JPH01101237A - Device for controlling differential limit of vehicle - Google Patents

Device for controlling differential limit of vehicle

Info

Publication number
JPH01101237A
JPH01101237A JP25903887A JP25903887A JPH01101237A JP H01101237 A JPH01101237 A JP H01101237A JP 25903887 A JP25903887 A JP 25903887A JP 25903887 A JP25903887 A JP 25903887A JP H01101237 A JPH01101237 A JP H01101237A
Authority
JP
Japan
Prior art keywords
differential limiting
command value
component
control
proportion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25903887A
Other languages
Japanese (ja)
Other versions
JP2629744B2 (en
Inventor
Takashi Imazeki
隆志 今関
Yuji Kohari
裕二 小張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP25903887A priority Critical patent/JP2629744B2/en
Priority to US07/256,518 priority patent/US4953654A/en
Publication of JPH01101237A publication Critical patent/JPH01101237A/en
Application granted granted Critical
Publication of JP2629744B2 publication Critical patent/JP2629744B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent spin so as to facilitate drift control by making correction in subtracting No.2 component from No.1 component for determining a differential limit control command value. CONSTITUTION:A differential limit clutching means 1 is engaged by control force from outside. A clutch control means 3 controls differential limit torque to be increased/decreased based on signals from a detecting means 2 consisting of an accelerator opening detecting means 201, a right/left driving wheel rotation speed difference detecting means 202, a driving wheel slip detecting means 203 and of a lateral acceleration detecting means 204. And a clutch control means 3 lets the sum of a command value increasing in proportion to the opening of an accelerator and a command value increasing in proportion to the difference between right and left driving wheel rotation speeds be No.1 component, and lets a command value increasing in proportion to driving wheel slip but in reverse proportion to lateral acceleration be No.2 component so that the correction is made in subtracting No.2 component from No.1 component for determining a differential limit command value.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、自動車の差動装置に用いられ、差動制限トル
クを制御する車両用差動制限制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a differential limiting control device for a vehicle that is used in a differential device of an automobile and controls differential limiting torque.

(従来の技術) 従来の車両用差動制限制御装置としては、例えば、特開
昭62−103227号(特願昭60−244677号
)や特開昭61−102320号(特願昭59−223
486号)に記載されているような装置が知られている
(Prior Art) Conventional differential limiting control devices for vehicles include, for example, Japanese Patent Laid-Open No. 103227/1983 (Patent Application No. 244677/1983) and Japanese Patent Laid-open No. 102320/1983 (Patent Application No. 223/1989).
486) is known.

前者の従来装置は、差動制限トルクの制御可能な車両用
差動制限制御装置において、急激な片輪スリップ状態で
も確実に制御する為に、左右駆動輪回転速度差に対する
差動制限トルク特性をプログレッシブな特性としている
The former conventional device is a differential limiting control device for a vehicle that can control differential limiting torque, and in order to reliably control even in a sudden one-wheel slip situation, the differential limiting torque characteristic for the left and right drive wheel rotational speed difference is controlled. It has progressive characteristics.

後者の従来装置は、差動制限トルクの制御可能な車両用
差動制限制御装置において、旋回時に内輪がスティック
することを防止する為に、所定車速以下で大操舵、アク
セル開度大、路面pが高い場合には、差動制限トルクを
減じるようにしている。
The latter conventional device is a differential limiting control device for a vehicle that can control differential limiting torque, and uses large steering, large accelerator opening, and road surface p When is high, the differential limiting torque is reduced.

(発明が解決しようとする問題点) しかしながら、前者の従来装置にあっては左右駆動輪回
転速度差に比例して差動制限トルクが発生する構成であ
り、後者の従来装置にあってはアクセル開度に比例して
差動制限トルクが発生する構成であった為、旋回加速中
に車両ヨーレイトが出過ぎた場合でも、左右駆動輪回転
速度差やアクセル開度のみを制御パラメータとしている
ことで高い差動制限トルク付与状態となり、その結果、
スピンを誘発し易いという問題点があった。
(Problem to be solved by the invention) However, in the former conventional device, differential limiting torque is generated in proportion to the rotational speed difference between the left and right driving wheels, and in the latter conventional device, the accelerator Since the differential limiting torque is generated in proportion to the opening degree, even if the vehicle yaw rate is excessive during turning acceleration, it is possible to reduce the torque by using the left and right drive wheel rotational speed difference and the accelerator opening as the only control parameters. The differential limiting torque is applied, and as a result,
There was a problem that spin was easily induced.

(問題点を解決するための手段) 本発明は、上述のような問題点を解決することを目的と
してなされたもので、この目的達成のために本発明では
以下に述べる解決手段とした。
(Means for Solving the Problems) The present invention has been made for the purpose of solving the above-mentioned problems, and to achieve this purpose, the present invention employs the following solving means.

本発明の解決手段を第1図に示すクレーム概念図により
説明すると、左右の駆動輪間に設けられ、外部からの制
御力により締結される差動制限クラッチ手段lと、所定
の検出手段2からの検出信号に基づいて差動制限トルク
の増減制御を行なうクラッチ制御手段3と、を備えてい
る車両用差動側限制御装置において、前記検出手段2と
して、アクセル開度検出手段201と左右駆動輪回転速
度差検出手段202と駆動輪スリップ検出手段203と
横加速度検出手段204を含み、前記クラッチ制御手段
3は、アクセル開度に比例して増加する指令値と左右駆
動輪回転速度差に比例して増加する指令値との和を第1
の成分とし、且つ、駆動輪スリップに比例し横加速度に
反比例して増加する指令値を第2の成分とし、前記第1
の一成分から第2の成分を減算補正することにより差動
制限制御指令値を決定する事を特徴とする。
The solution of the present invention will be explained with reference to the conceptual diagram of the claim shown in FIG. A differential side limit control device for a vehicle is provided with a clutch control means 3 that performs increase/decrease control of the differential limit torque based on a detection signal of the accelerator opening detection means 201 and a left/right drive The clutch control means 3 includes a wheel rotation speed difference detection means 202, a drive wheel slip detection means 203, and a lateral acceleration detection means 204, and the clutch control means 3 has a command value that increases in proportion to the accelerator opening and a command value that increases in proportion to the left and right drive wheel rotation speed difference. The sum of the command value and the increasing command value is the first
and a second component is a command value that increases in proportion to drive wheel slip and inversely proportional to lateral acceleration;
The differential limiting control command value is determined by subtracting and correcting the second component from one component.

(作 用) 大旋回半径の定常旋回時には、横加速度はほぼ一定で、
アクセル開度は低く、又、駆動輪スリップも少ないので
左右駆動輪回転速度差の影響が最も大きくなる。この為
、左右駆動輪回転速度差を主体として差動制限指令値が
決定される。
(Function) During steady turning with a large turning radius, the lateral acceleration is almost constant;
Since the accelerator opening degree is low and there is little slippage of the drive wheels, the influence of the difference in rotational speed between the left and right drive wheels is greatest. For this reason, the differential limiting command value is determined based on the rotational speed difference between the left and right driving wheels.

そして、アクセル開度に比例した指令値も、駆動輪スリ
ップに比例した指令値も、左右駆動輪回転速度差の上昇
を抑える安定方向に差動制限指令値を補正する為、あら
ゆる路面状況や運転状況等でスピンを誘発しにくくなる
Both the command value proportional to the accelerator opening degree and the command value proportional to the drive wheel slip are used to correct the differential limit command value in a stable direction that suppresses the increase in the rotational speed difference between the left and right drive wheels. It becomes difficult to induce spin depending on the situation.

即ち、アクセル開度の増大により駆動力が増す時には差
動制限トルクを高めることで左右駆動輪回転速度差の上
昇を抑え、左右駆動輪が路面グリップ力を失い駆動輪ス
リップが増大する時には差動制限トルクを低くすること
で左右駆動輪回転速度差の上昇を抑える。
In other words, when the driving force increases due to an increase in the accelerator opening, the differential limiting torque is increased to suppress the increase in the rotational speed difference between the left and right drive wheels, and when the left and right drive wheels lose road grip and drive wheel slip increases, the differential limit torque is increased. By lowering the limit torque, the increase in the rotational speed difference between the left and right drive wheels is suppressed.

パワースライド走行時には、ドライバーがアクセルを踏
み込み操作を行ない駆動輪の横滑りを利用して旋回する
走行である為、左右駆動輪回転速度差は小さく、アクセ
ル開度を主体として差動制限指令値が決定される。
During power slide driving, the driver depresses the accelerator and turns using the skidding of the drive wheels, so the difference in rotational speed between the left and right drive wheels is small, and the differential limit command value is determined based on the accelerator opening. be done.

そして、アクセルペダルが踏み込まれるコーナの頂点で
は差動制限トルクが大きくなり、内輪スリ・ンプが抑え
られ、アンダーステアからオーバステア(リバースステ
ア特性)に移行し、車両がドリフト状態に入る。
Then, at the apex of the corner where the accelerator pedal is depressed, the differential limiting torque increases, suppressing inner wheel slip, transitioning from understeer to oversteer (reverse steer characteristics), and the vehicle enters a drift state.

このドリフト状態では、アクセル開度を主体とする指令
値から駆動輪スリップに比例し横加速度に反比例する指
令値を減じて最終の差動制限指令値が決定される為、ド
リフトコントロールが容易となる。
In this drift state, the final differential limiting command value is determined by subtracting the command value, which is proportional to drive wheel slip and inversely proportional to lateral acceleration, from the command value mainly based on the accelerator opening, making drift control easier. .

即ち、基本的には、駆動輪スリップが増大するにつれて
ドリフトコントロールが難しくなる為に駆動輪スリップ
に比例して差動制限トルクを減らすことで対応する。し
かし、横加速度が大きな高終路小半径旋回時等には駆動
輪スリップをある程度許容すべきであり、又、横加速度
が小さい低終路大旋回半径旋回時等には駆動輪スリップ
影響を排除する必要がある八、アクセル開度を主体とす
る指令値から減じる指令値は横加速度に反比例する値と
している。
That is, basically, as drive wheel slip increases, drift control becomes more difficult, so the solution is to reduce differential limiting torque in proportion to drive wheel slip. However, it is necessary to allow a certain amount of drive wheel slip when making a small radius turn on a high end road with large lateral acceleration, and eliminate the effect of drive wheel slip when making a large turning radius turn on a low end road where lateral acceleration is small. 8. The command value to be subtracted from the command value mainly based on the accelerator opening is set to be a value inversely proportional to the lateral acceleration.

(実施例) 以下、本発明の実施例を図面により詳述する。(Example) Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

尚、この実施例を述べるにあたって、外部油圧により作
動する多板摩擦クラッチ手段を備えた後輪駆動車用差動
制限制御装置を例にとる。
In describing this embodiment, a differential limiting control device for a rear wheel drive vehicle equipped with a multi-disc friction clutch means operated by external hydraulic pressure will be taken as an example.

まず、実施例の構成を説明する。First, the configuration of the embodiment will be explained.

実施例の差動制限制御装置りが適用される後輪駆動車は
、第2図に示すように、左前輪10、右Fiif輪11
、エンジン12、トランスミッション13、プロペラシ
ャフト14、差動装置15.左輪側ドライブシャフト1
6、右輪側ドライブシャフト17、左後輪18、右後輪
19を備えていて、前記差動装置15には、駆動入力側
のプロペラシャフト14と駆動出力側のドライブシャフ
ト16.17との間に、左右輪18.19の差動を制限
する湿式多板摩擦クラッチ(差動制限クラッチ手段)2
0が設けられている。
The rear wheel drive vehicle to which the differential limiting control device of the embodiment is applied has a left front wheel 10, a right Fiif wheel 11, as shown in FIG.
, engine 12, transmission 13, propeller shaft 14, differential gear 15. Left wheel drive shaft 1
6. It is equipped with a right wheel side drive shaft 17, a left rear wheel 18, and a right rear wheel 19, and the differential device 15 has a propeller shaft 14 on the drive input side and a drive shaft 16, 17 on the drive output side. In between, there is a wet multi-disc friction clutch (differential limiting clutch means) 2 that limits the differential movement between the left and right wheels 18 and 19.
0 is set.

尚、前記湿式多板クラッチ20は、外部装置である油圧
発生装置30からの制御油圧Pにより締結される。
Note that the wet multi-disc clutch 20 is engaged by control hydraulic pressure P from a hydraulic pressure generator 30, which is an external device.

実施例の差動制限制御装置りは、第3図に示すように、
入力センサ40として、左前輪回転速度センサ41、右
前輪回転速度センサ42、左後輪回転速度センサ43、
右後輪回転速度センサ44、アクセル開度センサ45が
設けられ、制御モジュールとして、差動制限制御回路5
0が設けられ、制御アクチュエータとして、電磁比例減
圧バルブ60が設けられている。
As shown in FIG. 3, the differential limiting control device of the embodiment is as follows.
The input sensors 40 include a left front wheel rotation speed sensor 41, a right front wheel rotation speed sensor 42, a left rear wheel rotation speed sensor 43,
A right rear wheel rotation speed sensor 44 and an accelerator opening sensor 45 are provided, and a differential limiting control circuit 5 is provided as a control module.
0 is provided, and an electromagnetic proportional pressure reducing valve 60 is provided as a control actuator.

前記左前輪回転速度センサ41及び右前輪回転速度セン
サ42は、非駆動輪である左右前輪10.11の回転速
度を検出する手段で、センサ41からは左前輪回転速度
NFLに応じた左前輪回転速度信号(nfl ) 、セ
ンサ42からは右前輪回転速度NFRに応じた右前輪回
転速度信号(nfr )が出力される。
The left front wheel rotational speed sensor 41 and the right front wheel rotational speed sensor 42 are means for detecting the rotational speed of the left and right front wheels 10.11 which are non-driving wheels, and the sensor 41 detects the rotational speed of the left front wheel according to the left front wheel rotational speed NFL. The speed signal (nfl) and the sensor 42 output a right front wheel rotational speed signal (nfr) corresponding to the right front wheel rotational speed NFR.

前記左後輪回転速度センサ43及び右後輪回転速度セン
サ44は、駆動輪である左右後輪18゜19の回転速度
を検出する手段で、センサ43からは左後輪回転速度N
RLに応じた左後輪回転速度信号(nrl ) 、セン
サ44からは右後輪回転速度NRRに応じた右後輪回転
速度信号(nrr )が出力される。
The left rear wheel rotational speed sensor 43 and the right rear wheel rotational speed sensor 44 are means for detecting the rotational speed of the left and right rear wheels 18.19 which are drive wheels, and the left rear wheel rotational speed N is detected from the sensor 43.
A left rear wheel rotational speed signal (nrl) corresponding to RL and a right rear wheel rotational speed signal (nrr) corresponding to the right rear wheel rotational speed NRR are output from the sensor 44.

前記アクセル開度センサ45は、アクセル開度Aに応じ
たアクセル開度信号(a)を出力するセン°すである。
The accelerator opening sensor 45 is a sensor that outputs an accelerator opening signal (a) corresponding to the accelerator opening A.

前記差動制限制御回路50は、車載のマイクロコンピュ
ータを中心とする制御回路で、入力インタフェース回路
51、メモリ52、CPU(セントラル、プロセシング
、ユニー/))53、出力インタフェース回路54を備
えている。
The differential limiting control circuit 50 is a control circuit mainly based on an on-vehicle microcomputer, and includes an input interface circuit 51, a memory 52, a CPU (central, processing, unit/) 53, and an output interface circuit 54.

尚、差動制限制御回路50を具体的なブロック図で示す
と第4図のようになり、引算器501゜502.503
と、加算平均器504,505と、′横加速度演算器5
06と、関数発生器507.508.509と、加減算
器510とを備えている。
A concrete block diagram of the differential limiting control circuit 50 is shown in FIG.
, averaging units 504 and 505, and lateral acceleration calculator 5.
06, function generators 507, 508, and 509, and an adder/subtractor 510.

前記電磁比例減圧バルブ60は、前記油圧発生装置30
に設けられ、油圧ポンプ31からポンプ圧油路32を介
して供給されるポンプ圧の作動油を、差動制限制御回路
50からの制御電流信号(i)により、指令電流値1本
の大きさに比例した制御油圧Pに圧力制御をするパルプ
アクチュエータである。
The electromagnetic proportional pressure reducing valve 60 is connected to the hydraulic pressure generator 30.
The hydraulic oil at the pump pressure supplied from the hydraulic pump 31 via the pump pressure oil path 32 is controlled by the control current signal (i) from the differential limiting control circuit 50 to the magnitude of one command current value. This is a pulp actuator that controls pressure to a control oil pressure P proportional to .

尚、制御油圧Pと差動制限トルクTとは、ToCP−ル
・n−r−E n;クラッチ枚数 r:クラッチ平均半径 E;受圧面積 の関係にあり、差動制限トルクTは制御油圧Pに比例す
る。
The control oil pressure P and the differential limiting torque T have the following relationship: ToCP-ru-n-r-E n; number of clutches r: clutch average radius E; pressure receiving area; the differential limiting torque T is the control oil pressure P. is proportional to.

次に、実施例の作用を説明する。Next, the operation of the embodiment will be explained.

まず、差動制限制御回路50での差動制限制御の作動流
れを、第5図に示すフローチャート図により述べる。
First, the operational flow of the differential limiting control in the differential limiting control circuit 50 will be described with reference to the flowchart shown in FIG.

ステップ100では、各センサ41,42,43.44
.45からの信号により、左前輪回転速度NFL、右前
輪回転速度NFR,左後輪回転速度NRL、右後輪回転
速度、NRR,アクセル開度Aが読み込まれる。
In step 100, each sensor 41, 42, 43.44
.. 45, the left front wheel rotation speed NFL, right front wheel rotation speed NFR, left rear wheel rotation speed NRL, right rear wheel rotation speed, NRR, and accelerator opening degree A are read.

ステップ101では、前記ステップ100で読み込まれ
た左前輪回転速度NFLと右前輪回転速度NFRとによ
り、横加速度Ygが演算により求められる。
In step 101, the lateral acceleration Yg is calculated using the front left wheel rotation speed NFL and the front right wheel rotation speed NFR read in step 100.

尚、演算式は、旋回半径R9車速V、ヨーレイトφとし
た場合に次式の通りである。
The calculation formula is as follows, assuming turning radius R, vehicle speed V, and yaw rate φ.

V=  ((NFL+NFR)/2)  /rψ=Kl
−l  NFL−NFRI R=V/ψ =に2・l  (NFL+NFR) / (NFL−N
FR)  IYg=■2 /R =に3・I (NFL+NFR)本(NFL−NFR)
 1但し、Kl、に2.に3は車両諸元により決まる比
例定数、rはタイヤ半径である。
V= ((NFL+NFR)/2) /rψ=Kl
-l NFL-NFRI R=V/ψ = 2・l (NFL+NFR) / (NFL-N
FR) IYg=■2 /R=に3・I (NFL+NFR) Book (NFL-NFR)
1 However, Kl, 2. 3 is a proportionality constant determined by the vehicle specifications, and r is the tire radius.

ステップ102では、前記ステップ100で読み込まれ
た左後輪回転速度NRLと右後輪回転速度NRRとから
、左右駆動輪回転速度差ΔNr文が演算により求められ
る。
In step 102, a left and right drive wheel rotational speed difference ΔNr statement is calculated from the left rear wheel rotational speed NRL and the right rear wheel rotational speed NRR read in step 100.

尚、演算式は、ΔN r l = NRL −NRRで
ある。
Note that the calculation formula is ΔN r l =NRL - NRR.

ステップ103では、前記ステップ100で読み込まれ
た左前輪回転速度NFLと右前輪回転速度NFRと左後
輪回転速度NRLと右後輪回転速度NRRとから、駆動
輪ス、リップを示す前後輪回転速度差ΔNfrが演算に
より求められる。
In step 103, front and rear wheel rotation speeds indicating drive wheel slip and lip are determined from the left front wheel rotation speed NFL, right front wheel rotation speed NFR, left rear wheel rotation speed NRL, and right rear wheel rotation speed NRR read in step 100. The difference ΔNfr is calculated.

尚、演算式は次に示す通りである。Note that the calculation formula is as shown below.

ΔN f r = ’It (NRL+ NRR) −
372(NFL+ NFR)ステップ104では、前記
ステップ102で得られた左右駆動輪回転速度差ΔNr
lに比例する差動制限トルクT1が求められる。
ΔN f r = 'It (NRL+NRR) −
372 (NFL+NFR) At step 104, the left and right drive wheel rotational speed difference ΔNr obtained at step 102 is calculated.
A differential limiting torque T1 proportional to l is determined.

尚、この差動制限トルクT1は、第4図の関数発生器5
07の特性線図に示されるように、左右駆動輪回転速度
差ΔNrlの増大に直線的に比例する値として得られる
Note that this differential limiting torque T1 is calculated by the function generator 5 in FIG.
As shown in the characteristic diagram of No. 07, it is obtained as a value that is linearly proportional to the increase in the rotational speed difference ΔNrl between the left and right driving wheels.

ステップ105では、前記ステップ100で読み込まれ
たアクセル開度Aに比例する差動制限トルクT2が求め
られる。
In step 105, differential limiting torque T2 proportional to the accelerator opening degree A read in step 100 is determined.

尚、この差動制限トルクT2は、第4図の関数発生器5
08の特性線図に示されるように、アクセル開度Aの増
大に直線的に比例する値として得られる。
Incidentally, this differential limiting torque T2 is calculated by the function generator 5 in FIG.
As shown in the characteristic diagram of No. 08, it is obtained as a value that is linearly proportional to the increase in accelerator opening A.

ステップ106では、前記ステップ103で得られた前
後輪回転速度差ΔNfrに比例し、その比例定数(ゲイ
ン)が前記ステップ101で得られた横加速度Ygに反
比例する差動制限トルクT3が求められる。゛ 尚、この差動制限トルクT3は、第4図の関数発生器5
09の特性線図に示されるように、前後輪回転速度差Δ
Nfrの増大に直線的に比例し、且つ、横加速度Ygが
小さい程大きな値で、横加速度Ygが小さい程小さな値
として得られる・ステップ107では、前記各差動制限
トルクT1 、T2  、T3から最終差動制限トルク
Tが演算により求められる。
In step 106, differential limiting torque T3 is determined which is proportional to the front and rear wheel rotational speed difference ΔNfr obtained in step 103 and whose proportionality constant (gain) is inversely proportional to the lateral acceleration Yg obtained in step 101.゛This differential limiting torque T3 is calculated by the function generator 5 in FIG.
As shown in the characteristic diagram of 09, the front and rear wheel rotational speed difference Δ
It is linearly proportional to the increase in Nfr, and is obtained as a larger value as the lateral acceleration Yg is smaller, and as a smaller value as the lateral acceleration Yg is smaller. In step 107, from the differential limiting torques T1, T2, and T3, The final differential limiting torque T is calculated.

尚、最終差動制限トルクTの演算式は1次に示す通りで
ある。
Note that the calculation formula for the final differential limiting torque T is as shown in the first order.

T=71 +72−Ts ステップ108では、前記最終差動制限トルクTが得ら
れる指令電流値1京による信号(i)が出力される。
T=71 +72-Ts At step 108, a signal (i) based on a command current value of 1 quintillion at which the final differential limiting torque T is obtained is output.

次に、旋回走行時の作用を、大旋回半径の定常旋回時と
パワースライド走行時とに分けて説明する。
Next, the effects during turning will be explained separately for steady turning with a large turning radius and power sliding.

(イ)大旋回半径の定常旋回時 大旋回半径の定常旋回時には、横加速度Ygはほぼ一定
で、アクセル開度Aは低く、又、駆動輪スリップによる
前後輪回転速度差ΔNfrも少ないので左右駆動輪回転
速度差ΔNrlの影響が最も大きくなる。この為、左右
駆動輪回転速度差ΔNr文による差動制限トルクT1を
主体として最終差動制娘トルクTが決定される。
(B) When making a steady turn with a large turning radius During a steady turning with a large turning radius, the lateral acceleration Yg is almost constant, the accelerator opening A is low, and the front and rear wheel rotational speed difference ΔNfr due to drive wheel slip is small, so left-right drive The influence of the wheel rotational speed difference ΔNrl is greatest. Therefore, the final differential braking daughter torque T is determined based on the differential limiting torque T1 based on the left and right driving wheel rotational speed difference ΔNr statement.

そして、アクセル開度Aに比例した差動制限トルクT2
も、前後輪回転速度差ΔNfrに比例した差動制限トル
クT3も、左右駆動輪回転速度差ΔNrlの上昇を抑え
る安定方向に最終差動制限トルクTを補正する為、あら
ゆる路面状況や運転状況等でスピンを誘発しにくくなる
The differential limiting torque T2 is proportional to the accelerator opening A.
In addition, the differential limiting torque T3, which is proportional to the front and rear wheel rotational speed difference ΔNfr, is adjusted to correct the final differential limiting torque T in a stable direction that suppresses the increase in the left and right driving wheel rotational speed difference ΔNrl, so that it can be applied to all road conditions, driving conditions, etc. This makes it difficult to induce spin.

即ち、アクセル開度Aの増大により駆軌力が増す時には
差動制限トルクTを高めることで(T1十T2)、左右
駆動輪回転速度差ΔNrlの上昇を抑える。
That is, when the driving force increases due to an increase in the accelerator opening degree A, the differential limiting torque T is increased (T10T2) to suppress an increase in the left and right drive wheel rotational speed difference ΔNrl.

また、左右駆動輪18.19が路面グリップ力を失い駆
動輪スリップが増大する時には差動制限トルクTを低く
することで(Tz −Tz ) 、左右駆動輪回転速度
差ΔNrJlの上昇を抑える。
Furthermore, when the left and right drive wheels 18, 19 lose road surface grip and drive wheel slip increases, the differential limiting torque T is lowered (Tz - Tz) to suppress an increase in the left and right drive wheel rotational speed difference ΔNrJl.

(ロ)パワースライド走行時 パワースライド走行時には、ドライバーがアクセルを踏
み込み操作を行ない駆動輪18.19の横滑りを利用し
て旋回する走行である為、左右駆動輪回転速度差ΔNr
lは小さく、アクセル開度Aによる差動制限トルクT2
を主体として最終差動制限トルクTが決定される。
(b) When driving on a power slide When driving on a power slide, the driver depresses the accelerator and turns using the sideslip of the drive wheels 18, 19, so the rotational speed difference between the left and right drive wheels ΔNr
l is small, differential limiting torque T2 due to accelerator opening A
The final differential limiting torque T is determined mainly based on.

そして、アクセルペダルが踏み込まれるコーナの頂点で
は差動制限トルクTが大きくなり、内輪スリップが抑え
られ、アンダーステアからオーバステア(リバースステ
ア特性)に移行し、車両がドリフト状態に入る。
Then, at the apex of the corner where the accelerator pedal is depressed, the differential limiting torque T increases, inner wheel slip is suppressed, understeer shifts to oversteer (reverse steer characteristics), and the vehicle enters a drift state.

このドリフト状態では、アクセル開度Aに比例する差動
制限トルクT2から前後輪回転速度差ΔNfrに比例し
横加速度Ygに反比例する差動制限トルクT3を減じて
最終差動制限トルクTが決定されることになる為、ドリ
フトコントロールが容易となる。
In this drift state, the final differential limiting torque T is determined by subtracting the differential limiting torque T3, which is proportional to the front and rear wheel rotation speed difference ΔNfr and inversely proportional to the lateral acceleration Yg, from the differential limiting torque T2, which is proportional to the accelerator opening degree A. This makes drift control easier.

即ち、基本的には、駆動輪スリップが増大するにつれて
ドリフトコントロールが難しくなる為に駆動輪スリップ
に比例して差動制限トルクTを減らすことで対応する。
That is, basically, as the drive wheel slip increases, drift control becomes more difficult, so this is dealt with by reducing the differential limiting torque T in proportion to the drive wheel slip.

しかし、横加速度Ygが大きな高p路小半径旋回時等に
は駆動輪スリップをある程度許容すべきであり、又、横
加速度Ygが小さい低弘路大旋回半径旋回時等には駆動
輪スリップ影響を排除する必要がある為、アクセル開度
Aに比例する差動制限トルクT2から減じる差動制限ト
ルクT3は横加速度Ygに反比例する値としている。
However, when making a small radius turn on a high p road where the lateral acceleration Yg is large, a certain amount of drive wheel slip should be allowed, and when making a large turning radius turn on a low Hiro road where the lateral acceleration Yg is small, the influence of drive wheel slip may be allowed. Therefore, the differential limiting torque T3, which is subtracted from the differential limiting torque T2 which is proportional to the accelerator opening A, is set to a value inversely proportional to the lateral acceleration Yg.

以上、本発明の実施例を図面により詳述してきたが、具
体的な構成はこの実施例に限られるものではなく、本発
明の要旨を逸脱しない範囲における設計変更等があって
も本発明に含まれる。
Although the embodiments of the present invention have been described above in detail with reference to the drawings, the specific configuration is not limited to these embodiments, and the present invention may be modified without departing from the gist of the present invention. included.

例えば、実施例では、アクチュエータとして、電磁比例
減圧バルブを示したが、開閉の電磁バルブ等を用い、制
御信号をデユーティ信号にして油圧制御を行なうような
例としてもよい。
For example, in the embodiment, an electromagnetic proportional pressure reducing valve is shown as the actuator, but an example in which an electromagnetic valve that opens and closes or the like may be used to perform hydraulic control using a control signal as a duty signal may also be used.

才た。実施例では、湿式多板摩擦クラッチにより差動制
限トルクを得る例を示したが、電磁クラッチ等他のクラ
ッチやブレーキ等により差動制限トルクを得るようにし
た例であってもよい。
Talented. In the embodiment, an example is shown in which differential limiting torque is obtained using a wet multi-disc friction clutch, but an example in which differential limiting torque is obtained using other clutches such as an electromagnetic clutch, a brake, etc. may be used.

また、実施例では横加速度を演算により求める例を示し
たが、操舵角や車速から演算により求めるようにしても
良いし、横加速度センサを用いても良い。
Further, in the embodiment, an example has been shown in which the lateral acceleration is determined by calculation, but it may also be determined by calculation from the steering angle or vehicle speed, or a lateral acceleration sensor may be used.

更に、駆動輪スリップ情報として前後輪回転速度差を用
いた例を示したが、駆動輪スリップ率や駆動輪スリップ
比を用いても良い。
Furthermore, although an example is shown in which the difference in rotational speed between the front and rear wheels is used as drive wheel slip information, a drive wheel slip rate or a drive wheel slip ratio may also be used.

(発明の効果) 以上説明してきたように、本発明の車両用差動制限制御
装置にあっては、クラッチ制御手段は、アクセル開度に
比例して増加する指令値と左右駆動輪回転速度差に比例
して増加する指令値との和を第1の成分とし、且つ、駆
動輪スリップに比例し横加速度に反比例して増加する指
令値を第2の成分とし、前記第1の成分から第2の成分
を減算補正することにより差動制限制御指令値を決定す
る事を特徴とする手段とした為、あらゆる路面状況や運
転状況でスピンを誘発しにくいと共に、ドリフトコント
ロールを容易゛にすることが出来るという効果が得られ
る。
(Effects of the Invention) As explained above, in the differential limiting control device for a vehicle of the present invention, the clutch control means can control the command value that increases in proportion to the accelerator opening and the rotational speed difference between the left and right driving wheels. The first component is the sum of the command value that increases in proportion to the drive wheel slip, and the second component is the command value that increases in proportion to the drive wheel slip and inversely proportional to the lateral acceleration. Since the method is characterized in that the differential limiting control command value is determined by subtracting and correcting the second component, it is difficult to induce spin under all road surface conditions and driving conditions, and drift control is facilitated. The effect is that it can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の車両用差動制限制御装置を示すクレー
ム概念図、第2図は本発明実施例装置の全体図、第3図
は実施例の油圧発生装置を含めた差動制限制御装置を示
す図、第4図は実施例装置の差動制限制御回路の具体的
なブロック図、第5図は実施例装置での差動制限制御作
動の流れを示すフローチャート図である。 l・・・差動制限クラッチ手段 2・・・検出手段 201・・・アクセル開度検出手段 202・・・左右駆動輪回転速度差検出手段203・・
・駆動輪スリップ検出手段 204・・・横加速度検出手段 3・・・クラッチ制御手段
Fig. 1 is a conceptual diagram of a claim showing a differential limiting control device for a vehicle of the present invention, Fig. 2 is an overall view of an embodiment of the device of the present invention, and Fig. 3 is a differential limiting control including a hydraulic pressure generating device of an embodiment. FIG. 4 is a detailed block diagram of the differential limiting control circuit of the embodiment device, and FIG. 5 is a flowchart showing the flow of the differential limiting control operation in the embodiment device. l...Differential limiting clutch means 2...Detection means 201...Accelerator opening detection means 202...Left and right drive wheel rotational speed difference detection means 203...
- Drive wheel slip detection means 204... Lateral acceleration detection means 3... Clutch control means

Claims (1)

【特許請求の範囲】 1)左右の駆動輪間に設けられ、外部からの制御力によ
り締結される差動制限クラッチ手段と、所定の検出手段
からの検出信号に基づいて差動制限トルクの増減制御を
行なうクラッチ制御手段と、を備えている車両用差動制
限制御装置において、前記検出手段として、アクセル開
度検出手段と左右駆動輪回転速度差検出手段と駆動輪ス
リップ検出手段と横加速度検出手段を含み、 前記クラッチ制御手段は、アクセル開度に比例して増加
する指令値と左右駆動輪回転速度差に比例して増加する
指令値との和を第1の成分とし、且つ、駆動輪スリップ
に比例し横加速度に反比例して増加する指令値を第2の
成分とし、前記第1の成分から第2の成分を減算補正す
ることにより差動制限制御指令値を決定する事を特徴と
する車両用差動制限制御装置。
[Claims] 1) A differential limiting clutch means provided between the left and right drive wheels and engaged by an external control force, and an increase/decrease in the differential limiting torque based on a detection signal from a predetermined detection means. A differential limiting control device for a vehicle, comprising: a clutch control means for performing control; and the detection means includes an accelerator opening detection means, a left and right drive wheel rotational speed difference detection means, a drive wheel slip detection means, and a lateral acceleration detection means. The clutch control means has a first component that is a sum of a command value that increases in proportion to the accelerator opening degree and a command value that increases in proportion to the rotational speed difference between left and right drive wheels, and A second component is a command value that increases in proportion to slip and inversely proportional to lateral acceleration, and the differential limiting control command value is determined by subtracting and correcting the second component from the first component. A limited differential control device for vehicles.
JP25903887A 1987-10-14 1987-10-14 Vehicle differential limiting control device Expired - Fee Related JP2629744B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP25903887A JP2629744B2 (en) 1987-10-14 1987-10-14 Vehicle differential limiting control device
US07/256,518 US4953654A (en) 1987-10-14 1988-10-13 Vehicular differential limiting torque control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25903887A JP2629744B2 (en) 1987-10-14 1987-10-14 Vehicle differential limiting control device

Publications (2)

Publication Number Publication Date
JPH01101237A true JPH01101237A (en) 1989-04-19
JP2629744B2 JP2629744B2 (en) 1997-07-16

Family

ID=17328470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25903887A Expired - Fee Related JP2629744B2 (en) 1987-10-14 1987-10-14 Vehicle differential limiting control device

Country Status (1)

Country Link
JP (1) JP2629744B2 (en)

Also Published As

Publication number Publication date
JP2629744B2 (en) 1997-07-16

Similar Documents

Publication Publication Date Title
JP3617680B2 (en) 4-wheel drive traction control system
JP2528485B2 (en) Drive force distribution controller for four-wheel drive vehicle
US6564139B2 (en) Apparatus and method for controlling a four-wheel drive vehicle
US7949456B2 (en) Turning control apparatus for vehicle
US6575261B2 (en) Drive-force distribution controller
EP1424263A2 (en) Vehicle steering control device
JP2528484B2 (en) Drive force distribution controller for four-wheel drive vehicle
JPH0386627A (en) Unequal torque distribution controller for four-wheel drive vehicle
JPH0392483A (en) Rear wheel steering control device
EP0318688B1 (en) Limited-slip differential control system
JPH0133365B2 (en)
JP2552327B2 (en) Four-wheel steering control system for vehicles with limited slip differential
JP2770670B2 (en) Driving force distribution control system for front and rear wheels and left and right wheels
JPH01101237A (en) Device for controlling differential limit of vehicle
JPH111129A (en) Slip control device for four-wheel drive vehicle
JPH0635259B2 (en) Vehicle drive system clutch control device
JP2679302B2 (en) Vehicle differential limiting control device
JPH01153342A (en) Vehicle differential motion limiting control device
JP2679070B2 (en) Vehicle differential limiting control device
JP5206990B2 (en) Vehicle turning behavior control device
JP2882219B2 (en) Vehicle differential limiting control device
JP2910465B2 (en) Vehicle differential limiting control device
JPH02241864A (en) Slip control device for vehicle
JP2629753B2 (en) Vehicle differential limiting control device
JPH01156139A (en) Differential limitation controller for vehicle

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees