JPH01101037A - System for controlling transmitting power - Google Patents

System for controlling transmitting power

Info

Publication number
JPH01101037A
JPH01101037A JP25736787A JP25736787A JPH01101037A JP H01101037 A JPH01101037 A JP H01101037A JP 25736787 A JP25736787 A JP 25736787A JP 25736787 A JP25736787 A JP 25736787A JP H01101037 A JPH01101037 A JP H01101037A
Authority
JP
Japan
Prior art keywords
carrier
transmitting
station
line
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25736787A
Other languages
Japanese (ja)
Inventor
Masato Mori
真人 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP25736787A priority Critical patent/JPH01101037A/en
Publication of JPH01101037A publication Critical patent/JPH01101037A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To utilize the transmitting output of a repeater to the utmost without generating the lowering of a frequency utilizing efficiency by setting the frequency distribution of the transmitting levels of plural transmitting carriers at a transmitting source beforehand, and setting the carrier frequency of a signal to be transmitted according to a status arbitrarily. CONSTITUTION:At each terrestrial station, level differences between respective carriers F2-F5 are semi-fixed, and the output levels of respective carriers are set by means of semi-fixed level adjuster modules 21-24 so as to satisfy a maximum transmitting power compensating quantity necessary in a system and to cause the C/I of a worst C/I carrier to be a fixed value of above. Among respective carriers, an F1 is used for transmitting a line control signal to be used commonly to all stations. At a transmitting source terrestrial station 10, a line setting request signal is transmitted by using the F1. At each terrestrial station, the signal is received, and at the time of its own station destination, each earth station informs the terrestrial station 10 of the F1 carrier line quality information of a its own station receiving. At the transmitting source terrestrial station, a control logic circuit 5 executes a changeover by means of a line switching device 1 so that signals Sa-Sd to respective transmitting destinations are connected to one of the frequencies F2-F5 based on line quality information pieces Ca-Cd from respective transmitting destinations.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、周波数分割多元接続を用いる通信方式におけ
る複数信号の送信電力制御方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a transmission power control system for multiple signals in a communication system using frequency division multiple access.

〔従来の技術〕[Conventional technology]

従来、衛星通信における送信電力制御は、主に10GH
z以上の周波数帯を用いる場合の降雨による信号レベル
の滅貸を補う手段として用いられ、降雨減衰量あるいは
それに対応した回線品質(符号誤り率など)に応じて地
球局の送信電力を制御するという方法が用いられていた
Conventionally, transmission power control in satellite communications has mainly been carried out at 10GHz.
It is used as a means of compensating for the loss of signal level due to rain when using frequency bands above z, and it is said that the transmission power of the earth station is controlled according to the amount of rain attenuation or the corresponding line quality (bit error rate, etc.). method was used.

例えば、特願昭54−039742号あるいは特願昭5
5−075526号などにより、−中継器で複数のキャ
リヤを増幅する場合に降雨減衰を受けるキャリヤへ中継
器の送信電力を多く配分し降雨減衰量を補償して各キャ
リヤの符号誤り率あるいはS/Nを一定に保つようない
(つかの送信電力制御方式が提案されている。
For example, Japanese Patent Application No. 54-039742 or Japanese Patent Application No. 5
No. 5-075526, etc., when multiple carriers are amplified by a repeater, the transmission power of the repeater is allocated more to the carrier that is subject to rain attenuation, and the amount of rain attenuation is compensated for to increase the bit error rate or S/ Some transmission power control schemes have been proposed to keep N constant.

これらの従来方式に共通しているのは、いずれもキャリ
ヤ周波数はあらかじめ送信先ごとに固定で割り当て、そ
の個々のキャリヤの送信電力を独立に個々の回線品質に
基づいて制御する点である。
What these conventional systems have in common is that a carrier frequency is fixedly assigned in advance to each transmission destination, and the transmission power of each carrier is independently controlled based on the individual line quality.

第4図は従来方式の送信電力制御回路の構成の例を示す
図である。
FIG. 4 is a diagram showing an example of the configuration of a conventional transmission power control circuit.

第4図において、−点MIIAで囲んだ部分が従来方式
の基本部分で周波数変換器3、送信器4およびレベル調
整器6からなる。本図では、これをマルチキャリヤ伝送
に適用するように複数モノニールを並列化するとともに
、各送信先地球局で共通に使用する回#i設定制御信号
を回線制御論理回路7で生成してFlで送信できるよう
に改良しである。
In FIG. 4, the part surrounded by the minus point MIIA is the basic part of the conventional system, which consists of a frequency converter 3, a transmitter 4, and a level adjuster 6. In this figure, multiple monolayers are parallelized to apply this to multicarrier transmission, and a line control logic circuit 7 generates a line #i setting control signal that is commonly used by each destination earth station. It has been improved so that it can be sent.

