さ方向に10周程
巻き付け、シート同士を接着して厚さ10mm、内径5
0mmφ、高さ200mmの円筒形成形物を作成した。
Using this raw material, paper was made using a 2001IIll+ Fordrinier paper machine with a thickness of 1 mm and a basis weight of 1000.
A long sheet-like superconducting device was obtained by continuously forming a sheet of g/rd. Apply starch glue (manufactured by Yamato Co., Ltd., product name Yamato Glue T-100) to one side of this sheet,
Wrap the round wood with an outer diameter of 50 mm + φ around 10 times in the length direction, and glue the sheets together to make a sheet with a thickness of 10 mm and an inner diameter of 5.
A cylindrical shaped object with a diameter of 0 mm and a height of 200 mm was created.

成形後の目視検査の結果では、この成形物に割れ、歪み
等の欠陥は生じなかった。
Visual inspection after molding revealed that the molded product had no defects such as cracks or distortion.

この円筒状の成形物を焼成炉を用いて950℃、1時間
、酸化雰囲気中で焼成し、徐冷して円筒状の焼結成形物
(試料番号6)を得た。この成形物は第1図に示すごと
(マイスナー効果が認められ、また、第4図に示した温
度と電位抵抗の関係(電気抵抗は円周方向に測定した)
に見られるごとく超伝導転移温度91に、e昇温度は8
4にである。
This cylindrical molded product was fired in an oxidizing atmosphere at 950° C. for 1 hour using a firing furnace, and slowly cooled to obtain a cylindrical sintered product (sample number 6). This molded product is as shown in Figure 1 (the Meissner effect is observed), and the relationship between temperature and potential resistance as shown in Figure 4 (electrical resistance was measured in the circumferential direction).
As can be seen, the superconducting transition temperature is 91, and the e temperature rise is 8
It's on 4th.

これらの結果から、本実施例に示した円筒状成形物は超
伝導体であることがわかる。
From these results, it can be seen that the cylindrical molded product shown in this example is a superconductor.

比較例 抄造シートの原料配合比である仮焼粉/NUKPの重量
比率を50150および60/40にした以外は全て実
施例1に準じて比較用の焼結ツイストワイヤーを得た。
Comparative Example A sintered twisted wire for comparison was obtained in the same manner as in Example 1, except that the weight ratio of calcined powder/NUKP, which is the raw material mixing ratio of the paper sheet, was changed to 50,150 and 60/40.

この際の試料番号は重量比率の前者を7、後者を8とし
た。得られた焼結ツイストワイヤーの特性ガは表1に示
すとうりマイスナー効果が確認されず超伝導体を得るこ
とが不可能であった。
The sample numbers at this time were 7 for the former and 8 for the latter in terms of weight ratio. As shown in Table 1, the properties of the obtained sintered twisted wire were such that no Meissner effect was observed and it was impossible to obtain a superconductor.

〈発明の効果〉 以上の実施例に示したごとく、予め抄紙可能な有機質繊
維と、超伝導性を与える無機質物質を混合したものを原
料として、通常の湿式抄紙法で作ったシート状超伝導子
備体は、可撓性に富むために、どの様な形状にも成形可
能であり、これを酸化雰囲気中で、無機物質が焼結する
温度以上で焼成すると言う本発明は、任意の形状の超伝
導体を与えるものである。
<Effects of the Invention> As shown in the examples above, a sheet-shaped superconductor was produced using a conventional wet paper-making method using a mixture of organic fibers that can be made into paper in advance and an inorganic substance that imparts superconductivity as raw materials. Because the material is highly flexible, it can be formed into any shape, and the present invention, in which it is fired in an oxidizing atmosphere at a temperature higher than the temperature at which inorganic materials sinter, can be formed into any shape. It provides a conductor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる、焼結前のシート(超伝導予備
体)の断面図で有機質繊維の網口構造中に、超伝導体と
なる無機質粒子が分散されている状態を示したものであ
る。 第2図は実施例1の焼結ツイストワイヤーの形状を、ま
た第3図は実施例2における変圧器用平角線模擬物の形
状を示したものである。 第4図は、実施例4にかかる円筒状焼結成形物の温度−
電気抵抗の関係を示す。
Figure 1 is a cross-sectional view of a sheet (superconducting preform) before sintering according to the present invention, showing the state in which inorganic particles that become a superconductor are dispersed in the mesh structure of organic fibers. It is. FIG. 2 shows the shape of the sintered twisted wire of Example 1, and FIG. 3 shows the shape of the rectangular wire simulator for a transformer in Example 2. FIG. 4 shows the temperature -
Shows the relationship between electrical resistance.

Claims (1)

【特許請求の範囲】 1)超伝導性を与える無機質粉体70重量%〜99重量
%と、製紙可能な有機質繊維30重量%〜1重量%と、
必要に応じて添加する紙用助剤の所定量とを水中で攪拌
混合してスラリーを製造する工程と、該スラリーを湿式
抄紙法で抄紙して可撓性のシート状超伝導子備体を製造
する工程と、該シート状超伝導子備体を所定形に成形し
、しかる後に酸化雰囲気中で含有する無機質材料を焼結
する工程とよりなることを特徴とする超伝導体成形体の
製造方法。 2)有機質繊維材料が、天然セルロース繊維、合成高分
子からなる合成パルプおよび合成繊維、動物質繊維の1
または2以上の混合物であることを特徴とする特許請求
の範囲第1項記載の超伝導体成形体の製造方法。 3)製紙用助剤が有機質合成高分子からなるもので、紙
力増強剤、分散剤、凝集剤、歩留向上剤の1又は2以上
の機能を有するものであることを特徴とする特許請求の
範囲第1項記載の超伝導体成形体の製造方法。
[Claims] 1) 70% to 99% by weight of inorganic powder that provides superconductivity, and 30% to 1% by weight of organic fibers that can be made into paper;
A process of producing a slurry by stirring and mixing in water with a predetermined amount of a paper auxiliary agent added as necessary, and a process of making paper from the slurry using a wet papermaking method to produce a flexible sheet-like superconducting material. Production of a superconductor molded body, comprising the steps of: manufacturing the superconductor molded body, and molding the sheet-like superconducting device into a predetermined shape, and then sintering the inorganic material contained therein in an oxidizing atmosphere. Method. 2) Organic fiber materials include natural cellulose fibers, synthetic pulp made of synthetic polymers, synthetic fibers, and animal fibers.
or a mixture of two or more, the method for producing a superconductor molded body according to claim 1. 3) A patent claim characterized in that the papermaking aid is made of an organic synthetic polymer and has one or more of the functions of a paper strength enhancer, a dispersant, a flocculant, and a retention aid. A method for producing a superconductor molded body according to item 1.
JP62259754A 1987-10-16 1987-10-16 Method for manufacturing superconductor compact Expired - Fee Related JPH0763967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62259754A JPH0763967B2 (en) 1987-10-16 1987-10-16 Method for manufacturing superconductor compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62259754A JPH0763967B2 (en) 1987-10-16 1987-10-16 Method for manufacturing superconductor compact

Publications (2)

Publication Number Publication Date
JPH01103409A true JPH01103409A (en) 1989-04-20
JPH0763967B2 JPH0763967B2 (en) 1995-07-12

Family

ID=17338487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62259754A Expired - Fee Related JPH0763967B2 (en) 1987-10-16 1987-10-16 Method for manufacturing superconductor compact

Country Status (1)

Country Link
JP (1) JPH0763967B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227365A (en) * 1990-08-28 1993-07-13 Praxair Technology, Inc. Fabrication of superconducting metal-oxide textiles by heating impregnated polymeric material in a weakly oxidizing atmosphere

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62248105A (en) * 1986-04-21 1987-10-29 Nippon Telegr & Teleph Corp <Ntt> Reproducing method for magnetic recording

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62248105A (en) * 1986-04-21 1987-10-29 Nippon Telegr & Teleph Corp <Ntt> Reproducing method for magnetic recording

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227365A (en) * 1990-08-28 1993-07-13 Praxair Technology, Inc. Fabrication of superconducting metal-oxide textiles by heating impregnated polymeric material in a weakly oxidizing atmosphere

Also Published As

Publication number Publication date
JPH0763967B2 (en) 1995-07-12

Similar Documents

Publication Publication Date Title
EP0109209B1 (en) Flexible sheet material
EP0027705B1 (en) Starch bound non-asbestos paper
US6540874B1 (en) Asphalt-grade carbon fiber paper and its process
CN105544283B (en) Hard vulcanized fiber board and preparation method thereof
CA1134605A (en) Dispersants for a ceramic slurry
CN101144253A (en) High-temperature resistant insulation continuous sheet and manufacturing method thereof
CN114263069B (en) Low-voltage low-loss electrolytic capacitor paper and preparation method and application thereof
CN115595819A (en) Heat-conducting insulating paper and preparation method thereof
JPH01103409A (en) Manufacture of superconducting molded body
JPH0286056A (en) Manufacture of separator for storage battery
JPH0193008A (en) Manufacture of sheet-form superconductor
US4180434A (en) Mica paper containing cellulose
Zheng et al. An in situ (K 0.5 Na 0.5) NbO 3-doped barium titanate foam framework and its cyanate ester resin composites with temperature-stable dielectric properties and low dielectric loss
CN113622217A (en) Magnetic paper base material and preparation method thereof
JPH03241798A (en) Manufacture of magnetic shield material
US3562101A (en) Boron nitride filled paper
US20040036190A1 (en) Gas diffusion electrode manufacturing method and fuel cell
JPH08109077A (en) Manufacture of formed carbonized material consisting of single-fiber bound material
JPS5845145A (en) Calcium silicate formed body and manufacture
JPS59184714A (en) Manufacture of carbonaceous material having &lt;=1.05 anisotropic ratio of specific resistance
JPS62268898A (en) Conductive paper and its production
JPH0348500A (en) Electric wave absorbing material
EP0053897B1 (en) Flexible starch bound non-asbestos paper
JPH0931884A (en) Heat-resistant and insulating sheet and its production
JPH04289684A (en) Manufacture of sheet-like heating element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees