JPH01102340A - Absorptiometric analysis - Google Patents

Absorptiometric analysis

Info

Publication number
JPH01102340A
JPH01102340A JP26103187A JP26103187A JPH01102340A JP H01102340 A JPH01102340 A JP H01102340A JP 26103187 A JP26103187 A JP 26103187A JP 26103187 A JP26103187 A JP 26103187A JP H01102340 A JPH01102340 A JP H01102340A
Authority
JP
Japan
Prior art keywords
component
chyle
wavelength
absorbance
object component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26103187A
Other languages
Japanese (ja)
Inventor
Kiyokazu Nakano
中野 清和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP26103187A priority Critical patent/JPH01102340A/en
Publication of JPH01102340A publication Critical patent/JPH01102340A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To enable the highly precise detection of an object component free of the effect of chyle and to improve the sensitivity of measurement, by providing a process of measuring the concentration of the object component, a process of absorbance including the object component and a process of correcting a measured value of the object component. CONSTITUTION:By a two-wavelength method using a main absorption wavelength and a subordinate absorption wavelength, the concentration of an object component made free of a chyle component as much as possible is measured. Next, an absorbance including the object component, which is obtained under the effect of the chyle component, is determined from the result of the above measurement. Moreover, by using a coefficient fixed by considering a predetermined degree of the effect of the chyle component on the absorbance of the object component in addition to a difference between these two absorbances, a measured value of the object component obtained by using two wavelengths is corrected. In this way, the object component can be detected with high precision free of the effect of the chyle component and the sensitivity of measurement can be improved.

Description

【発明の詳細な説明】 (技術分野) 本発明は、臨床生化学的試料中に含まれている色素、い
わゆるクロモゲンの内、乳び成分の影響を除去すること
ができる吸光光度分析方法に間する。
Detailed Description of the Invention (Technical Field) The present invention relates to a method for spectrophotometric analysis that can eliminate the influence of chyle components among pigments, so-called chromogens, contained in clinical biochemical samples. do.

(従来技術) 吸光光度分析方法は、臨床生化学分析の分野において一
般的に多用される方法であるが、血清や血漿等の生化学
的試料中にはクロモゲン、例えば黄ダンにおけるヒリル
ビン、溶血におけるヘモグロビン、及び中性脂質等の乳
びにより吸光度が影響を受けるため、測定結果に誤差を
含むという問題がある。
(Prior art) Spectrophotometric analysis is a method that is commonly used in the field of clinical biochemical analysis, but biochemical samples such as serum and plasma contain chromogens, such as hirirubin in yellow corn and hemolytic Since absorbance is affected by chyle such as hemoglobin and neutral lipids, there is a problem that measurement results include errors.

このような問題を解消するため、目的成分に極大の吸収
スペクトルを有する主吸収波長と、この波長から外れた
第2の波長、いわゆる副吸収波長における吸光度を測定
し、両者の差分を求めることにより、特に波長依存性が
小さな乳び成分の影響を除去する測定方法、いわゆる2
波長測定が実用化されているが、乳び成分の影響を除去
すべく、主吸収波長、と副吸収波長を可及的に接近させ
ると、両者の吸光度差が小ざくなって測定感度の低下を
来たすという新たな問題がある。
In order to solve this problem, we measure the absorbance at the main absorption wavelength where the target component has the maximum absorption spectrum and at a second wavelength, the so-called sub-absorption wavelength, and find the difference between the two. , a measurement method that eliminates the influence of chyle components with particularly small wavelength dependence, so-called 2
Although wavelength measurement has been put into practical use, in order to eliminate the influence of chyle components, if the main absorption wavelength and the sub absorption wavelength are made as close as possible, the difference in absorbance between the two becomes small and the measurement sensitivity decreases. There is a new problem:

(目的) 本発明はこのような問題に鑑みてなされたちのであって
、その目的とするところは目的成分の測定感度の低下を
来たすことなく、乳び成分の影響を可及的に除去するこ
とができる吸光光度分析方法を提案することにある。
(Purpose) The present invention was made in view of these problems, and its purpose is to eliminate the influence of chyle components as much as possible without reducing the measurement sensitivity of the target component. The purpose of this research is to propose a method for spectrophotometric analysis that allows for

(発明の概要) ・すなわち、本発明が特徴とするところは、主吸収波長
と副吸収波長を用いた2波長法により可及的に乳び成分
の影響を除外した目的成分濃度を測定する工程と、この
測定結果から乳び成分の影響を受けたときの目的成分を
含む吸光度を求める工程と、これら両吸光度差に、予め
求めておいた乳び成分が目的成分の吸光度に影Wを与え
る度合を考慮した係数により、前記2波長による目的成
分の測定値を補正する工程から測定するようにした点に
ある。
(Summary of the Invention) - That is, the present invention is characterized by a step of measuring the target component concentration by eliminating the influence of chyle components as much as possible by a two-wavelength method using a main absorption wavelength and a sub-absorption wavelength. , a step of determining the absorbance including the target component when influenced by the chyle component from this measurement result, and a step in which the previously determined chyle component casts a shadow W on the absorbance of the target component in the difference between these two absorbances. The point is that the measurement begins with the step of correcting the measured value of the target component by the two wavelengths using a coefficient that takes the degree into consideration.

(実施例) そこで以下に本発明の詳細を実施例に基づいて説明する
(Example) Therefore, the details of the present invention will be explained below based on an example.

まず、目的成分の検出に使用する分析試薬を反応容器に
収容して、主吸収波長λ1と副波長λ2におけるブラン
ク値Abz+ 、Ab7Bを測定しく第1図 工)、ま
た乳び成分を含まず、かつ目的成分を既知濃度含む標準
液に分析試薬を注入して主吸収波長λ1と副吸収波長λ
2における吸光度Astx+、Astλ2を測定する(
■)、これらの測定結果から主吸収波長λ、及び副吸収
波長λ2での濃度換算係数、つまり2波長測定法におけ
る濃度換算係数 Kx+xz =C−t/((A、tx+  Abx+)
−(A、tx2Abxz))と、主吸収波長λ、での濃
度換算係数、つまり1波長法における目的成分の濃度換
算係数 にλ+ = C−t/ (A −tx+ −A bx+
 )(ただし、Cstは被検査成分の標準試料濃度を表
わす、) をそれぞれ求めておく。
First, store the analytical reagent used to detect the target component in a reaction container, and measure the blank values Abz+ and Ab7B at the main absorption wavelength λ1 and the sub-wavelength λ2. Then, by injecting the analytical reagent into a standard solution containing the target component at a known concentration, the main absorption wavelength λ1 and the sub-absorption wavelength λ are determined.
Measure the absorbance Astx+, Astλ2 at 2 (
■), From these measurement results, the concentration conversion coefficient at the main absorption wavelength λ and the sub-absorption wavelength λ2, that is, the concentration conversion coefficient in the two-wavelength measurement method Kx+xz = C-t/((A, tx+ Abx+)
- (A, tx2Abxz)) and the concentration conversion coefficient at the main absorption wavelength λ, that is, the concentration conversion coefficient of the target component in the one-wavelength method, λ+ = C-t/ (A -tx+ -A bx+
) (where Cst represents the standard sample concentration of the component to be tested).

このような準備を終えた段階で検体を反応容器に収容す
るとともに、ここに分析試薬を注入して主吸収波長λ、
と副吸収波長λ2における吸光度A se*+、A 5
pW2を測定し、検体中の被検成分濃度、つまり乳び成
分を含んだ状態での濃度CmpC,、=に一=+xz 
((A、−x+ Abx+)  (A−−、u Abx
z))を2波長法により求める(■)。
After completing these preparations, the specimen is placed in a reaction container, and analytical reagents are injected into it to determine the main absorption wavelength λ,
and the absorbance at the sub-absorption wavelength λ2 A se *+, A 5
Measure pW2 and calculate the concentration of the test component in the specimen, that is, the concentration containing chyle components CmpC, = +xz
((A, -x+ Abx+) (A--, u Abx
z)) is determined by the two-wavelength method (■).

もとより、この測定結果は、乳び成分を可能な限り相殺
できるが、それでも依然として乳び成分の波長依存性に
基づく誤差ΔEを含んでいる。
Although this measurement result can offset the chyle component as much as possible, it still contains an error ΔE based on the wavelength dependence of the chyle component.