なお、周波数変換器モジュール31〜35、送信器モジ
ュール41〜45については、各々全キャリヤを共通回
路で生成することも可能であろのでその場合の回路範囲
をそれぞれ3.4の破線で囲っである。
It should be noted that for the frequency converter modules 31 to 35 and the transmitter modules 41 to 45, it would be possible to generate all carriers in a common circuit, so the circuit range in that case is each surrounded by a broken line of 3.4. .

本例では、地球局A向けの信号Saは固定的にF2を用
いて伝送され、地球局Aから通知されるF2に関する回
線品質情報Caに基づいてあらかじめ設定した一定の回
線品質になるようレベル制御回路6でフィードバック制
御する。
In this example, the signal Sa destined for earth station A is fixedly transmitted using F2, and the level is controlled to maintain a preset constant line quality based on line quality information Ca regarding F2 notified from earth station A. A circuit 6 performs feedback control.

以下、地球局B (C,Dについても同様)向けの信号
Sb (Sc  * Sdについても同様)についても
回線品質情報Cb (Cc 、  Cd )に基づいて
独立に同様の制御がなされる。
Hereinafter, the same control is performed independently for the signal Sb (same as for Sc*Sd) destined for earth station B (same for C and D) based on the line quality information Cb (Cc, Cd).

〔発明が解決しようとする問題烈〕[The great problem that the invention attempts to solve]

上述したような従来の方式においては、同一の衛星中継
器で共通増幅するマルチキャリヤ伝送の場合には、キャ
リヤ数が3以上になると衛星中継器の非直線増幅特性に
起因する混変調雑音が帯域内に落ち込むことにより特定
のキャリヤ衛星入力レベルが送信電力制御により高くな
ることがある。
In the conventional system as described above, in the case of multi-carrier transmission where common amplification is performed by the same satellite repeater, when the number of carriers becomes 3 or more, cross-modulation noise due to the non-linear amplification characteristics of the satellite repeater increases in the bandwidth. The specific carrier satellite input level may be increased due to transmit power control due to a drop in the transmit power.

そして、そのキャリヤが関係する混変調成分がそれ以外
のキャリヤのキャリヤ電力討千渉雑音電力比(C/I)
を悪化させ、一定の品質を保つためには、それらの本末
制御を必要としなかったキャリヤ群についても衛星中継
器入力レベルをさらに大きくする必要を生じ、各キャリ
ヤの制御が発散してシステム全体として制御不能となる
欠点があった。
Then, the cross-modulation component related to that carrier is calculated as the carrier power-interference-noise power ratio (C/I) of other carriers.
In order to maintain a certain level of quality, it becomes necessary to further increase the satellite transponder input level even for carrier groups that did not require main-line control, and the control of each carrier diverges, causing problems for the system as a whole. It had the disadvantage of being out of control.

第5図はこれを説明するための図であって、従来の送信
電力制御がなされているある時点でのキャリヤのレベル
周波数分布を示す。
FIG. 5 is a diagram for explaining this, and shows the carrier level frequency distribution at a certain point in time when conventional transmission power control is being performed.

本図の状態からF2を用いている地球局へ向けて衛星電
力を増強するため点線で示すように送信キャリヤレベル
を上げると三次混変調成分が落ち込むF3は、C/Tが
悪化するためそれを救済しようと、これも独立に破線で
示す分について送信キャリヤレベルをあげることになる
In order to increase the satellite power towards the earth station using F2 from the state shown in this figure, increasing the transmission carrier level as shown by the dotted line will cause the third-order cross modulation component to drop. In order to recover, the transmission carrier level is also independently increased by the amount shown by the broken line.

すると次には、このF3とFl、F2のそれぞれの温室
14成分がF5およびF4へ落ち込む。
Then, the 14 greenhouse components of F3, Fl, and F2 drop to F5 and F4.

これによりさらにF4とF5の混変調成分はF3に落ち
込むので、またさらに、F3のレベルを上げる必要が生
じてくるため、制御が正帰還となってしまう。
As a result, the cross-modulation components of F4 and F5 further fall to F3, and it becomes necessary to further increase the level of F3, resulting in positive feedback control.

