JPH01101495A - Fuel aggregate - Google Patents
Fuel aggregateInfo
- Publication number
- JPH01101495A JPH01101495A JP62258347A JP25834787A JPH01101495A JP H01101495 A JPH01101495 A JP H01101495A JP 62258347 A JP62258347 A JP 62258347A JP 25834787 A JP25834787 A JP 25834787A JP H01101495 A JPH01101495 A JP H01101495A
- Authority
- JP
- Japan
- Prior art keywords
- spacer
- fuel
- spacers
- outside
- fuel rods
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 53
- 125000006850 spacer group Chemical group 0.000 claims abstract description 63
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 4
- 230000002159 abnormal effect Effects 0.000 abstract description 2
- 230000001052 transient effect Effects 0.000 abstract description 2
- 238000003491 array Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 7
- 238000009835 boiling Methods 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- 239000002826 coolant Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000005514 two-phase flow Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は原子炉に装荷される燃料集合体、特に燃料棒間
隔を一定に保持するスペーサを備えた燃料集合体に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a fuel assembly loaded into a nuclear reactor, and particularly to a fuel assembly equipped with a spacer that maintains a constant spacing between fuel rods.
(従来の技術)
原子炉に装荷される燃料集合体の燃料棒間隔を一定にす
るためにスペーサが設けられているが。(Prior Art) Spacers are provided to maintain constant spacing between fuel rods in a fuel assembly loaded into a nuclear reactor.
このスペーサには付随的な影響として圧力損失特性と熱
的限界出力特性の2点の熱設計上重要な要素がある。This spacer has two important factors in thermal design: pressure loss characteristics and thermal limit output characteristics.
そこで、先ず、圧力損失特性について説明する。Therefore, first, the pressure loss characteristics will be explained.
スペーサは流路妨害物として流れを乱すため。Spacers act as flow path obstructions and disrupt the flow.
集合体圧力損失特性に付加的な局所圧力損失をもたらし
、集合体出入口圧力損失を増加させる。燃料集合体圧力
損失に占める割合は、二相流条件で30%に上っている
。このような付加的な圧力損失を考慮して強制循環方式
、自然循環方式共に、−定の冷却材流量が確保できるよ
うに駆動力を設計することが必要である。It introduces an additional local pressure drop to the aggregate pressure drop profile and increases the aggregate inlet/outlet pressure drop. The proportion of fuel assembly pressure loss is as high as 30% under two-phase flow conditions. In consideration of such additional pressure loss, it is necessary to design the driving force in both the forced circulation method and the natural circulation method so that a constant coolant flow rate can be ensured.
次に、熱的限界出力特性について説明する。Next, thermal limit output characteristics will be explained.
伝熱特性に関して、燃料棒表面の熱伝達が悪化する状態
、つまり沸騰遷移発生点に及ぼす影響がある。スペーサ
なしの構成では発熱部出口端で沸騰遷移が発生するが、
スペーサを設置すると、スペーサの直上流側に沸騰遷移
発生位置が限られる傾向にあることが知られている。従
って、スペーサの構造、設置間隔を変えることにより、
限界出力特性も変化する。Regarding heat transfer properties, there is an effect on the condition where heat transfer on the fuel rod surface deteriorates, that is, on the boiling transition point. In the configuration without a spacer, a boiling transition occurs at the exit end of the heat generating section, but
It is known that when a spacer is installed, the position where boiling transition occurs tends to be limited to the immediate upstream side of the spacer. Therefore, by changing the spacer structure and installation interval,
The limit output characteristics also change.
上記した圧力損失特性、熱的限界出力特性の2点につい
て、スペーサ構成と設置間隔の影響を以下に述べる。The effects of the spacer configuration and installation interval will be described below regarding the above-mentioned pressure loss characteristics and thermal limit output characteristics.
スペーサ圧力損失ΔP8は、その評価上局所損失要素Δ
Pie摩擦損失要素ΔP、に分けて考えることができる
。すなわち、
Δpg =ΔP1+ΔP。Spacer pressure loss ΔP8 is evaluated by local loss element Δ
It can be considered separately into the Pie friction loss element ΔP. That is, Δpg = ΔP1+ΔP.
上記局所損失要素ΔPAは、スペーサによる投影面積比
σ=Ap/Ax−sとスペーサ形状因子Cgの関数で与
えられる。今、Cgを一定とすると、ΔP、とσとの関
係は第6図のように与えられる。従って、スペーサ投影
面積比σが小さいほど、局所損失要素が低減する。The local loss element ΔPA is given by a function of the spacer projected area ratio σ=Ap/Ax−s and the spacer shape factor Cg. Now, assuming that Cg is constant, the relationship between ΔP and σ is given as shown in FIG. Therefore, the smaller the spacer projected area ratio σ, the lower the local loss element.
しかして、スペーサの及ぼす沸騰遷移発生への影響は大
別して次の2点と考えられる。Therefore, the influence of the spacer on the occurrence of boiling transition can be roughly classified into the following two points.
■ 下流側に及ぼす効果としては、ミキシング(mLx
ing)の増加による流路内の二相分布の均一化。■ As an effect on the downstream side, mixing (mLx
ing) to homogenize the two-phase distribution within the flow path.
■ 上流側に及ぼす効果としては、流れに対する障害物
として上流側の乱れ増進。■ The effect on the upstream side is that turbulence on the upstream side increases as an obstacle to the flow.
ところで、上記■は伝熱状態への良い影響の一つであり
、流路内の熱流動分布を均一化し、除熱効率を促進させ
る効果がある。By the way, the above item (2) is one of the positive effects on the heat transfer state, and has the effect of making the heat flow distribution in the flow path uniform and promoting heat removal efficiency.
軸方向スペーサ間隔Lsと沸騰遷移発生条件(熱的限界
出力) Qcpとの関係は第7図のように与えられる。The relationship between the axial spacer interval Ls and the boiling transition generation condition (thermal limit output) Qcp is given as shown in FIG.
すなわち、スペーサ間隔を小さくし、軸方向のスペーサ
設置の数を増やすと熱的限界出力Qcpは増加する。That is, when the spacer interval is made smaller and the number of spacers installed in the axial direction is increased, the thermal limit output Qcp increases.
現行のスペーサは圧力損失特性と熱的限界出力特性の両
面を考慮し、最適な特性を持つように改良・開発されて
きた。ただ、両特性は互いに相反する性質を持つ傾向に
ある1例えば、第7図に示すようにスペーサ間隔を小さ
くしていくと、高い限界出力特性を持つ集合体が得られ
るが、一方、軸方向のスペーサ個数を増すと、圧力損失
が増加してしまう。Current spacers have been improved and developed to have optimal characteristics, taking into consideration both pressure loss characteristics and thermal limit output characteristics. However, these two characteristics tend to be contradictory to each other.1 For example, as shown in Figure 7, if the spacer spacing is reduced, an aggregate with high critical output characteristics can be obtained, but on the other hand, in the axial direction If the number of spacers is increased, the pressure loss will increase.
(発明が解決しようとする問題点)
本発明は、このような事情を考慮してなされたもので、
その目的は、圧力損失特性及び限界出力特性の両面で改
善された燃料集合体スペーサを備えた燃料集合体を提供
することにある。(Problems to be solved by the invention) The present invention has been made in consideration of these circumstances, and
The object is to provide a fuel assembly with a fuel assembly spacer that is improved both in terms of pressure drop characteristics and critical power characteristics.
(問題点を解決するための手段)
本発明は、上記目的を達成するために、チャンネルボッ
クス内に収容した多数の燃料棒を長手方向に平行でかつ
一定間隔に保持するスペーサを備えた燃料集合体におい
て、断面内の燃料棒ギャップを2分割して外側と内側に
分け、それぞれの燃料棒ギャップ部分を一定間隔に保持
するようにした二つのスペーサを設けるとともに少なく
とも4本の燃料棒間隔が重なるように構成したことを特
徴とするものである。(Means for Solving the Problems) In order to achieve the above object, the present invention provides a fuel assembly equipped with a spacer that holds a large number of fuel rods housed in a channel box in parallel with the longitudinal direction and at regular intervals. In the body, the fuel rod gap in the cross section is divided into two parts, an outer part and an inner part, and two spacers are provided to maintain each fuel rod gap part at a constant interval, and at least four fuel rod intervals overlap. It is characterized by being configured as follows.
したがって、本発明によると、1個当りのスペーサ圧力
損失が低減しかつ高い限界出力特性を実現することがで
きる。Therefore, according to the present invention, pressure loss per spacer can be reduced and high limit output characteristics can be realized.
次に本発明の基本的考え方について説明する。Next, the basic idea of the present invention will be explained.
現在、原子炉に装荷されている燃料集合体スペーサは1
例えば第8図に示すように、燃料棒1がセル3により囲
まれた構造となっており、その断面内に作用する荷重と
して平行及び対角方向の歪み振幅は比較的小さく、強度
の大きな構成となっている。なお、2は太径のウォータ
ロッドである。Currently, the number of fuel assembly spacers loaded in nuclear reactors is 1.
For example, as shown in Fig. 8, the fuel rod 1 has a structure surrounded by cells 3, and the strain amplitude in the parallel and diagonal directions as loads acting within the cross section is relatively small, and the structure has a large strength. It becomes. Note that 2 is a large diameter water rod.
従って、断面内で2か所に分割しても集合体としての強
度は十分確保できる範囲に設計することは可能である0
例えば1本発明に係る2分割スペーサでは燃料棒セルの
一部を重なるようにすることにより強度を増した構造と
している。Therefore, it is possible to design within a range that can ensure sufficient strength as an aggregate even if it is divided into two parts within the cross section.
For example, a two-part spacer according to the present invention has a structure in which the strength is increased by partially overlapping fuel rod cells.
軸方向のスペーサ設置箇所が増えると、集合体限界出力
は第7図より増加するが、圧力損失は下記のような設計
とすることにより低減が図れる。As the number of spacer installation locations in the axial direction increases, the aggregate limit output increases as shown in FIG. 7, but the pressure loss can be reduced by designing as described below.
すなわち、簡単のため、第5図(a)で示す従来スペー
サ3をその断面内で分割し、第5図(b)に示すように
、それぞれを軸方向2か所にスペーサ3a、3bを設置
すると、圧力損失は下記のように変化する。That is, for simplicity, the conventional spacer 3 shown in FIG. 5(a) is divided within its cross section, and spacers 3a and 3b are each installed at two locations in the axial direction, as shown in FIG. 5(b). Then, the pressure loss changes as follows.
今、スペーサ圧力損失をΔPsPとすると、 このΔP
sPはスペーサ部の冷却材質量速度GAPを用いて次の
(D式で表わすことができる。Now, if the spacer pressure loss is ΔPsP, then this ΔP
sP can be expressed by the following equation (D) using the coolant mass velocity GAP of the spacer portion.
ここで
AsP=Aυ−APニスペーサ部流路面積八へニスペー
サ投影面積
iニスペーサのない管群部流路面積
スペーサ部では流路が挟まり質量速度Gspが増すため
、管群部より圧力損失が大きくなる。Here, AsP = Aυ - AP Flow path area of the spacer section 8 To Ni spacer projected area i Flow path area of the tube group without spacer In the spacer section, the flow path is pinched and the mass velocity Gsp increases, so the pressure loss is larger than in the tube group section. .
スペーサを断面内で投影面積を等分割し、軸方向2ケ所
に分けて置いた時(第5図(b)参照)、圧力損失は次
のように変化する。When the projected area of the spacer is equally divided in the cross section and placed at two locations in the axial direction (see FIG. 5(b)), the pressure loss changes as follows.
ΔPb =ΔP1+ΔP2 ・・・に)
1 2 ・・・■
ΔP2= 1(、、ガGb
ここで
2分割されたスペーサに、、に、は、投影面積比σがK
aに比べて半減するので、第6図の関係より局所損失成
分は、1/2以下になる。ΔPb = ΔP1 + ΔP2 ...)
1 2...■ ΔP2=1(,,gaGb Here, the spacer divided into two has a projected area ratio σ of K
Since it is reduced by half compared to a, the local loss component becomes 1/2 or less from the relationship shown in FIG.
(実施例) 本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described with reference to the drawings.
第1図は本発明の一実施例の縦断面図であり、同図に示
すように、燃料集合体は中心部に1本の太径ウォータロ
ッド2を、その外側に多数の燃料棒1を規則正しく配置
し、燃料棒ギャップ間隔が一定となるようにスペーサ3
0にて保持するとともにその上下端をそれぞれ上部タイ
プレート4及び下部タイプレート5により固定されてお
り、さらにその外側にチャンネルボックス6が設けられ
ている。スペーサ30は外側スペーサ31と内側スペー
サ32とで構成されており、外側スペーサ31は第2図
の横断面図に示すように外側2列の燃料棒と最内側のコ
ーナ部の燃料棒を保持しており、また内側スペーサ32
は最内側1列の燃料棒を保持している。したがって最内
側のコーナ部の燃料棒4本は両スペーサ31.32によ
って保持されており、これによって機械的強度は増大す
ることとなる。なお 1上記実施例では内外両スペーサ
によって保持される燃料棒は最内側のコーナ部の燃料棒
であるが、この4本のみに限定されるものではなく、さ
らに多数の燃料棒を内外両スペーサで保持するように構
成してもよい。FIG. 1 is a longitudinal cross-sectional view of one embodiment of the present invention. As shown in the figure, the fuel assembly has one large-diameter water rod 2 in the center and a large number of fuel rods 1 on the outside. Spacers 3 are arranged regularly so that the fuel rod gap spacing is constant.
0, and its upper and lower ends are fixed by an upper tie plate 4 and a lower tie plate 5, respectively, and a channel box 6 is provided on the outside thereof. The spacer 30 is composed of an outer spacer 31 and an inner spacer 32, and the outer spacer 31 holds the two outer rows of fuel rods and the fuel rods at the innermost corner, as shown in the cross-sectional view of FIG. Also, the inner spacer 32
holds the innermost row of fuel rods. Therefore, the four fuel rods at the innermost corners are held by both spacers 31, 32, thereby increasing the mechanical strength. 1 In the above embodiment, the fuel rods held by both the inner and outer spacers are the fuel rods at the innermost corners, but the fuel rods are not limited to these four, and a larger number of fuel rods can be held by both the inner and outer spacers. It may be configured to hold the information.
次に、本発明の燃料集合体と従来の燃料集合体による限
界出力Qcpと冷却材流量Wとの関係を比較したものが
第4図(a)であり、 また、同様に集合体圧力損失Δ
Pと冷却材流Wとの関係を比較したものが第4図(b)
である、これらの図から分るように、本発明(点線)の
方が従来の燃料集合体(実線)より集合体限界出力が増
加し圧力損失が低下している。Next, FIG. 4(a) compares the relationship between the limit output Qcp and the coolant flow rate W between the fuel assembly of the present invention and the conventional fuel assembly, and similarly, the assembly pressure loss Δ
Figure 4(b) shows a comparison of the relationship between P and coolant flow W.
As can be seen from these figures, the fuel assembly of the present invention (dotted line) has a higher assembly limit output and a lower pressure loss than the conventional fuel assembly (solid line).
以上説明したように、本発明によれば通常運転時及び異
常な過渡変化時における熱的限界出力を高め、熱的余裕
の大きな燃料集合体を提供することができるので、集合
体の設計範囲、運転範囲が拡大するというすぐれた効果
を奏する。As explained above, according to the present invention, it is possible to increase the thermal limit output during normal operation and during abnormal transient changes, and to provide a fuel assembly with a large thermal margin. This has the excellent effect of expanding the driving range.
第1図は本発明の一実施例の縦断面図、第2図及び第3
図はそれぞれ第1図の1−1線及び■−■線に沿う横断
面図、第4図(a)及び(b)は本発明の燃料集合体と
従来の燃料集合体の限界出力及び圧力損失を比較した図
、第5図(a)及び(b)は従来のスペーサと本発明の
スペーサの圧力損失を比較するための説明図、第6図は
スペーサ局所損失要素と投影面積比との関係を示す図、
第7図は集合体限界出力とスペーサ軸方向間隔との関係
を示す図、第8図は従来の燃料集合体の横断面図である
。
1・・・燃料棒
2・・・太径ウォータロッド
3・・・スペーサ
4・・・上部タイプレート
5・・・下部タイプレート
6・・・チャンネルボックス
30・・・スペーサ
31・・・外側スペーサ
32・・・内側スペーサ
(8733)代理人弁理士 猪 股 祥 晃(ほか1名
)第1図
第2図
第3図
(a) (b)第4図
(a)
第5図
O−
第6図
第7図
第8図FIG. 1 is a longitudinal sectional view of one embodiment of the present invention, FIG. 2 and FIG.
The figures are cross-sectional views taken along lines 1-1 and -■ in Fig. 1, respectively, and Figs. 4 (a) and (b) show the limit output and pressure of the fuel assembly of the present invention and the conventional fuel assembly. Figures 5(a) and 5(b) are explanatory diagrams for comparing the pressure losses of the conventional spacer and the spacer of the present invention. Figure 6 is a diagram comparing the spacer local loss element and the projected area ratio. A diagram showing the relationship,
FIG. 7 is a diagram showing the relationship between the assembly limit output and the spacer axial spacing, and FIG. 8 is a cross-sectional view of a conventional fuel assembly. 1... Fuel rod 2... Large diameter water rod 3... Spacer 4... Upper tie plate 5... Lower tie plate 6... Channel box 30... Spacer 31... Outer spacer 32...Inner spacer (8733) Representative patent attorney Yoshiaki Inomata (and one other person) Figure 1 Figure 2 Figure 3 (a) (b) Figure 4 (a) Figure 5 O-6 Figure 7 Figure 8
Claims (1)
長手方向に平行でかつ一定間隔に保持するスペーサを備
えた燃料集合体において、断面内の燃料棒ギャップを2
分割して外側と内側に分け、それぞれの燃料棒ギャップ
部分を一定間隔に保持するようにした二つのスペーサを
設けるとともに少なくとも4本の燃料棒間隔が重なるよ
うに構成したことを特徴とする燃料集合体。(1) In a fuel assembly equipped with spacers that hold a large number of fuel rods housed in a channel box parallel to the longitudinal direction and at regular intervals, the fuel rod gap in the cross section is set to 2.
A fuel assembly characterized in that the fuel assembly is divided into an outer part and an inner part, provided with two spacers to maintain the respective fuel rod gap parts at a constant interval, and configured so that the intervals of at least four fuel rods overlap. body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62258347A JPH01101495A (en) | 1987-10-15 | 1987-10-15 | Fuel aggregate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62258347A JPH01101495A (en) | 1987-10-15 | 1987-10-15 | Fuel aggregate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01101495A true JPH01101495A (en) | 1989-04-19 |
Family
ID=17318979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62258347A Pending JPH01101495A (en) | 1987-10-15 | 1987-10-15 | Fuel aggregate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01101495A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010145232A (en) * | 2008-12-18 | 2010-07-01 | Global Nuclear Fuel-Japan Co Ltd | Fuel assembly |
-
1987
- 1987-10-15 JP JP62258347A patent/JPH01101495A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010145232A (en) * | 2008-12-18 | 2010-07-01 | Global Nuclear Fuel-Japan Co Ltd | Fuel assembly |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4426355A (en) | Spacer grid for nuclear fuel assembly | |
US4698204A (en) | Intermediate flow mixing nonsupport grid for BWR fuel assembly | |
US6278759B1 (en) | Spacer grid with multi-springs and dimple vanes for nuclear fuel assemblies | |
US3104218A (en) | Pressure tube structure | |
US4775510A (en) | Nuclear fuel assembly hollow flow deflector | |
US5272741A (en) | Nuclear fuel assembly | |
JPH0255990A (en) | Fuel handle for boiling water type nuclear reactor | |
US6744843B2 (en) | Side-slotted nozzle type double sheet spacer grid for nuclear fuel assemblies | |
US6714619B2 (en) | Spacer grid with double deflected vanes for nuclear fuel assemblies | |
US3212991A (en) | Continuous support fuel rod spacer system | |
JPH01101495A (en) | Fuel aggregate | |
US5493590A (en) | Critical power enhancement system for a pressurized fuel channel type nuclear reactor using CHF enhancement appendages | |
US3844888A (en) | Helical flow deflector cone for fuel element assemblies | |
JPH067187B2 (en) | Swirling vanes integrated with spacer grid | |
RU2124239C1 (en) | Fuel assembly spacer grid | |
JPH0351796A (en) | Fuel assembly of nuclear reactor | |
JP2740660B2 (en) | Fuel assembly | |
US3390053A (en) | Flexible spacer for a nuclear reactor fuel assembly | |
JPH05157867A (en) | Fuel assembly | |
JP2504514B2 (en) | Reactor fuel assembly | |
JPH02147986A (en) | Fuel assembly | |
JP2656287B2 (en) | Fuel rod spacer | |
JPH0236154Y2 (en) | ||
JPH03108691A (en) | Fuel assembly | |
JPH0198994A (en) | Fuel assembly |