JPH01101374A - Electrically conductive powdery molding material - Google Patents

Electrically conductive powdery molding material

Info

Publication number
JPH01101374A
JPH01101374A JP62259957A JP25995787A JPH01101374A JP H01101374 A JPH01101374 A JP H01101374A JP 62259957 A JP62259957 A JP 62259957A JP 25995787 A JP25995787 A JP 25995787A JP H01101374 A JPH01101374 A JP H01101374A
Authority
JP
Japan
Prior art keywords
conductive powder
molding material
specific resistance
conductive
electrically conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62259957A
Other languages
Japanese (ja)
Inventor
Ko Ishihara
石原 興
Norio Kanbara
神原 紀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP62259957A priority Critical patent/JPH01101374A/en
Publication of JPH01101374A publication Critical patent/JPH01101374A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To obtain an electrically conductive powdery molding material having low specific resistance and small variation of specific resistance in a lot and between lots, by mixing a powdery polymer material with electrically conductive powder. CONSTITUTION:The objective electrically conductive powdery molding material is produced by the dry-mixing of (A) a powdery polymer material preferably produced by crushing a thermosetting resin such as phenolic resin or melamine resin to particle size of finer than 200 mesh and (B) conductive powder, e.g. highly conductive powder having a specific resistance of <=10<2>OMEGA.cm (e.g. electrically conductive powder such as carbon black, graphite or ketjenblack, or carbon fiber, etc.) or semiconductive particles having a specific resistance of 10<2>-10<10>OMEGA.cm using Henschel mixer or ball mill, etc. The molding material is composed of the particle 8 of the component A covered with the particles 9 of the component B. A low and uniform specific resistance can be attained in the present material because of good and uniform contact state between the particles 9 of the powdery component B.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は粉末状導電性成形材料に関するものである。[Detailed description of the invention] [Industrial application field] This invention relates to a powdered conductive molding material.

〔従来の技術〕[Conventional technology]

従来の導電性高分子成形材料は、高分子材料と導電性粉
末とを、ロール混練→シート化→ペレット化して製造さ
れるものであり、比抵抗が高(、しかも10ット間にお
けるバラツキやロット間におけるバラツキが大きいとい
う難点を備えている。
Conventional conductive polymer molding materials are produced by roll-kneading polymer materials and conductive powder, forming them into sheets, and then forming them into pellets. It has the disadvantage that there is large variation between lots.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

したがって、このような導電性成形材料を用いて形成さ
れた成形品も、その成形材料自身の有する欠点をそのま
ま表わすようになる。
Therefore, a molded article formed using such a conductive molding material also exhibits the defects of the molding material itself.

この発明はこのような事情に鑑みなされたもので、比抵
抗が小さく、ロット内およびロット間での比抵抗のバラ
ツキの小さい粉末状導電性成形材料の提供をその目的と
する。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide a powdery conductive molding material that has a low resistivity and small variations in resistivity within and between lots.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するため、この発明の粉末状導電性成
形材料は、粉末状高分子材料と導電性粉末とを混合する
という構成をとる。
In order to achieve the above object, the powdery conductive molding material of the present invention has a structure in which a powdery polymeric material and a conductive powder are mixed.

〔作用〕[Effect]

本発明者らは、従来のロール混練、シート化。 The inventors used conventional roll kneading and sheeting.

ペレット化を経て得られる導電性成形材料を用いると、
比抵抗が高くバラツキが大きくなるという問題の原因を
つきとめるため、研究を重ねる過程で、ペレット内に導
電性粉末が均一に分散されていないことに気づいた。そ
して、これはロール混練の練り込み方により、ペレット
の外周側に導電性粉末が偏在したり、中央側に導電性粉
末が偏在することに起因することをつきとめた。このよ
うな導電性粉末の偏在が生じているベレットを使用する
と、ペレットを成形する際、導電性粉末同士の接触状態
が、導電性粉末の偏在の態様により異なるようになり、
それによって導電層の比抵抗のバラツキを生起しまた比
抵抗が大きくなることをつきとめた。そしてさらに、研
究を重ねた結果、高分子成形材料をロール混純にかけず
粉末状にし、この粉末状の高分子材料と導電性粉末とを
混合して導電性成形材料自体を粉末状にすると、上記の
ような問題を全て解消しうるようになることを見出しこ
の発明に到達した。
When using conductive molding material obtained through pelletization,
In the process of conducting repeated research to determine the cause of the problem of high resistivity and wide variation, it was discovered that the conductive powder was not uniformly dispersed within the pellets. It was also found that this was caused by the conductive powder being unevenly distributed on the outer periphery side of the pellet or unevenly distributed on the center side depending on the kneading method of roll kneading. When pellets with such uneven distribution of conductive powder are used, when molding the pellet, the contact state between the conductive powders will differ depending on the manner of uneven distribution of the conductive powder.
It was found that this caused variations in the resistivity of the conductive layer and increased the resistivity. Furthermore, as a result of repeated research, we found that by making a polymer molding material into a powder form without rolling it, and mixing this powdered polymer material with conductive powder to make the conductive molding material itself into a powder form, The inventors have discovered that all of the above problems can be solved and have arrived at this invention.

この発明の粉末状導電性成形材料は、粉末状高分子材料
と導電性粉末とを用い°ζ得ら−れる。
The powdered electrically conductive molding material of the present invention is obtained using a powdered polymer material and electrically conductive powder.

上記粉末状高分子材料としては、フェノール樹脂、メラ
ミン樹脂等の熱硬化性樹脂を従来公知の粉砕方法により
粉砕したものが好ましいが、場合によっては、熱可塑性
樹脂やゴムを粉砕したものも用いることができる。この
ような粉末状高分子材料は、粒度が200メツシュ以下
であることが好ましい。
The above-mentioned powdered polymer material is preferably one obtained by pulverizing a thermosetting resin such as a phenol resin or a melamine resin using a conventionally known pulverizing method, but in some cases, pulverizing a thermoplastic resin or rubber may also be used. Can be done. The particle size of such a powdered polymeric material is preferably 200 mesh or less.

また、導電性粉末としては、カーボンブラック、黒鉛、
ケッチエンブラック等の導電性カーボンブラックやカー
ボン繊維等の比抵抗が10”Ω・CII+以下の高導電
性の粉末や導電性亜鉛華、導電性錫等の10” 〜10
’Ω’cmのものや、T i Oz、Fe、03等の1
04〜106Ω’cmのもの、さらには、SnO,、Z
nO等の106〜lORΩ・cm等の導電性金属酸化物
ないしは金属酸化物類も使用することができる。前者を
使用すれば導電性成形材料が得られ、後者を使用すれば
半導電性成形材料が得られる。このように、この発明に
おいては、半導電性を示すものも導電性成形材料の範囲
に含めるものである。また導電性粉末には、粉末状ない
しは粒状のものだけではなく、カーボン繊維のような微
小繊維片状のものも含まれる。この発明の粉末状導電性
成形材料は、上記粉末状高分子材料と導電性粉末とをヘ
ンシェルミキサー、ボールミル等により乾式混合するこ
とによって得ることができる。
In addition, examples of conductive powder include carbon black, graphite,
Highly conductive powder such as conductive carbon black such as Ketchen black or carbon fiber with a specific resistance of 10"Ω・CII+ or less, conductive zinc white, conductive tin, etc. 10" to 10
'Ω' cm, T i Oz, Fe, 03 etc.
04 to 106 Ω'cm, and even SnO, Z
Conductive metal oxides or metal oxides having a conductivity of 10 6 to 1 OR Ω·cm such as nO can also be used. If the former is used, a conductive molding material is obtained, and if the latter is used, a semiconductive molding material is obtained. Thus, in the present invention, materials exhibiting semiconductivity are also included in the scope of conductive molding materials. Further, the conductive powder includes not only powder or granular powder, but also fine fiber flakes such as carbon fiber. The powdery conductive molding material of the present invention can be obtained by dry mixing the powdery polymer material and conductive powder using a Henschel mixer, a ball mill, or the like.

このようにして得られた粉末状導電性成形材料は、第1
図に示すように、粉末状高分子材料の粒子8の外周に導
電性粉末粒子9が付着した状態となっており、導電性粉
末粒子9間の接触状態がよく、かつ均一になるため比抵
抗が小さく、ロット内およびロット間での比抵抗のバラ
ツキが小さくなる。これに対して従来の、ロール混練、
シート化、ペレット化を経て得られた成形材料は、第2
図に示すようにペレット10内に導電性粉末粒子9が取
り込まれた状態になっており、導電性粉末粒子9同士の
接触が円滑に行われない状態となっているため、比抵抗
が大きくなっている。しかも、上記導電性粉末粒子9の
ベレッ)10内の分布状態は、ロール混練等によって大
きな影響をうけるため偏在しやすく、比抵抗のバラツキ
の原因をつくるのである。
The powdered conductive molding material thus obtained is
As shown in the figure, the conductive powder particles 9 are attached to the outer periphery of the particles 8 of the powdered polymer material, and the contact between the conductive powder particles 9 is good and uniform, resulting in a specific resistance. is small, and variations in resistivity within and between lots are reduced. In contrast, conventional roll kneading,
The molding material obtained through sheeting and pelletizing is
As shown in the figure, the conductive powder particles 9 are incorporated into the pellet 10, and the conductive powder particles 9 are not in smooth contact with each other, so the specific resistance increases. ing. Furthermore, the distribution state of the conductive powder particles 9 within the bellet 10 is greatly affected by roll kneading and the like, and therefore tends to be unevenly distributed, causing variations in resistivity.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明の粉末状導電性成形材料は、導
電性粉末を高分子材料中に取り込まず、・ 高分子材料
を粉末状にし、これと導電性粉末とを混合して全体が粉
末状になっているため、粉末状高分子材料の粒子の外周
に導電性粉末粒子が分布した状態となり、導電性粉末粒
子同士の接触状態が向上し比抵抗が小さくなる。また、
導電性粉末粒子が高分子材料粒子の外周に分布していて
偏在が生じにくいため、ロット内およびロット間での比
抵抗のバラツキが小さくなる。特に、導電性粉末として
10”〜IQ+6Ω・cm程度の半導電性粒子を用いて
、半導電性を得ようとする場合に畝従来は一定の半導電
性に制御することが困難であるところ、この発明の方法
によれば、導電性粉末粒子の接触状態が良くなるため、
酸化錫、酸化亜鉛等の比較的比抵抗の高い粒子を用い、
設定範囲内の半導電性に容易に制御なしうるようになる
As described above, the powdered conductive molding material of the present invention does not incorporate conductive powder into the polymeric material.- The polymeric material is powdered, and this and the conductive powder are mixed to form a powder. Because of the shape, the conductive powder particles are distributed around the outer periphery of the particles of the powdered polymer material, and the contact between the conductive powder particles is improved and the specific resistance is reduced. Also,
Since the conductive powder particles are distributed around the outer periphery of the polymeric material particles and are less likely to be unevenly distributed, variations in resistivity within and between lots are reduced. In particular, when trying to obtain semiconductivity by using semiconducting particles of about 10" to IQ + 6 Ω cm as conductive powder, it is difficult to control the ridges to a constant semiconductivity. According to the method of this invention, since the contact state of the conductive powder particles is improved,
Using particles with relatively high resistivity such as tin oxide and zinc oxide,
The semiconductivity can be easily controlled within a set range.

つぎに、実施例について比較例とあわせて説明する。Next, examples will be described together with comparative examples.

〔実施例〕〔Example〕

フェノール樹脂と他の成分とを下記の割合で配合した。 The phenol resin and other components were blended in the following proportions.

〔配合割合〕[Blending ratio]

フェノール樹脂       100重量部硬化剤(ヘ
キサミン)      13 〃Ca(0[l)2  
       2 〃ワラストナイト        
 10 〃ガラス繊維          50 〃ア
スベスト          10 〃助    剤 
              2  〃つぎに、上記配
合物を充分ロール混練したのちシート状化し、ついでこ
れを従来公知の粉砕機にかけて粉砕し、粒度を50μm
程度に設定した。
Phenol resin 100 parts by weight Curing agent (hexamine) 13 Ca (0 [l)2
2 〃Wallast Night
10 〃Glass fiber 50 〃Asbestos 10 〃Auxiliary agent
2 Next, the above-mentioned mixture was sufficiently roll-kneaded and then formed into a sheet, which was then pulverized using a conventionally known pulverizer to reduce the particle size to 50 μm.
It was set to about.

他方、導電性粉末として、下記のものを準備した。On the other hand, the following was prepared as a conductive powder.

*半導電性領域のもの つぎに、上記高分子材料の微粉組品と導電性粉末とを所
定の導電性値が得られるような割合で混合し、目的とす
る粉末状導電性成形材料を得た。
*Semi-conductive region Next, mix the above-mentioned fine powder assembly of the polymeric material and conductive powder in a ratio that will give a predetermined conductivity value, to obtain the desired powdered conductive molding material. Ta.

このようにして得られた、導電性成形材料を用い、圧縮
成形により10100X100X1の寸法の成形シート
をつくり、その比抵抗を求め、第3図ないし第5、図に
示した。この場合、実施別品と同様の導電性粉末を用い
、ロール混練後、シート化し、そのままペレット化した
従来品を用い、実施別品と同様に圧縮成形したシート状
成形品のそれを対照として示している。第3図ないし第
5図において、曲線Aは実施別品の比抵抗を示し、曲線
Bは従来品の比抵抗を示している。曲線AとBとの対比
から明らかなように、同じ屋の導電性粉末を使用しても
、実施別品の方が導電性に富むようになることがわかる
Using the conductive molding material thus obtained, a molded sheet with dimensions of 10100 x 100 x 1 was made by compression molding, and its specific resistance was determined and shown in Figures 3 to 5. In this case, we used a conventional product made by using the same conductive powder as the practical product, roll-kneaded it, made it into a sheet, and made it into pellets as it was, and as a control, we showed a sheet-like molded product that was compression-molded in the same way as the practical product. ing. In FIGS. 3 to 5, curve A shows the specific resistance of the implemented product, and curve B shows the specific resistance of the conventional product. As is clear from the comparison between curves A and B, it can be seen that even if conductive powders from the same manufacturer are used, the conductivity of the different products is higher.

また、ケッチエンブラックを使用した実施別品について
は、それぞれ圧縮成形によりlOO×100X1a+m
のシー1−を20枚つくり、これの比抵抗を、上記と同
様にして製造された20枚の従来品の成形シートのそれ
と対比して第6図に示した。図において、帯状曲線Aが
実施別品であり、帯状曲線Bが比較別品である。両曲線
A、Bの対比から明らかなように、実施別品は比抵抗の
バラツキが小さいことがわかる。
In addition, for the separate products using Ketchen Black, 100 x 100 x 1a + m is made by compression molding.
20 Sheets 1- were made, and their specific resistance is shown in FIG. 6 in comparison with that of 20 conventional molded sheets manufactured in the same manner as above. In the figure, the band-like curve A is the actual product, and the band-like curve B is the comparative product. As is clear from the comparison of both curves A and B, it can be seen that the variations in resistivity of the different products are small.

また、同様にして半導電性領域にあるC−3nO□、F
ez O,、ZnOを用い上記と同様にしてシート化し
た場合における比抵抗を、同量の導電性粉末を用い、従
来と同様に1て製造されたシートのそれと対比して第7
図ないし第9図に示した。これらの図において、曲線A
は実施別品であり、曲線Bは比較別品である。曲線Aと
Bとの対比から明らかなように、半導電性領域において
も実施別品の場合は、少量で高い導電性をだすことがで
きる。
Similarly, C-3nO□, F in the semiconductive region
The specific resistance of a sheet formed from ZnO in the same manner as above was compared with that of a sheet manufactured in the same manner as before using the same amount of conductive powder.
This is shown in Figures 9 to 9. In these figures, curve A
is the actual product, and curve B is the comparative product. As is clear from the comparison between curves A and B, even in the semiconductive region, high conductivity can be achieved with a small amount of the product.

つぎに、C−3nO,を用い前記と同様にして20枚の
シート状成形品をつくり、その比抵抗を求め、上記と同
様にして製造された20枚の従来品のそれと対比して第
1O図に示した。第10図において、帯状曲線Aは実施
別品であり、帯状曲線Bは比較別品である。曲線AとB
の対比から明らかなように、実施別品は比抵抗のバラツ
キが小さいことがわかる。
Next, 20 sheet-shaped molded products were made using C-3nO in the same manner as above, and their specific resistance was determined and compared with that of 20 conventional products manufactured in the same manner as above. Shown in the figure. In FIG. 10, the band-like curve A is a different product for actual use, and the band-like curve B is a different product for comparison. curves A and B
As is clear from the comparison, it can be seen that the variations in resistivity of the different products are small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の粉末状導電性成形材料の導電性粉
末粒子の分布状態の説明図、第2図は従来例の導電性粉
末粒子の分布状態の説明図、第3図、第4図、第5図、
第6図、第7図、第8図。 第9図および第10図は比抵抗曲線図である。 8・・・高分子材料粒子 9・・・導電性粉末粒子特許
出願人   東海ゴム工業株式会社代理人     弁
理士  西経 征彦第1図 112図 ■7・                  V”/。 113図      IF4図 第5図       第6図 V″′°′°第 79図 OT 第10図
FIG. 1 is an explanatory diagram of the distribution state of conductive powder particles of the powdered conductive molding material of the present invention, FIG. 2 is an explanatory diagram of the distribution state of conductive powder particles of a conventional example, and FIGS. Figure, Figure 5,
Figures 6, 7, and 8. FIG. 9 and FIG. 10 are resistivity curve diagrams. 8...Polymer material particles 9...Conductive powder particles Patent applicant Tokai Rubber Industries Co., Ltd. Agent Patent attorney Yukihiko Saikei Figure 1 112 Figure ■7・V"/. 113 Figure IF4 Figure 5 Figure 6 V'''°'° Figure 79 OT Figure 10

Claims (2)

【特許請求の範囲】[Claims] (1)粉末状高分子材料と導電性粉末とが混合されてな
る粉末状導電性成形材料。
(1) Powdered conductive molding material made of a mixture of powdered polymer material and conductive powder.
(2)粉末状高分子材料が200メッシュ以下の粒度に
設定されている特許請求範囲第1項記載の粉末状導電性
成形材料。
(2) The powdery conductive molding material according to claim 1, wherein the powdery polymer material has a particle size of 200 mesh or less.
JP62259957A 1987-10-15 1987-10-15 Electrically conductive powdery molding material Pending JPH01101374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62259957A JPH01101374A (en) 1987-10-15 1987-10-15 Electrically conductive powdery molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62259957A JPH01101374A (en) 1987-10-15 1987-10-15 Electrically conductive powdery molding material

Publications (1)

Publication Number Publication Date
JPH01101374A true JPH01101374A (en) 1989-04-19

Family

ID=17341269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62259957A Pending JPH01101374A (en) 1987-10-15 1987-10-15 Electrically conductive powdery molding material

Country Status (1)

Country Link
JP (1) JPH01101374A (en)

Similar Documents

Publication Publication Date Title
EP0043632B1 (en) Process for the production of a layer of an electrode for a cell, particularly for a fuel cell and electrode containing such a layer
Wessling Electrical conductivity in heterogenous polymer systems (IV)[1] a new dynamic interfacial percolation model
JPH08188407A (en) Filler material
JPH0416500B2 (en)
KR100507922B1 (en) Electrically-conducting floor covering
CN106062089A (en) Pelleted acetylene black
JPH0311602A (en) Resistance paste proper to manufacture of electric resistance layer and resistance layer manufactured from said resistance paste
JPH01101374A (en) Electrically conductive powdery molding material
US4976890A (en) Static dissipative vinyl sheet and film
JP3553325B2 (en) Carbon material-containing resin composition, method for producing the same, and carbon material-containing resin molded article
CA2048602C (en) Process for making antistatic or electrically conductive polymer compositions
US4438059A (en) Electrically conductive fiber glass articles and sheets
JPS56118467A (en) Manufacture of conductive powder paint
DE1810829A1 (en) Objects made of conductive thermoplastics
JPS6255533B2 (en)
JPH01102484A (en) Conductive roll
JP2595317B2 (en) Conductive roll
WO2024111289A1 (en) Method for manufacturing electrode mixture and method for manufacturing electrode
Wessling Electrical conductivity in heterogeneous polymer systems
CN103724920A (en) Permanent antistatic transparent ABS and preparation method thereof
US3214297A (en) Method of making active mass for positive electrodes for alkaline accumulators
JPS6237903A (en) Manufacture of positive resistance temperature coefficient heat generating resin composition
JPS5611955A (en) Electrically-conductive resin composition
JPH0384038A (en) Production of electrically conductive resin material
JPH04275912A (en) Flake-type graphite granule and its production