JPH01100984A - Method of filling gas in excimer laser equipment - Google Patents

Method of filling gas in excimer laser equipment

Info

Publication number
JPH01100984A
JPH01100984A JP25864487A JP25864487A JPH01100984A JP H01100984 A JPH01100984 A JP H01100984A JP 25864487 A JP25864487 A JP 25864487A JP 25864487 A JP25864487 A JP 25864487A JP H01100984 A JPH01100984 A JP H01100984A
Authority
JP
Japan
Prior art keywords
gas
laser
vacuum
laser tube
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25864487A
Other languages
Japanese (ja)
Other versions
JP2535960B2 (en
Inventor
Tamotsu Kawakita
川北 有
Tatsumi Kamiguri
上栗 立巳
Jun Mano
真野 順
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP62258644A priority Critical patent/JP2535960B2/en
Publication of JPH01100984A publication Critical patent/JPH01100984A/en
Application granted granted Critical
Publication of JP2535960B2 publication Critical patent/JP2535960B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To obtain gas of long life, by a method wherein, when the gas is filled in the laser tube of an excimer laser equipment, in advance of that, the amount of residual impurity gas is decreased by vacuumizing the inside of said laser tube to a high degree of vacuum. CONSTITUTION:When the ultimate degree of vacuum of a laser tube 2 before gas G is filled is made an order of 10<-3>Torr, and KrF laser is made to oscillate with a repetition rate of 100Hz, the shot number till the average output of the laser is decreased by 50% is about 3X10<6> shots, which is nearly one digit larger than prior values. Further, the amount of residual gas in the laser tube 2 decreases, so that the number of passivations till the laser oscillation is stabilized can also be reduced. In order to vacuumize the inside of the laser tube 2 to an order of the degree of vacuum of 10<-3>Torr, it is desirable to install a vacuum pump 26 having high ultimate degree of vacuum such as an oil diffusion pump, a molecular turbopump and a cryopump, in the pre-stage of a rotary pump 16.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、エキシマレーザ装置のレーザ管内にガスを
充填する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for filling a laser tube of an excimer laser device with gas.

〔従来の技術〕[Conventional technology]

第1図は、エキシマレーザ装置の一例を示す概略図であ
る。
FIG. 1 is a schematic diagram showing an example of an excimer laser device.

一端面に反射鏡を、他端面に半透鏡(いずれも図示省略
)を有する円筒状のレーザ管2内に、保持板5に取り付
けられた一対の放電用の電極4、ガス循環ファン6およ
びガス冷却用の熱交換器8が収納されている。更に当該
レーザ管2には、ガス導入管10、真空引き配管12等
が接続されており、また熱交換器8には冷却水Wが供給
される。
A cylindrical laser tube 2 has a reflecting mirror on one end and a semi-transparent mirror on the other end (both not shown), and is equipped with a pair of discharge electrodes 4 attached to a holding plate 5, a gas circulation fan 6, and a gas circulation fan 6. A heat exchanger 8 for cooling is housed. Furthermore, a gas introduction pipe 10, a vacuum piping 12, etc. are connected to the laser tube 2, and cooling water W is supplied to the heat exchanger 8.

この装置を動作させる手順等を簡単に説明すると、まず
真空引き配管12につながるロータリーポンプ16によ
ってレーザ管2内を10−’Torr程度にまで真空引
きし、次いでレーザ管2内に、希ガス(例えばKr 、
Ar等)、ハロゲンガス(例えばF2等)およびバッフ
ァガス(例えばHe、Ne等)を所定割合で混合したガ
スGを例えば3atn+程度充填する。充填されたガス
Gは、ガス循環ファン6で混合されレーザ管2内を循環
する。
To briefly explain the procedure for operating this device, first, the inside of the laser tube 2 is evacuated to about 10-'Torr using the rotary pump 16 connected to the vacuum piping 12, and then a rare gas ( For example, Kr,
For example, about 3 atn+ is filled with gas G, which is a mixture of Ar, etc.), halogen gas (for example, F2, etc.), and buffer gas (for example, He, Ne, etc.) at a predetermined ratio. The filled gas G is mixed by a gas circulation fan 6 and circulated within the laser tube 2.

そしてその状態で、電極4.4間で放電を起こさせると
、レーザが発振する。
In this state, when a discharge is caused between the electrodes 4 and 4, the laser oscillates.

ところがこの発振を続けると、レーザ管2内のガスGが
劣化すると共に不純物も発生するため、レーザの出力は
徐々に低下する。従って、レーザの出力が所定以下にま
で低下したら、レーザ管2内のガスGを新しいものと交
換する必要がある。
However, if this oscillation continues, the gas G in the laser tube 2 deteriorates and impurities are generated, so the output of the laser gradually decreases. Therefore, when the laser output drops below a predetermined level, it is necessary to replace the gas G in the laser tube 2 with a new one.

ガスGの交換に際しては、まず、劣化したガスGを、ハ
ロゲンガスを除去するトラップ18を通して図示しない
ガス処理装置に排気し、レーザ管2内をほぼ大気圧にす
る。次いで、前述したようにロータリポンプ16によっ
てレーザ管2内を1CI’Torr程度に真空引きし、
次いでレーザ管2内に新しいガスGを3atm程度充填
する。それ以降は上記と同様である。
When replacing the gas G, first, the deteriorated gas G is exhausted to a gas processing device (not shown) through the trap 18 for removing halogen gas, and the inside of the laser tube 2 is brought to approximately atmospheric pressure. Next, as described above, the inside of the laser tube 2 is evacuated to about 1 CI'Torr using the rotary pump 16.
Next, the laser tube 2 is filled with new gas G of about 3 atm. The rest is the same as above.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の場合、レーザ管2内に充填したガスGの寿命は、
それをレーザの平均出力が50%に低下するまでのショ
ツト数(発振回数)で表すと、従来はせいぜい5X10
’ショット程度止まりであり、このガスGの長寿命化が
エキシマレーザ装置において大きな技術的課題となって
いた。
In the above case, the life of the gas G filled in the laser tube 2 is:
Expressing this in terms of the number of shots (number of oscillations) until the average output of the laser drops to 50%, conventionally it was at most 5x10
'The lifespan of this gas G is no more than a shot, and extending the lifespan of this gas G has become a major technical issue in excimer laser devices.

そこでこの発明は、上記のようなガスGの長寿命化を図
ることができる手段を提供することを主たる目的とする
Therefore, the main object of the present invention is to provide a means that can extend the life of the gas G as described above.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、エキシマレーザ装置のレーザ管内にガスを
充填する際、それに先立って当該レーザ管内を10−3
Torrオ一ダー以上の真空度にまで真空引きすること
を特徴とする。
In this invention, when filling the laser tube of an excimer laser device with gas, the interior of the laser tube is
It is characterized by being evacuated to a vacuum degree of Torr or higher.

〔作用〕[Effect]

ガスを充填する前のレーザ管内の真空度を上記のように
上げることによって、ガスの寿命がかなり延びることが
確かめられた。これは、ガスを充填する前のレーザ管内
の真空度を上記のように上げると、レーザ管内に残留す
る不純ガス(例えばOx 、HtO,N!等・)の量が
減り、その結果レーザ発振に伴って、充填したガス中の
ハロゲンガス等が化合物となってその濃度が低下したり
、エキシマレーザの波長において吸収域を持つ化合物が
生じたりするのが抑えられるからである。
It has been confirmed that by increasing the degree of vacuum in the laser tube before filling it with gas as described above, the life of the gas can be significantly extended. This is because if the degree of vacuum inside the laser tube is increased as described above before filling the laser tube with gas, the amount of impurity gas (e.g. Ox, HtO, N!, etc.) remaining in the laser tube will be reduced, and as a result, the laser oscillation will be affected. This is because the halogen gas or the like in the filled gas becomes a compound and its concentration decreases, and the formation of a compound that has an absorption range at the wavelength of the excimer laser is suppressed.

〔実施例〕〔Example〕

第2図は、この発明に係るガス充填方法による場合のガ
ス寿命による出力低下特性の一例を示すグラフである。
FIG. 2 is a graph showing an example of an output reduction characteristic due to gas life when using the gas filling method according to the present invention.

これは、ガスGを充填する前のレーザ管2内の到達真空
度をI O−’Torrオーダーにし、KrFレーザを
繰返し率100Hzで発振させた場合の例であり、レー
ザの平均出力が50%に低下するまでのショツト数は3
X10’シヨツトであり、従来に比べて1桁近く多くな
っている。
This is an example when the ultimate vacuum in the laser tube 2 before being filled with gas G is on the order of IO-'Torr, and the KrF laser is oscillated at a repetition rate of 100Hz, and the average output of the laser is 50%. The number of shots it takes to drop to 3
This is an X10' shot, which is nearly an order of magnitude larger than the conventional model.

しかも、レーザ管2内を上記のような真空度にまで真空
引きすることによって、レーザ管2内の残留ガス量が減
るため、レーザの発振が安定化するまでのパッシベーシ
ョン回数を低減させることもできた。
Furthermore, by evacuating the inside of the laser tube 2 to the vacuum level described above, the amount of residual gas inside the laser tube 2 is reduced, so the number of passivations required until laser oscillation is stabilized can be reduced. Ta.

尚、レーザ管2内を真空引きするために、従来は1/4
インチ径の真空引き配管12とロータリーポンプ16と
を用いていたが、ロータリーポンプ16では到達真空度
が低く、また1/4インチ配管12ではコンダクタンス
が小さいため、レーザ管2内を10−3Torrオーダ
ー以上の真空度にまで真空引きするためには、例えば第
3図に示すように、ロータリーポンプ16の前段に例え
ば油拡散ポンプ、ターボ分子ポンプ、タライオポンプ等
の到達真空度の高い真空ポンプ26を設けるのが好まし
く、またレーザ管2と真空ポンプ26管をつなぐ真空引
き配管22やその途中のバルブ24もコンダクタンスの
大きい1/2インチ径以上のものを使用するのが好まし
い。そのようにすれば、レーザ管2内の到達真空度の向
上を図ることができると共に、真空引き時間も短縮する
ことができる。
In addition, in order to evacuate the inside of the laser tube 2, conventionally the
An inch-diameter vacuum piping 12 and a rotary pump 16 were used, but the rotary pump 16 has a low degree of vacuum, and the 1/4-inch piping 12 has a small conductance, so the inside of the laser tube 2 is on the order of 10-3 Torr. In order to draw the vacuum to the above degree of vacuum, for example, as shown in FIG. 3, a vacuum pump 26 with a high ultimate vacuum such as an oil diffusion pump, a turbo molecular pump, a Talio pump, etc. is provided at the front stage of the rotary pump 16. It is preferable that the vacuum piping 22 connecting the laser tube 2 and the vacuum pump 26 tube and the valve 24 in the middle thereof have a diameter of 1/2 inch or more, which has a large conductance. By doing so, it is possible to improve the degree of vacuum achieved within the laser tube 2, and it is also possible to shorten the evacuation time.

また、空気や不純ガス等がレーザ管2の0リング溝やレ
ーザ管2内にあるねじの部分に溜まるのを防止する手段
を講じておくのが好ましい。そのようにすれば、レーザ
管2内の真空引き時間の短縮と到達真空度の向上を図る
ことができると共に、ガスGの寿命も延びる。
Further, it is preferable to take measures to prevent air, impure gas, etc. from accumulating in the O-ring groove of the laser tube 2 or in the threaded portion inside the laser tube 2. By doing so, it is possible to shorten the evacuation time in the laser tube 2 and improve the degree of vacuum achieved, and the life of the gas G is also extended.

例えば、前述した電極4はその保持vi5に複数本のビ
スで止められているが、例えば第4図に示すように、各
ビス32にガス抜き用の貫通穴34をあけておくのが好
ましい。そのようにすれば、ねじ部の底にあるガス溜り
36内の不純ガス等は、レーザ管2内を真空引きする際
に貫通穴34を通して排気される。尚、この貫通穴34
の代わりに、ビス32の側面あるいは電極4側のねじ大
の側面にガス抜き用の溝を設けておいても良い。
For example, the electrode 4 described above is fixed to its holder vi5 with a plurality of screws, but it is preferable that each screw 32 has a through hole 34 for degassing, as shown in FIG. 4, for example. In this way, impurity gas and the like in the gas reservoir 36 at the bottom of the threaded portion will be exhausted through the through hole 34 when the inside of the laser tube 2 is evacuated. In addition, this through hole 34
Instead, a gas vent groove may be provided on the side surface of the screw 32 or the screw-sized side surface on the electrode 4 side.

また、レーザ管2の端面とそのM44との間は、例えば
第5図に示すように、0リング溝38内に収納したOリ
ング40によって真空シールされているが、この0リン
グ溝38とレーザ管2の内側とをつなぐガス抜き用の溝
42を円周上に何個所か設けておくのが好ましい。その
ようにすれば、0リング溝38内にある不純ガス等は、
レーザ管2内を真空引きする際に溝42を通して排気さ
れる。尚、この溝42は貫通穴としても良い。
Further, the end face of the laser tube 2 and its M44 are vacuum-sealed by an O-ring 40 housed in an O-ring groove 38, as shown in FIG. 5, for example. It is preferable to provide gas venting grooves 42 at several locations on the circumference to connect the inside of the tube 2. In this way, impurity gas etc. in the O-ring groove 38 will be removed.
When the inside of the laser tube 2 is evacuated, it is evacuated through the groove 42. Note that this groove 42 may be a through hole.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、ガスを充填する前のレ
ーザ管内に残留する不純ガス等の量を減らせることがで
き、その結果ガスの長寿命化を図ることができる。また
、レーザの発振が安定化するまでのパッシベーション回
数を低減させることもできる。
As described above, according to the present invention, it is possible to reduce the amount of impure gas, etc. remaining in the laser tube before it is filled with gas, and as a result, the life of the gas can be extended. Furthermore, it is also possible to reduce the number of passivations required until laser oscillation is stabilized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、エキシマレーザ装置の一例を示す概略図であ
る。第2図は、この発明に係るガス充填方法による場合
のガス寿命による出力低下特性の一例を示すグラフであ
る。第3図は、真空排気系の一例を示すブロック図であ
る。第4図は、レーザ管内の電極部分の一例を示す拡大
断面図である。 第5図は、レーザ管の端部の一例を示す部分断面図であ
り、第1図の線V−■方向の断面図に相当する。 2、・・ レーザ管、16・・・ ロータリーポンプ、
26・・・到達真空度の高い真空ポンプ、G・・・ガス
FIG. 1 is a schematic diagram showing an example of an excimer laser device. FIG. 2 is a graph showing an example of an output reduction characteristic due to gas life when using the gas filling method according to the present invention. FIG. 3 is a block diagram showing an example of a vacuum evacuation system. FIG. 4 is an enlarged sectional view showing an example of an electrode portion within the laser tube. FIG. 5 is a partial sectional view showing an example of the end portion of the laser tube, and corresponds to a sectional view taken along line V--■ in FIG. 2. Laser tube, 16. Rotary pump,
26...Vacuum pump with high ultimate vacuum, G...Gas.

Claims (1)

【特許請求の範囲】[Claims] (1) エキシマレーザ装置のレーザ管内にガスを充填
する際、それに先立って当該レーザ管内を10^−^3
Torrオーダー以上の真空度にまで真空引きすること
を特徴とするエキシマレーザ装置のガス充填方法。
(1) When filling the laser tube of an excimer laser device with gas, first clean the inside of the laser tube by 10^-^3
A gas filling method for an excimer laser device, which is characterized by evacuation to a degree of vacuum of Torr order or higher.
JP62258644A 1987-10-14 1987-10-14 Gas filling method for excimer laser device Expired - Lifetime JP2535960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62258644A JP2535960B2 (en) 1987-10-14 1987-10-14 Gas filling method for excimer laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62258644A JP2535960B2 (en) 1987-10-14 1987-10-14 Gas filling method for excimer laser device

Publications (2)

Publication Number Publication Date
JPH01100984A true JPH01100984A (en) 1989-04-19
JP2535960B2 JP2535960B2 (en) 1996-09-18

Family

ID=17323131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62258644A Expired - Lifetime JP2535960B2 (en) 1987-10-14 1987-10-14 Gas filling method for excimer laser device

Country Status (1)

Country Link
JP (1) JP2535960B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997036352A1 (en) * 1996-03-22 1997-10-02 Komatsu Ltd. Gas laser

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6041276A (en) * 1983-08-17 1985-03-04 Mitsubishi Electric Corp Laser medium gas exchanger
JPS6316473U (en) * 1986-07-17 1988-02-03

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6041276A (en) * 1983-08-17 1985-03-04 Mitsubishi Electric Corp Laser medium gas exchanger
JPS6316473U (en) * 1986-07-17 1988-02-03

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997036352A1 (en) * 1996-03-22 1997-10-02 Komatsu Ltd. Gas laser
US6151350A (en) * 1996-03-22 2000-11-21 Komatsu Ltd. Gas laser

Also Published As

Publication number Publication date
JP2535960B2 (en) 1996-09-18

Similar Documents

Publication Publication Date Title
US6219368B1 (en) Beam delivery system for molecular fluorine (F2) laser
US6490305B2 (en) Beam delivery system for molecular fluorine (F2) laser
EP0527986B1 (en) A method for extending the gas lifetime of excimer lasers
JP2024107063A (en) Method for collecting and recycling rare gases in semiconductor processing equipment
GB2156236A (en) Waste gas exhaust system for vacuum process apparatus
US5231839A (en) Methods and apparatus for cryogenic vacuum pumping with reduced contamination
JPH01100984A (en) Method of filling gas in excimer laser equipment
JP3425929B2 (en) High pressure discharge lamp and manufacturing method thereof
US20040231695A1 (en) Cleaning gas for semiconductor production equipment and cleaning method using the gas
JPH11156176A (en) Vacuum chamber sweeping cycle during baking-out process
US8502450B2 (en) Vacuum tube and vacuum tube manufacturing apparatus and method
US3721100A (en) Cold trap
Akutsu et al. Innovation of the fore pump and roughing pump for high-gas-flow semiconductor processing
KR20190136588A (en) Semiconductor Device Manufacturing System with recoverable Fluorocarbon-based Precursor
US3439870A (en) Purging-diluting method for removing gases
US4949353A (en) Laser processing
JP2002033540A (en) Laser system
JP2009146804A (en) Plasma display panel and its manufacturing method
HU201421B (en) Method for pumping low-pressure gas-discharge light source
RU2073814C1 (en) Method and device for evacuation of cryogenic insulation
JPH05283001A (en) Gas substitution cleaning method
JPS61176179A (en) Discharge type excimer laser chamber
Treshchalov et al. Spectrochemical analysis of trace contaminants in helium (helium–fluorine) pulsed discharge plasmas
Norioka et al. Practical advantages of a cascade diffusion pump system of a scanning electron microscope
JP2004103594A (en) High pressure discharge lamp and its manufacturing method