つぎに、上記工程により求めた2波長法による目的成分
の測定結果Cspに基づいて、この目的成分だけが含ま
れた検体の主吸収波長λ1における吸光度A1え、@ A t3+ = (Csp/ Kx +) + A b
x+から算出する。
Next, based on the measurement result Csp of the target component by the two-wavelength method obtained in the above process, the absorbance A1 at the main absorption wavelength λ1 of the sample containing only this target component is calculated as follows: @ A t3+ = (Csp/Kx + ) + A b
Calculate from x+.

この値AI%lは、乳び成分2波長測定法により得られ
た乳び成分の影!’を可及的に小さくした吸光度を元に
して、主吸収波長λ、における目的成分の吸光度を示す
ことになるから、予め主吸収波長λ、における影響度を
表わす係数Kを求めておき、この係数Kにより補正する
ことにより2波長測定方法によっても乳び成分の波長依
存性により依然として残っていた誤差成分を求めること
ができる。
This value AI%l is the shadow of the chyle component obtained by the chyle component two-wavelength measurement method! Since the absorbance of the target component at the main absorption wavelength λ is determined based on the absorbance with the value of By correcting with the coefficient K, it is possible to determine the error component that still remains due to the wavelength dependence of the chyle component even with the two-wavelength measurement method.

すなわち、補正濃度 Cc、、、=C,、−(A−x+  AILI ) ・
K= Ka+z、+(z ((A IIILI  A 
bz+)−(A −−2L2− A bxz))(A 
−pz+ −A 1=LI)・K=Cs+e−ΔE・・
・・(1) により乳び成分の波長依存性を除去した測定結果を得る
ことができる。
That is, the corrected density Cc,,,=C,,-(A-x+AILI)・
K= Ka+z, +(z ((A IIILI A
bz+)-(A--2L2-A bxz))(A
-pz+ -A 1=LI)・K=Cs+e−ΔE・・
...(1) makes it possible to obtain measurement results in which the wavelength dependence of the chyle component is removed.

なお、この実施例においては、−呈上吸収波長λ、での
吸光度に換算して算出しているが、主吸収波長λ、と副
吸収波長λ2における乳び成分の吸光度A rx+ +
 A tx2を、A IAI = (Csp/ Kx 
+) + A bz+A I−2= (A −t−2−
A bxz ) /(A□I I  A m tW2)
・(A□+1−Abえ、)◆Ahえ2に基づいて求め、
これに基づいて2波長測定法により求めた被検成分によ
る吸光度CspをC,、、、=C,−−((A、、、+
−Asx+)−(A−−L2 A1.2))・Ko(た
だし、Koは2波長λ1とA2の測定において乳びの影
響を被検成分の影響に換算するための係数) を補正しでも同様に乳び成分の影Wを除去することがで
きる。
In this example, the absorbance is calculated by converting it to the absorbance at the -presentation absorption wavelength λ, but the absorbance of the chyle component at the main absorption wavelength λ and the sub-absorption wavelength λ2 is A rx+ +
A tx2, A IAI = (Csp/Kx
+) + A bz+A I-2= (A -t-2-
A bxz ) /(A□I IA m tW2)
・(A□+1-Abe,)◆Calculate based on Ahe2,
Based on this, the absorbance Csp of the test component determined by the two-wavelength measurement method is C, , , = C, --((A, , , +
-Asx+)-(A--L2 A1.2))・Ko (Ko is a coefficient for converting the influence of chyle into the influence of the test component in the measurement of two wavelengths λ1 and A2) Similarly, the shadow W of the chyle component can be removed.

なお、本発明を適用して特に有効な例としては、検出目
的成分が波長830nm以上に吸収帯を有するとともに
、検体量が比較的多いもの、例えば尿酸、モノアミノキ
シダーゼ、酸性ホスファターゼ、シアル酸、遊離コレス
テロール等が挙げられる。
Examples of particularly effective applications of the present invention include those in which the component to be detected has an absorption band at a wavelength of 830 nm or more and the amount of the sample is relatively large, such as uric acid, monoaminoxidase, acid phosphatase, sialic acid, Examples include free cholesterol.

また、吸光度の検出としては、エンドポイント法、レー
ト測定法のいずれにも適用することができる。
Furthermore, both the end point method and the rate measurement method can be applied to detect absorbance.

[実 施 例] 高い濃度で脂質成分を含むラットの血清を試料に採り、
この血清中のトリグリセライド濃度を測定した。
[Example] Rat serum containing a high concentration of lipid components was taken as a sample,
The triglyceride concentration in this serum was measured.

第2図は、試薬として和光線Ji(株)製TG−HAテ
ストワコーによるグリセライド反応液の吸収スペクトル
と、試薬ブランク値を示すものであり、また第3図は、
上記試薬による反応時間経過を示す図であって(なお、
図中符号V、■は、それぞれは試薬ブランク液、標準試
料に試薬を添加したときの吸光スペクトルを、また■、
■、■は、それぞれ試薬ブランク液、試料のブランク液
、反応液の吸光スペクトル示す。)、このような反応形
態を示す試薬を使用して前述の手法により補正濃度Cc
、spと、可及的に乳び成分の影IFを除去することが
できる検体ブランク法、つまり試料反応液、及び試料、
緩衝液との差から目的成分の濃度を求める方法に基づく
測定を行なったところ表1に示したような結果を得た。
Figure 2 shows the absorption spectrum of the glyceride reaction solution using TG-HA Test Wako manufactured by Wakosen Ji Co., Ltd. as a reagent and the reagent blank value, and Figure 3 shows the reagent blank value.
FIG. 2 is a diagram showing the reaction time course using the above reagent (in addition,
The symbols V and ■ in the figure indicate the absorption spectra when the reagent was added to the reagent blank solution and the standard sample, respectively, and ■,
■ and ■ indicate the absorption spectra of the reagent blank solution, sample blank solution, and reaction solution, respectively. ), the corrected concentration Cc was determined by the method described above using a reagent exhibiting such a reaction pattern.
, sp, and a specimen blank method that can remove the shadow IF of chyle components as much as possible, that is, a sample reaction solution, and a sample,
The results shown in Table 1 were obtained when measurements were performed based on the method of determining the concentration of the target component from the difference with the buffer solution.

(なお、この表における補正係数には、0.098であ
る。) このことから、本発明による測定結果は、従来から行な
われている2波長法よりも検体ブランク法に一層近い値
を示しすとともに、高濃度で乳び成分を含む検体に対し
ても検体ブランク法のように手間を要することなく簡便
に目的成分を高い精度の測定が可能となることが判明し
た。
(The correction coefficient in this table is 0.098.) Therefore, the measurement results according to the present invention show values closer to the sample blank method than the conventional two-wavelength method. In addition, it has been found that even for samples containing chyle components at high concentrations, it is possible to easily measure target components with high accuracy without requiring the time and effort required in the sample blank method.

(効果) 以上、説明したように本発明においては、主吸収波長と
副吸収波長を用いた2波長法により可及的に乳び成分の
影響を除外した目的成分濃度と、この目的成分濃度に可
及的に一致する吸光度とを求め、両者の差をもって乳び
度を測定し、これに換算係数を掛けて乳び度が周波数依
存性により影響する度合を求めて測定結果を補正するよ
うにしたので、簡便な手法で、目的成分を乳びの影Vt
除去しで高い精度により検出することができるばかりで
なく、主吸収波長と副吸収波長の周波数差を大きくとっ
て測定感度の向上を図ることができる。
(Effects) As explained above, in the present invention, the target component concentration is determined by eliminating the influence of the chyle component as much as possible by the two-wavelength method using the main absorption wavelength and the sub-absorption wavelength, and the target component concentration is Find the absorbance that matches as much as possible, measure the chyle based on the difference between the two, multiply this by a conversion factor to find the degree to which the chyle is influenced by frequency dependence, and correct the measurement result. Therefore, using a simple method, the target component can be extracted from the shadow of the chyle Vt.
Not only can detection be performed with high accuracy by removing the wavelength, but also the measurement sensitivity can be improved by increasing the frequency difference between the main absorption wavelength and the sub-absorption wavelength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す吸光度線図、第2.3
図は、それぞれ本発明を適用してトリグリセライドを測
定した場合の試薬の吸光スペクトル、及び反応過程を示
す線図である。
Figure 1 is an absorbance diagram showing one embodiment of the present invention, Figure 2.3
The figures are diagrams showing absorption spectra of reagents and reaction processes when triglycerides are measured by applying the present invention, respectively.

Claims (1)

【特許請求の範囲】[Claims] 主吸収波長と副吸収波長を用いた2波長法により可及的
に乳び成分の影響を除外した目的成分濃度を測定する工
程と、この測定結果から乳び成分の影響を受けたときの
目的成分を含む吸光度を求める工程と、これら両吸光度
差に、予め求めておいた乳び成分が目的成分の吸光度に
影響を与える度合を考慮した係数により、前記2波長に
よる目的成分の測定値を補正する工程からなることを特
徴とする吸光光度分析方法。
The process of measuring the target component concentration by excluding the influence of chyle components as much as possible by a two-wavelength method using the main absorption wavelength and sub-absorption wavelength, and the purpose when the influence of chyle components is detected from this measurement result. The process of calculating the absorbance containing the component, and the correction of the measured value of the target component at the two wavelengths using a coefficient that takes into account the degree to which the chyle component, determined in advance, affects the absorbance of the target component based on the difference in both absorbances. A spectrophotometric analysis method characterized by comprising the steps of:
JP26103187A 1987-10-16 1987-10-16 Absorptiometric analysis Pending JPH01102340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26103187A JPH01102340A (en) 1987-10-16 1987-10-16 Absorptiometric analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26103187A JPH01102340A (en) 1987-10-16 1987-10-16 Absorptiometric analysis

Publications (1)

Publication Number Publication Date
JPH01102340A true JPH01102340A (en) 1989-04-20

Family

ID=17356089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26103187A Pending JPH01102340A (en) 1987-10-16 1987-10-16 Absorptiometric analysis

Country Status (1)

Country Link
JP (1) JPH01102340A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007512504A (en) * 2003-09-29 2007-05-17 フォトセンス、エル.エル.シー. Frequency domain luminescence fixture
JP2008026036A (en) * 2006-07-18 2008-02-07 Aloka Co Ltd Inclusion measuring device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007512504A (en) * 2003-09-29 2007-05-17 フォトセンス、エル.エル.シー. Frequency domain luminescence fixture
JP2008026036A (en) * 2006-07-18 2008-02-07 Aloka Co Ltd Inclusion measuring device

Similar Documents

Publication Publication Date Title
Haaland et al. New prediction-augmented classical least-squares (PACLS) methods: application to unmodeled interferents
US7663738B2 (en) Method for automatically detecting factors that disturb analysis by a photometer
JPS60249037A (en) Measuring device for substance to be analyzed and method of checking said device
JPH0134337B2 (en)
Miles et al. Calibration and standardisation of synchrotron radiation and conventional circular dichroism spectrometers. Part 2: Factors affecting magnitude and wavelength
Nzai et al. Soy lecithin phospholipid determination by fourier transform infrared spectroscopy and the acid digest/arseno‐molybdate method: A comparative study
US20050233037A1 (en) Methods for casein determination in milk
JPH08285684A (en) Spectrum stabilizing method in spectrometry
EP0437249B1 (en) Spectrometric method free from variations of error
JP2000346801A (en) Multi-component gas analysis with ftir method
JP3203798B2 (en) How to measure chromogen
Wojciechowski et al. Quantitative analysis of water-soluble vitamins by ATR-FTIR spectroscopy
Beukelman et al. The standard addition technique in flame spectrometry
Kalivas Determination of optimal parameters for multicomponent analysis using the calibration matrix condition number
JPH01102340A (en) Absorptiometric analysis
Abou Al Alamein et al. Univariate spectrophotometry and multivariate calibration: Stability-indicating analytical tools for the quantification of pimozide in bulk and pharmaceutical dosage form
JPS6118693B2 (en)
JPH063264A (en) Method for forming calibration curve in near infrared analysis
JPS60104238A (en) Method and device for quantitative analysis by detecting simultaneously multi-wavelength
Donahue et al. Analysis of deoxyribonucleotides with principal component and partial least-squares regression of UV spectra after Fourier preprocessing
López-Anreus Simultaneous vapour phase Fourier transform infrared spectrometric determination of butyl acetate, toluene and methyl ethyl ketone in paint solvents
JPH01101447A (en) Method for measuring turbidity in absorptiometric analysis
CN117191728B (en) Method for measuring multi-component concentration based on ultraviolet-visible absorption spectrum and application
JP3212107B2 (en) Spectrometry
Karrer et al. Bayesian statistical methods for use in mass spectral assignment