さらに、全体のレベルが上昇すると衛星中継器入力レベ
ルも上がって、さらに非直線領域で動作することになり
、上記動作が加速される。
Furthermore, as the overall level increases, the satellite transponder input level also increases, causing it to operate further in the non-linear region, thereby accelerating the operation.

これを防止するためには、混変調雑音の影響を無視でき
るようにする、すなわち、混変調雑音が互いに白帯域内
に落ち込まないようキャリヤを周波数配置したり、衛星
中継器の出力バックオフを大きくとる必要がある。
To prevent this, it is necessary to make the effect of cross-modulation noise negligible, that is, to arrange the carrier frequencies so that the cross-modulation noise does not fall within the white band of each other, and to increase the output back-off of the satellite repeater. I need to take it.

しかし、前者に適するバブコック周波数配置はキャリヤ
数が多くなると極めて周波数利用効率が悪くなるという
欠点があり、後者の方法では結局、衛星中継器の送信電
力を最大限に有効利用できないという欠点があった。こ
のため、従来の送信電力制御を用いて衛星中継器送信電
力を最大限に利用できるのは、−中継器のキャリヤ入力
が散液以内(散液の場合パブコック配置により混変調成
分は帯域外とすることができる)の場合に限定きれると
いう欠点があった。
However, the Babcock frequency allocation suitable for the former method has the disadvantage that the frequency usage efficiency becomes extremely poor when the number of carriers increases, and the latter method has the disadvantage that the transmission power of the satellite repeater cannot be used effectively to the maximum extent. . Therefore, using conventional transmission power control to maximize the transmit power of a satellite repeater is possible only if the carrier input of the repeater is within the droplet range (in the case of a droplet carrier, due to the Pubcock arrangement, cross-modulation components are out of the band). The disadvantage is that it is limited to cases where it is possible to do so.

本発明はこのような従来の問題点に鑑み、周波数利用効
率の低下を生ずることなく、3波以上のキャリヤについ
て同時にその送信電力の制御が可能な制御方式を提供す
ることにより、中継器の送信出力の最大限の利用を可能
とすることを目的としている。
In view of these conventional problems, the present invention provides a control method that can control the transmission power of three or more carriers simultaneously without reducing frequency utilization efficiency, thereby improving the transmission power of a repeater. The aim is to make maximum use of the output.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、上述の目的は前記特許請求の範囲に記
載した手段により達成される。
According to the invention, the above objects are achieved by the means specified in the claims.

すなわち本発明は、例えば、下り回線の降雨減貨の補償
範囲に応じてあらかじめ半固定で衛星中継器の複数のキ
ャリヤに各々異なったい8くつかの送信出力を持たせ、
さらに中継器の非直線性による混変調雑音C/Iを最小
となるようにレベル差と周波数配置に一定の関係を持た
せて送信元地球局から複数キャリヤを周波数配置し、各
送信先向きのキャリヤの出力レベルの制御をキャリヤ周
波数の選択により行なうものである。
That is, in the present invention, for example, a plurality of carriers of a satellite repeater are provided with eight different transmission outputs in a semi-fixed manner in advance, depending on the compensation range of rain depreciation in the downlink, and
Furthermore, in order to minimize the cross-modulation noise C/I due to non-linearity of the repeater, multiple carriers are arranged in frequency from the source earth station with a certain relationship between the level difference and the frequency arrangement, and The carrier output level is controlled by selecting the carrier frequency.

〔作 用〕[For production]

本発明は、例えば、複数の送信キャリヤの送信レベルの
周波数分布を設定する手段と、送信すべき信号のキャリ
ヤ周波数を任意の周波数に設定する手段とを設け、特に
送信電力を多く必要としない場合はあらかじめ周波数ご
とに適当なレベル設定を行なった複数キャリヤ周波数の
中からレベルの小さいキャリヤの周波数を選択して信号
を送信し、一方、送信すべき信号の送信電力を多くした
い場合にはレベルの大・きいキャリヤの周波数を選択し
て信号を送信する。
The present invention provides, for example, means for setting the frequency distribution of transmission levels of a plurality of transmission carriers and means for setting the carrier frequency of a signal to be transmitted to an arbitrary frequency, especially when a large amount of transmission power is not required. transmits a signal by selecting a carrier frequency with a low level from among multiple carrier frequencies for which an appropriate level has been set for each frequency in advance.On the other hand, if you want to increase the transmission power of the signal to be transmitted, you can change the level. Select a large/high carrier frequency and transmit the signal.

このようにすることにより、衛星中継器入力の複数キャ
リヤレベルの周波数分布についてはあらかじめ設定した
ものが保持されるので混変調C/Iの最悪値は、一定値
以上が補償され、さらに送信先ごとに大きなキャリヤ送
信電力が必要な場合は衛星中継器送信電力を多く配分す
ることが可能となるのでキャリヤ数が任意の場合につい
て混変調C/Iと熱雑音C/Nの総合C(N+1)によ
り定まる回線品質を全キャリヤについて総合的に最適化
することができる。
By doing this, the preset frequency distribution of multiple carrier levels input to the satellite transponder is maintained, so the worst value of cross-modulation C/I is compensated for above a certain value, and If a large carrier transmission power is required, it is possible to allocate a large amount of the satellite repeater transmission power. Therefore, when the number of carriers is arbitrary, the total C(N+1) of the cross-modulation C/I and thermal noise C/N is The determined line quality can be comprehensively optimized for all carriers.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

なお、以下の例では、説明を簡単にするため送信元地球
局が1局で、送信先地球局が4局で各送信先へは各々個
別に1キヤリヤを割り当てる場合について説明しでいる
が、各地球局向けのキャリヤ数、地球局数には何等制限
はない。
In addition, in the following example, to simplify the explanation, we will explain the case where there is one source earth station, four destination earth stations, and one carrier is individually assigned to each destination. There is no limit to the number of carriers or earth stations for each earth station.

第1図は、本発明の1実施例の送信電力制御回路の構成
の例を示す図である。第2図は本発明を適用するシステ
ム構成の例を示す図である。
FIG. 1 is a diagram showing an example of the configuration of a transmission power control circuit according to an embodiment of the present invention. FIG. 2 is a diagram showing an example of a system configuration to which the present invention is applied.

第3図は設定キャリヤレベルの周波数配置の例を示す図
である。
FIG. 3 is a diagram showing an example of frequency arrangement of set carrier levels.

第2図において、Flは全地球局8I〜84で共通に用
いる回線制御信号伝送用キャリヤである。また本図では
地球局8I〜8.(以下、地球局A−Dとして説明する
)から地球局10の方向に向けての信号は記入していな
い。
In FIG. 2, Fl is a line control signal transmission carrier commonly used by all earth stations 8I-84. Also, in this figure, earth stations 8I to 8. Signals directed toward the earth station 10 (hereinafter described as earth stations A-D) are not shown.

さらに、第2図においで送信先地球局8.〜8、(A、
B、C,D)は地理的に分散しているが、各々と衛星9
闇との間の回線パラメータは均一(衛星出力電力が一定
であれば下りC/N一定)とし、各キャリヤの回線品質
は上り熱雑音C/N、下り熱雑音C/Nおよび衛星中継
器混変調C/Iそれぞれの雑音加算により定まるが、こ
こでは説明を簡潔にするため上り熱雑音C/Nは無視で
さるものとする。
Furthermore, in FIG. 2, destination earth station 8. ~8, (A,
B, C, D) are geographically dispersed, but each satellite
The link parameters between the satellite and the satellite are uniform (if the satellite output power is constant, the downlink C/N is constant), and the link quality of each carrier is determined by uplink thermal noise C/N, downlink thermal noise C/N, and satellite repeater interference. Although it is determined by the noise addition of each modulation C/I, here, in order to simplify the explanation, it is assumed that the upstream thermal noise C/N is ignored.

さらに、制御動作の説明のため信号を伝送する時点で地
球局BとCには11で示す降雨による下りC/N低下(
Lb * Lc (dB )  −2R>Lb >R>
Lc )があることを想定する。
Furthermore, to explain the control operation, at the time of transmitting the signal, earth stations B and C have a downlink C/N decrease (11) due to rain.
Lb * Lc (dB) -2R>Lb>R>
Assume that there is Lc).

第1図において、回線切り換え器1はSa〜Sdの任意
の伝送信号を任意のキャリヤ周波数に接続できる。各キ
ャリヤ間のレベル差は半固定で、システムで必要となる
最大送信電力補償量を満たし、かつ最悪C/Iキャリヤ
のC/Iが一定値以上となるように各キャリヤの出力レ
ベルを半固定のレベル調整器モジュール21〜24によ
り設定する。
In FIG. 1, a line switching device 1 can connect any transmission signal of Sa to Sd to any carrier frequency. The level difference between each carrier is semi-fixed, and the output level of each carrier is semi-fixed so that the maximum transmission power compensation required by the system is satisfied and the C/I of the worst C/I carrier is above a certain value. It is set by the level adjuster modules 21 to 24 of.

ただし、これは帯域フィルタを用いて1個の回路でも実
現可能であり、その場合は2の破線で囲んだ部分が1個
のレベル?11整回路となる。
However, this can be achieved with a single circuit using a bandpass filter, and in that case, the part surrounded by the broken line in 2 is one level. 11 circuit.

周波数変換器3および送信器4については、従来例と同
様である。
The frequency converter 3 and transmitter 4 are the same as in the conventional example.

制御論理回路5は、各送信先からの回線品質情報Ca−
Cdに基づいて以下にのべるように各送信先向けの信号
5a−3dをF2〜F5のいずれかの周波数に#に続す
るよう切り換え器1を制御する制御信号を生成する論理
と、各地球局で共通に用いる回線設定制御信号の生成を
行なう論理回路である。
The control logic circuit 5 receives line quality information Ca- from each destination.
Logic for generating a control signal for controlling the switch 1 so that signals 5a-3d for each destination follow # on one of the frequencies F2 to F5 as described below based on Cd, and each earth station. This is a logic circuit that generates a line setting control signal that is commonly used.

第3図は地球局送信スペクトルの一例で、レベルはF1
=F5  、F2=F4  、Fl>F2>F3となる
よう第1図のレベル調整器2で半固定的に設定され、レ
ベル差は、それぞれR(dB)と仮定する(最大送信電
力制御範囲は2R)。
Figure 3 shows an example of the earth station transmission spectrum, and the level is F1.
= F5 , F2 = F4 , Fl > F2 > F3 are semi-fixed by the level adjuster 2 in Fig. 1, and the level difference is assumed to be R (dB) (the maximum transmission power control range is 2R).

本送信スペクトル分布では、大信号どうしの3次温室f
I4積が小信号キャリヤ帯域に落ち込まないように’t
lKされているので、従来例のようにランダムに大信号
と小信号が配置される場合より最悪チャネルのC/Iを
改良することができろ。
In this transmission spectrum distribution, the third-order greenhouse f between large signals is
To prevent the I4 product from falling into the small signal carrier band
1K, it is possible to improve the C/I of the worst channel compared to the case where large signals and small signals are randomly arranged as in the conventional example.

なお、混交′I!4C/Iは、衛星中継器出力時点で定
まるので下り降雨によって変化しない、F2およびF4
の下りC/Nと最悪時のC/I  (全キャリヤが送信
されている場合)の雑音和は、降雨がなければ所要の回
線品質を満たすよう回線パラメータの設定がなされてい
るものとする。
In addition, mixed 'I! 4C/I is determined at the time of output from the satellite repeater, so it does not change due to rain, F2 and F4
It is assumed that the line parameters are set so that the noise sum of the downlink C/N and the worst-case C/I (when all carriers are transmitted) satisfies the required line quality in the absence of rain.

以下、刺傷動作を説明する。The stabbing operation will be explained below.

まず、地球局10から呼設定要求があって各地球局へ回
線を新規に設定する場合を例に説明する。
First, an example will be described in which a call setup request is made from the earth station 10 and a new line is set up to each earth station.

第;3図の各キャリヤのうち、Flは全局共通に用いる
回線制御信号伝送に用い、各地球局は待機中は常時F1
を受信するものとする。送信元地球局10ではFlを用
いて回線設定要求信号を送信し、各地球局では回線設定
要求信号を受信し自局宛要求かどうかを判別して、自局
宛の場合には自局着のF1キャリヤ回線品?7情報(符
号誤り率あるいはS/Nなど)全地球局10に通知する
Of the carriers in Figure 3, Fl is used for line control signal transmission common to all stations, and each earth station always uses F1 when on standby.
shall be received. The source earth station 10 transmits a line setting request signal using Fl, and each earth station receives the line setting request signal and determines whether the request is addressed to its own station. F1 carrier line product? 7 information (code error rate, S/N, etc.) is notified to the global station 10.

通知手段については、何等かの回線を各地球局から地球
局10へ向けて設けることになるが、ここでは発明の本
質には、特に関係しないので説明を割愛する。
Regarding the notification means, some kind of line will be provided from each earth station to the earth station 10, but since it is not particularly relevant to the essence of the invention, a description thereof will be omitted here.

まず、地球局10が地球局Aに対して送信要求をした場
合、地球局Aでは降雨減衰を受けていないので、Aから
通知されるF1信号の回線品質情報Caは、F2あるい
はF4により回線設定が可能なことを示しでいる。これ
に基づいて地球局10内では、第1図の制御論理回路5
が回線切り換え器1を用いて地球局A向けの信号Saを
F2キャリヤ(F4でもよい)に接続する。
First, when the earth station 10 makes a transmission request to the earth station A, since the earth station A has not received rain attenuation, the line quality information Ca of the F1 signal notified from A is determined by the line setting by F2 or F4. This shows that it is possible. Based on this, in the earth station 10, the control logic circuit 5 of FIG.
uses the line switch 1 to connect the signal Sa destined for earth station A to the F2 carrier (or F4).

次に、地球局10が地球局Bに対して送信要求をした場
合、地球局Bから通知される回線品質情報cbは、降雨
滅貨分の品質劣化Lb(下りC/N分の劣化)を含んで
いるので、地球局10では制御論理回路5がF3キャリ
ヤで回線設定可能かどうかをあらかじめ把握している混
交31iC/IおよびC/Nより推定し、可能ならば地
球局B向けの信号sbをF3キャリヤに接続する。
Next, when the earth station 10 makes a transmission request to the earth station B, the line quality information cb notified from the earth station B includes the quality deterioration Lb due to rain loss (deterioration due to downlink C/N). Therefore, at the earth station 10, the control logic circuit 5 estimates from the mixed 31iC/I and C/N that it knows in advance whether or not the line can be set up with the F3 carrier, and if possible, the control logic circuit 5 uses the signal sb for the earth station B. Connect to F3 carrier.

F3では、下りC/Nの改善が不十分と推定される場合
は、さらにF5キャリヤで回線設定可能かどうかを推定
し、可能ならばF5キャリヤに接続し、F5のレベルを
もっても降雨減衰を補償しきれない場合は回線設定不能
とみなして接続しない。
In F3, if it is estimated that the downlink C/N improvement is insufficient, it is further estimated whether it is possible to set up a line with an F5 carrier, and if possible, connect to the F5 carrier to compensate for rain attenuation even at the F5 level. If this is not possible, it is assumed that the line cannot be set up and the connection will not be made.

本例の場合、2R>Lb>Rであるから、混変調雑音が
一定値以下であればsbの送信キャリヤ周波数としては
F5が選択される。以下、地球局C−D局向けについて
同様の胤作を打なうことにより、地球局A−Dへ向けて
はそれぞれF2  、F5  、F3  、F4が設定
される。
In this example, since 2R>Lb>R, F5 is selected as the sb transmission carrier frequency if the cross-modulation noise is below a certain value. Hereinafter, by making similar measurements for the earth stations C-D, F2, F5, F3, and F4 are set for the earth stations A-D, respectively.

さらに、−旦キャリャ周波数が設定された後は、設定さ
れたキャリヤについて各々の地球局が回線品質情報(C
a−Cd)を地球局10に通知し、地球局10で制御論
理回路5によって全地球局向けの回線品質を総合的にみ
て、降雨の地理的変化などにより各キャリヤのレベル余
裕に不均一が者しくなった場合には、回線切り換え器1
を制御して各地球局向けのキャリヤ周波数割り当てを変
更し、各局向けの送信レベルの再配分を行なう。
Furthermore, once the carrier frequency has been set, each earth station transmits line quality information (C) for the set carrier.
a-Cd) to the earth station 10, and the earth station 10 uses the control logic circuit 5 to comprehensively check the line quality for all earth stations, and determines whether the level margin of each carrier is uneven due to geographical changes in rainfall, etc. If you become suspicious, turn on line switch 1.
control to change the carrier frequency allocation for each earth station and redistribute the transmission level for each station.

この変更は、全体的にみて送信キャリヤの周波数レベル
分布の変化を伴なわないため、混交111c/Iの悪化
を考慮することなしに、システムとしての各局向は送信
電力量の最適化を図ることができる。
Since this change does not involve a change in the frequency level distribution of the transmission carrier as a whole, it is possible to optimize the amount of transmission power for each station as a system without considering the deterioration of 111c/I. Can be done.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、非直線増幅特性をもつ
中継器で共通増幅するようなマルチキャリヤ伝送方式に
介いて周波数軸上にキャリヤを等間隔で周波数配置した
場合でも、安定した各キャリヤごとの送信電力制御が可
能となるのみならず、従来方式のようにキャリヤごとに
送信電力制御を行なう方法に比べて、最悪条件のキャリ
ヤのC/(N+I)を改善できるため中継器の出力バッ
クオフを小さ(することが可能となる。
As explained above, the present invention provides stable transmission of each carrier even when carriers are arranged at equal intervals on the frequency axis through a multi-carrier transmission system in which common amplification is performed by repeaters with non-linear amplification characteristics. Not only is it possible to control the transmit power for each carrier, but it also improves the C/(N+I) of the carrier under the worst condition compared to the conventional method that controls the transmit power for each carrier. It becomes possible to turn it off small.

このように中継器の出力バックオフを小さくすることは
、すなわちシステムの電力余裕が生じることとなり、こ
れをチャネル容量の増大あるいは各キャリヤのC/Nマ
ージンの増大にあてることが可能となる。
Reducing the output backoff of the repeater in this way creates a power margin in the system, which can be used to increase channel capacity or increase the C/N margin of each carrier.

また、本発明の適用によりパブコック配置のような周波
数配置上の制限も排除できるため周波数の有効利用を図
ることも可能となる。
Further, by applying the present invention, it is possible to eliminate restrictions on frequency allocation such as the Pubcock arrangement, so it is also possible to utilize frequencies effectively.

なお、本明m書においては、説明の簡単化のため中継器
として、主として衛星搭載中継器を例として説明してい
るが、本発明は一般的に複数のキャリヤを送信電力制御
し、それらのキャリヤを共通増幅するような伝送システ
ムに適用して効果を得ることができる。
Note that in this document, to simplify the explanation, a satellite-mounted repeater is mainly explained as an example of a repeater, but the present invention generally controls the transmission power of multiple carriers and The present invention can be applied to a transmission system in which carriers are commonly amplified to obtain an effect.

【図面の簡単な説明】[Brief explanation of the drawing]

11図は本発明の1実施例の送信電力制御回路の構成の
例を示す図、第2図は本発明を適用するシステム構成の
例を示す図、rjSa図は設定キャリヤレベルの周波数
配置の例を示す図、第4図は従来の送信電力制御回路の
構成の例を示す図、tIS5図は従来のキャリヤレベル
周波数分布の例を示す図である。 1 ・・・・・・回線切り換え器、   2 ・・・・
・・ レベル調整器、   3 ・・・・・・周波数変
換器、  4・・・・・・送信器、   5 ・・・・
・・制御論理回路、6 ・・・・・・ レベル制御回路
、   7 ・・・・・・回線制御論理回路、   8
.〜s、、io  ・・・・・・地球局、   9・・
・・・・衛星、  21  、22 。 23.24・・・・・・ レベル調整器モジュール、3
1  、32  、33  、34  、35  ・・
・・・・周波数変換器モジュール、     41  
、42  。 44 .45・・・・・・送信器モノニール代理人 弁
理士 本  間     崇Ca Cb Cc Cd 第 l 図 第 2 図 F、   F2   F、   F4   Fs第3 
図 第5 図
FIG. 11 is a diagram showing an example of the configuration of a transmission power control circuit according to an embodiment of the present invention, FIG. 2 is a diagram showing an example of a system configuration to which the present invention is applied, and rjSa is an example of frequency allocation of set carrier levels. FIG. 4 is a diagram showing an example of the configuration of a conventional transmission power control circuit, and FIG. tIS5 is a diagram showing an example of a conventional carrier level frequency distribution. 1...Line switching device, 2...
... Level adjuster, 3 ... Frequency converter, 4 ... Transmitter, 5 ...
... Control logic circuit, 6 ... Level control circuit, 7 ... Line control logic circuit, 8
.. ~s,,io...Earth station, 9...
...satellite, 21, 22. 23.24 Level adjuster module, 3
1, 32, 33, 34, 35...
...Frequency converter module, 41
, 42. 44. 45... Transmitter monoyl agent Patent attorney Takashi Honma Ca Cb Cc Cd Fig. 2 Fig. F, F2 F, F4 Fs No. 3
Figure 5

Claims (1)

【特許請求の範囲】[Claims] 周波数上に複数のキャリヤを並べて用いる信号伝送方式
において、送信元であらかじめ各キャリヤの送信レベル
にレベル差を設け、かつ各キャリヤの送信レベルに対応
させて周波数配置に一定の関係を持たせておき、各送信
先へ信号を伝送する場合にキャリヤ周波数を選択するこ
とにより送信レベルを制御することを特徴とする送信電
力制御方式。
In a signal transmission system that uses multiple carriers lined up on a frequency, a level difference is established in advance between the transmission levels of each carrier at the transmission source, and a certain relationship is created in the frequency arrangement in correspondence with the transmission level of each carrier. , a transmission power control method characterized by controlling the transmission level by selecting a carrier frequency when transmitting a signal to each destination.
JP25736787A 1987-10-14 1987-10-14 System for controlling transmitting power Pending JPH01101037A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25736787A JPH01101037A (en) 1987-10-14 1987-10-14 System for controlling transmitting power

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25736787A JPH01101037A (en) 1987-10-14 1987-10-14 System for controlling transmitting power

Publications (1)

Publication Number Publication Date
JPH01101037A true JPH01101037A (en) 1989-04-19

Family

ID=17305401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25736787A Pending JPH01101037A (en) 1987-10-14 1987-10-14 System for controlling transmitting power

Country Status (1)

Country Link
JP (1) JPH01101037A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026870A (en) * 2000-07-13 2002-01-25 Matsushita Electric Ind Co Ltd High-speed multi-carrier spread spectrum communication system and high-speed multi-carrier spread spectrum communication apparatus
JP2007189306A (en) * 2006-01-11 2007-07-26 Nippon Telegr & Teleph Corp <Ntt> Device and system for radio communication
US7590397B2 (en) 2003-09-10 2009-09-15 Sony Corporation Signal processing apparatus and signal processing method, program, and recording medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002026870A (en) * 2000-07-13 2002-01-25 Matsushita Electric Ind Co Ltd High-speed multi-carrier spread spectrum communication system and high-speed multi-carrier spread spectrum communication apparatus
US7590397B2 (en) 2003-09-10 2009-09-15 Sony Corporation Signal processing apparatus and signal processing method, program, and recording medium
US7933573B2 (en) 2003-09-10 2011-04-26 Sony Corporation Signal processing apparatus and signal processing method, program, and recording medium
JP2007189306A (en) * 2006-01-11 2007-07-26 Nippon Telegr & Teleph Corp <Ntt> Device and system for radio communication
JP4672557B2 (en) * 2006-01-11 2011-04-20 日本電信電話株式会社 Wireless communication apparatus and wireless communication system

Similar Documents

Publication Publication Date Title
CA2140439C (en) Trunked communication system with automatic repeater talk-around
US6192216B1 (en) Remotely controlled gain control of transceiver used to inter-connect wireless telephones to a broadband network
US7623495B2 (en) Radio base station and frame configuration method using TDMA scheme and SDMA scheme
US6374124B1 (en) Dynamic reallocation of transceivers used to interconnect wireless telephones to a broadband network
US4495648A (en) Transmitter power control circuit
US6223021B1 (en) Signal filtering in a transceiver for a wireless telephone system
US8494445B2 (en) Flexible coverage areas for forward link signals in a spot beam satellite communication system
JPH06504170A (en) Method and apparatus for dynamically distributing communication channel loads in a cellular wireless communication system
EP0685973A2 (en) Radio-parts assignment in a mobile cellular communication system
EP0682423A2 (en) Code division multiple access system providing variable data rate access to a user
US20020187747A1 (en) Method and appartus for dynamic frequency bandwidth allocation
WO1993003558A1 (en) A multiple user spread-spectrum communication system
JPH09214404A (en) Spread spectrum communication method and device
EP1543410B1 (en) Method and system for optimizing satellite-gateway communication
US10587333B2 (en) Forward link power control
Harada et al. TDM intercell connection fiber-optic bus link for personal radio communication systems
JPH01101037A (en) System for controlling transmitting power
EP1274183A1 (en) Data transmission method employing different modulation schemes on radio communication channels
US6301465B1 (en) Adaptive transceiver architecture for real time allocation of communications resources in a satellite based telecommunication system
CN100375406C (en) Base station for a telecommunication system
CN1212800A (en) Method for controlling base station, and base station
US11212004B2 (en) Optical/RF wireless hybrid communication system and a control method
JP3586417B2 (en) Satellite communication system and child earth station and parent earth station used in the satellite communication system
US7426386B1 (en) Beam laydown for hopped satellite downlink with adaptable duty cycle
US5533030A (en) Radiotelephone system with the character of a local or auxiliary communications apparatus