JPH01102959A - Resonance tunnel transistor - Google Patents

Resonance tunnel transistor

Info

Publication number
JPH01102959A
JPH01102959A JP26083287A JP26083287A JPH01102959A JP H01102959 A JPH01102959 A JP H01102959A JP 26083287 A JP26083287 A JP 26083287A JP 26083287 A JP26083287 A JP 26083287A JP H01102959 A JPH01102959 A JP H01102959A
Authority
JP
Japan
Prior art keywords
base
emitter
collector
current
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26083287A
Other languages
Japanese (ja)
Inventor
Akio Furukawa
昭雄 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP26083287A priority Critical patent/JPH01102959A/en
Publication of JPH01102959A publication Critical patent/JPH01102959A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/7606Transistor-like structures, e.g. hot electron transistor [HET]; metal base transistor [MBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions

Abstract

PURPOSE:To obtain a resonance tunnel transistor having a large current gain by a method wherein the bottom of energy in a conduction band of a base layer is made lower than the bottom of energy in a conduction band of an electrode layer. CONSTITUTION:An emitter 1 and a collector layer 3 sandwich a potential barrier and quantum well layer (a base 2); a metal for electrode use is formed on the emitter 1, the collector 3 and the base 2 as pads. For an operation, a resonance tunnel electron stream from the emitter 1 to the collector 3 is controlled by a base potential. The electron stream flows only when the base potential is at a definite value; however, because a level to be used for a base current out of an energy level in the base layer is different from a level used by the resonance tunnel electron stream, one part of the latter electron stream does not flow into the base current. As a result, a current gain (a resonance tunnel current/a base current) can be made large. As examples of semiconductor materials to be used, the emitter 1 and collector 3 made of InAlGaAs can be formed on a substrater of semi-insulating InP; the base 2 can be formed by InGaAs; the potential barrier 4 can be formed by InAlAs; however, III-V compounds other than these may be used.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ペテロ接合を有する共鳴トンネルトランジス
タの構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to the structure of a resonant tunnel transistor having a Peter junction.

(従来の技術) 最近、共鳴トンネル現象を利用した新しい構造のへテロ
接合を有する共鳴トンネルトランジスタが、アプライ2
−フイジクスルター(Applied Physics
Letter Vol、46(1985)P、167)
において提案されている。
(Prior art) Recently, a resonant tunneling transistor having a new structure of heterojunction utilizing resonant tunneling phenomenon has been developed.
-Applied Physics
Letter Vol, 46 (1985) P, 167)
It has been proposed in

このトランジスタのエネルギー帯図を第4図に示し、以
下、動作原理を説明する。第4図においてエミッタ1と
量子井戸層から成るベース2との間及びベース2とコレ
クタ3との間には、同じ厚さのポテンシャル障壁4が2
個あり、この障壁4の厚さは、電子がトンネル現象によ
って通過できるように、数十人程度であり、ベースの厚
さは、電子の散乱などを少なくするために、数十人程度
となっている。このトランジスタの動作は次のようにな
る。エミッタ1からコレクタ3への電子の輸送は、共鳴
トンネル現象によって行なわれ、ベース2の電位がいく
つかの散乱的な値のときに限り、エミッタlの電子準位
と、ベース2の中に形成される共鳴トンネル準位5が等
しくなり、電子の共鳴トンネルが可能となる。その他の
電位のときには、共鳴トンネル現象は起らず、電子輸送
が起らない。従ってエミッタ・コレクタ間に所定の電位
差を設けておき、べ−スミ位を制御することにより、コ
レクタ電流を制御することができる。
An energy band diagram of this transistor is shown in FIG. 4, and the principle of operation will be explained below. In FIG. 4, there are two potential barriers 4 of the same thickness between the emitter 1 and the base 2 consisting of a quantum well layer, and between the base 2 and the collector 3.
The thickness of this barrier 4 is about a few dozen thick to allow electrons to pass through by tunneling, and the thickness of the base is about a few dozen thick to reduce scattering of electrons. ing. The operation of this transistor is as follows. The transport of electrons from the emitter 1 to the collector 3 takes place by resonant tunneling, and only when the potential of the base 2 has some scattering value, the electron level of the emitter 1 and the formation in the base 2 The resonant tunneling levels 5 that are generated become equal, and resonant tunneling of electrons becomes possible. At other potentials, resonant tunneling does not occur and electron transport does not occur. Therefore, by providing a predetermined potential difference between the emitter and the collector and controlling the base potential, the collector current can be controlled.

この従来の共鳴トンネルトランジスタの構造では、電位
のないときベース2の層の伝導帯の底のエネルギーは、
エミッタ1及びコレクタ3の伝導帯の底のエネルギーに
等しく、ベース2に流れる電子電流と、エミッタ1から
ベース2を通すコレクタ3へ流れる電子電流がベース部
分で同じエネルギーレベルを利用している。
In this conventional resonant tunneling transistor structure, the energy at the bottom of the conduction band of the base 2 layer when there is no potential is
It is equal to the energy at the bottom of the conduction band of the emitter 1 and the collector 3, and the electron current flowing into the base 2 and the electron current flowing from the emitter 1 to the collector 3 through the base 2 utilize the same energy level in the base portion.

(発明が解決しようとする問題点) 従来の共鳴トンネルトランジスタは、上記述べたように
、ベースに流れる電子電流と、エミッタからベースを通
ってコレクタへ流れる電子電流がベース部分において同
じエネルギーレベルを利用しているために、本来ならば
エミッタからベースを通過しコレクタへと到達する電子
の一部がベース部分に流れ込む。そのために電流利得を
大きくする二とができないという欠点をもっていた。
(Problems to be Solved by the Invention) As stated above, in a conventional resonant tunnel transistor, the electron current flowing into the base and the electron current flowing from the emitter through the base to the collector utilize the same energy level in the base portion. Because of this, some of the electrons that would normally pass from the emitter to the base and reach the collector flow into the base. Therefore, it has the disadvantage that it is not possible to increase the current gain.

本発明の目的はこのような欠点を除き、より大きな電流
利得をもった共鳴トンネルトランジスタを提供すること
にある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate such drawbacks and provide a resonant tunneling transistor with a larger current gain.

(問題を解決するための手段) 本発明は量子井戸層をポテンシャル障壁で挟み込み、さ
らにポテンシャル障壁の両側を電極層としヘテロ接合を
有する共鳴トンネルトランジスタにおいて、量子井戸層
の伝導帯の底のエネルギーが、電極層の伝導帯の底のエ
ネルギーより低くしたことを特徴とする共鳴トンネルト
ランジスタを提供することにある。
(Means for Solving the Problem) The present invention provides a resonant tunneling transistor having a heterojunction in which a quantum well layer is sandwiched between potential barriers and electrode layers are placed on both sides of the potential barrier. Another object of the present invention is to provide a resonant tunnel transistor characterized in that the energy is lower than the bottom energy of the conduction band of an electrode layer.

(作用) 本発明による共鳴トンネルトランジスタは、ベース層の
伝導帯のエネルギーの底が、電極層の伝導帯のエネルギ
ーの底よりも低くなっており、ベース電流の占めるエネ
ルギー準位は、エミッタからコレクタへ流れる電流が、
ベース層部分において利用するエネルギー準位より低く
なっており、これら2つの電流は各々別々のエネルギー
準位を占めることになる。ベース層の電子のエネルギー
準位について詳しく述べると以下のようになる。ベース
層は、量子井戸構造となっているために、電子のとり得
るエネルギー準位は離散的になっており、この準位がベ
ース電位を制御してエミッタの伝導帯の底のエネルギー
準位に等しい時にのみ共鳴トンネル現象が起こり、エミ
ッタからコレクタへと共鳴トンネル電流が流れる。本共
鳴トンネルトランジスタは、ベース伝導帯の底がエミッ
タの伝導帯の底よりも低いために、ベースでの、電子の
離散的なエネルギー準位のうち、最低準位又は、第2準
位は、エミッタの伝導帯の底よりも低い。そのため、共
鳴トンネル電流は、上記準位より上のエネルギー準位を
利用して流れることになる。他方ベース電流はベースで
の離散的エネルギー準位の最低準位又は第2準位を利用
して流れる。ベース電流の利用するエネルギー準位と、
共鳴トンネル電流の流れるエネルギー準位は異なるため
に、共鳴トンネル電流の1部がベース電流に寄与する割
合が非常に少ないために、大きな電流利得を得ることが
できる。
(Function) In the resonant tunnel transistor according to the present invention, the bottom of the energy of the conduction band of the base layer is lower than the bottom of the energy of the conduction band of the electrode layer, and the energy level occupied by the base current is from the emitter to the collector. The current flowing to
The energy level is lower than that used in the base layer portion, and these two currents occupy separate energy levels. The details of the energy level of electrons in the base layer are as follows. Because the base layer has a quantum well structure, the energy levels that electrons can take are discrete, and these levels control the base potential to reach the energy level at the bottom of the emitter's conduction band. Resonant tunneling occurs only when they are equal, and a resonant tunneling current flows from the emitter to the collector. In this resonant tunnel transistor, since the bottom of the base conduction band is lower than the bottom of the emitter conduction band, the lowest level or the second level among the discrete energy levels of electrons at the base is lower than the bottom of the emitter's conduction band. Therefore, the resonant tunneling current flows using the energy level above the above level. On the other hand, the base current flows using the lowest or second level of the discrete energy levels at the base. The energy level used by the base current,
Since the energy levels through which the resonant tunneling current flows are different, the proportion of a portion of the resonant tunneling current contributing to the base current is very small, so a large current gain can be obtained.

(実施例) 第1図及び第2図に本発明による、共鳴トンネルトラン
ジスタの実施例についてエネルギー帯図を示す。第1図
はポテンシャル障壁の数が2個、第2図は、3個の場合
を示す。これらのポテンシャル障壁の数は、これより大
きな値4,5・・・ωにしても、この共鳴トンネルトラ
ンジスタの動作は可能となる。
(Example) FIGS. 1 and 2 show energy band diagrams for an example of a resonant tunnel transistor according to the present invention. FIG. 1 shows a case where there are two potential barriers, and FIG. 2 shows a case where there are three potential barriers. Even if the number of these potential barriers is set to a larger value 4, 5, . . . . . . ω, the resonant tunnel transistor can operate.

但しポテンシャル障壁の数がm個のときは、それらに挾
まれる量子井戸の総数はm−1個となる。
However, when the number of potential barriers is m, the total number of quantum wells sandwiched between them is m-1.

第3図に本発明による共鳴トンネル・トランジスタのう
ち、ポテンシャル障壁が2つの場合のトランジスタの断
面構造を示す。1エミツタ及び3コレクタ層が、ポテン
シャル障壁及び量子井戸層(2ベース)を挟み、1エミ
ツタ、3コレクタ及び2ベースには6パツドとして電極
用の金属(例えばAuGeなど)を蒸着またはスパッタ
法などによりつける。動作は、1エミツタから3コレク
タへの共鳴トンネル電子流をベース電位によって制御す
ることになる。この電子流は、ベース電位がある離的な
値のときのみ流れることになるが、ベーに層、でのエネ
ルギー準し・、。
FIG. 3 shows a cross-sectional structure of a resonant tunnel transistor according to the present invention in which there are two potential barriers. 1 emitter and 3 collector layers sandwich a potential barrier and a quantum well layer (2 base), and the 1 emitter, 3 collector, and 2 base are coated with electrode metal (for example, AuGe) as 6 pads by vapor deposition or sputtering. Put on. The operation will be to control the resonant tunneling electron flow from one emitter to three collectors by the base potential. This electron flow will only flow when the base potential is a certain discrete value, but the energy at the base layer is approximately equal to .

位のうち、ベース電流に利用する準位と、共鳴トンネル
電子流が利用する準位が異なるため、後者の電子流の一
部が、ベース電流へ流れ込むことがない。そのために電
流利得(共鳴トンネル電流lベース電流)が大きくとれ
る。
Among the levels, the level used for the base current and the level used for the resonant tunneling electron flow are different, so a part of the latter electron flow does not flow into the base current. Therefore, a large current gain (resonant tunnel current l base current) can be obtained.

使用する半導体材料の例としては、基板7として半絶縁
性InP上にエミッタ1及びコレクタ3をInAlGa
Asにより、ベース2をInGaAs、ポテンシャル障
壁4をInAlAsによって形成することができる。
An example of the semiconductor material used is InAlGa for the emitter 1 and collector 3 on semi-insulating InP as the substrate 7.
By using As, the base 2 can be formed of InGaAs, and the potential barrier 4 can be formed of InAlAs.

各層厚は、エミッタ及びコレクタ200OA、ベース5
0A、ポテンシャル障壁20人が一例となる。エミッタ
、ベース、コレクタには、Siなどのn型のドーパント
を用いて、n型半導体にする。ドーピング量は、エミッ
タ、コレクタが 1019から5X1019cm=程度
の値、ベースは 1Q17から1018cm−3程度の
値が一例として揚げられる。
The thickness of each layer is 200 OA for emitter and collector, 5 OA for base.
An example would be 0A and 20 potential barriers. The emitter, base, and collector are made into n-type semiconductors by using an n-type dopant such as Si. As an example, the doping amount is about 1019 to 5X1019 cm for the emitter and collector, and about 1Q17 to 1018 cm-3 for the base.

これらの構造は分子線エピタキシー法などによって成長
できる。実施例で1よInAlGaAs系について説明
したが、これ以外のIII−V族化合物、例えば、エミ
ッタ及びコレクタにInSb、ベースにInAsSbの
n型半導体、ポテンシャル障壁には、GarbまたはA
lSbを用いても良い。
These structures can be grown by molecular beam epitaxy or the like. In Example 1, the InAlGaAs system was explained, but other III-V group compounds, such as InSb for the emitter and collector, InAsSb for the base, and n-type semiconductors for the potential barrier, Garb or A
lSb may also be used.

(発明の効果) 以上説明したように、本発明による、共鳴トンネル・ト
ランジスタは、ベース電流の利用するベースエネルギー
準位と、エミッタからコレクタへの共鳴トンネル電流が
利用するベースでのエネルギー準位が異なるために、高
電流利得をもっている。
(Effects of the Invention) As explained above, in the resonant tunneling transistor according to the present invention, the base energy level used by the base current and the energy level at the base used by the resonant tunneling current from the emitter to the collector are different. Because of the difference, it has a high current gain.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による共鳴トンネルトランジスタのう
ち、ポテンシャル障壁が2個の場合のエネルギー帯図、
第2図はポテンシャル障壁が3個の場合のエネルギー帯
図、第3図は、ポテンシャル障壁が2個の場合の本発明
によるトランジスタの断面図、第4図は、従来の共鳴ト
ンネルトランジスタのエネルギー帯図である。 1・・・エミッタ 2・・・ベース 3・・・コレクタ 4・・・ポテンシャル障壁 5・・・共鳴トンネル準位 6・・・パッド 7・・・基板
FIG. 1 is an energy band diagram when there are two potential barriers in a resonant tunnel transistor according to the present invention.
Fig. 2 is an energy band diagram when there are three potential barriers, Fig. 3 is a cross-sectional view of the transistor according to the present invention when there are two potential barriers, and Fig. 4 is an energy band diagram of a conventional resonant tunnel transistor. It is a diagram. 1... Emitter 2... Base 3... Collector 4... Potential barrier 5... Resonant tunnel level 6... Pad 7... Substrate

Claims (1)

【特許請求の範囲】[Claims]  量子井戸層をポテンシャル障壁で挟み込み、さらにポ
テンシャル障壁の両側を電極層としヘテロ接合を有する
共鳴トンネルトランジスタにおいて、量子井戸層の伝導
帯の底のエネルギーを、電極層の伝導帯の底のエネルギ
ーより低くしたことを特徴とする共鳴トンネルトランジ
スタ。
In a resonant tunnel transistor that has a heterojunction in which a quantum well layer is sandwiched between potential barriers and electrode layers are placed on both sides of the potential barrier, the energy at the bottom of the conduction band of the quantum well layer is lower than the energy at the bottom of the conduction band of the electrode layer. A resonant tunnel transistor characterized by:
JP26083287A 1987-10-16 1987-10-16 Resonance tunnel transistor Pending JPH01102959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26083287A JPH01102959A (en) 1987-10-16 1987-10-16 Resonance tunnel transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26083287A JPH01102959A (en) 1987-10-16 1987-10-16 Resonance tunnel transistor

Publications (1)

Publication Number Publication Date
JPH01102959A true JPH01102959A (en) 1989-04-20

Family

ID=17353377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26083287A Pending JPH01102959A (en) 1987-10-16 1987-10-16 Resonance tunnel transistor

Country Status (1)

Country Link
JP (1) JPH01102959A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0349263A (en) * 1989-07-17 1991-03-04 Nippon Telegr & Teleph Corp <Ntt> Resonance tunnel three-teminal device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111469A (en) * 1985-08-23 1987-05-22 テキサス インスツルメンツ インコ−ポレイテツド Resonance tunneling device
JPS62217658A (en) * 1986-03-18 1987-09-25 Fujitsu Ltd Resonant tunnel semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111469A (en) * 1985-08-23 1987-05-22 テキサス インスツルメンツ インコ−ポレイテツド Resonance tunneling device
JPS62217658A (en) * 1986-03-18 1987-09-25 Fujitsu Ltd Resonant tunnel semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0349263A (en) * 1989-07-17 1991-03-04 Nippon Telegr & Teleph Corp <Ntt> Resonance tunnel three-teminal device

Similar Documents

Publication Publication Date Title
US4695857A (en) Superlattice semiconductor having high carrier density
JP3156851B2 (en) Heterojunction energy gradient structure
US20050029541A1 (en) Charge controlled avalanche photodiode and method of making the same
EP0067276B1 (en) Transistor with tunnel emitter and upper energy valley base
US6670653B1 (en) InP collector InGaAsSb base DHBT device and method of forming same
JP2929899B2 (en) Field-effect transistor with nonlinear transfer characteristics
JPH038340A (en) Hetero junction bipolar transistor
JPH07118531B2 (en) Hot electron unipolar transistor
US6696710B2 (en) Heterojunction bipolar transistor (HBT) having an improved emitter-base junction
JPH0665216B2 (en) Semiconductor device
US4929984A (en) Resonant tunnelling barrier structure device
JPS639388B2 (en)
JPH01102959A (en) Resonance tunnel transistor
JP2929898B2 (en) Interband tunnel field effect transistor
JPH05283673A (en) Resonance tunnel semiconductor device
JPH02119274A (en) Avalanche photodiode
JP2808145B2 (en) Semiconductor device
JP2675362B2 (en) Semiconductor device
JP2771214B2 (en) Semiconductor device
JPH0388369A (en) Heterostructure semiconductor device
JPH0567056B2 (en)
JPH0795598B2 (en) Semiconductor device
JP2535565B2 (en) Semiconductor device
JP2824269B2 (en) Semiconductor element
GB2191036A (en) Hot charge-carrier transistors